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1 Introduction

The SVAR package is a collection of gretl scripts to estimate Structural VARs,
or SVARs for short.

A bit of notation first1: we call “structural” a model in which we assume
that the one-step-ahead prediction errors εt from a statistical model can be
thought of as linear functions of the structural shocks ut. In its most general
form, a structural model is the pair of equations

εt = yt − E(yt|Ft−1) (1)
Aεt = But (2)

In practically all cases, the statistical model is a a finite-order VAR and equation
(1) specialises to

yt = µ′xt +
p∑

i=1

Aiyt−i + εt or A(L)yt = µ′xt + εt (3)

where the VAR may include an exogenous component xt, which typically con-
tains at least a constant term. The above model is referred to as the AB-model
in Amisano-Giannini (1997).

The object of estimation are the square matrices A and B. Since the ut are
assumed mutually incorrelated with unit variance, the following relation must
hold:

AΣA′ = BB′ (4)

If we define C asA−1B, the relationship between prediction errors and structural
shocks becomes

εt = Cut (5)

and equation (4) can be written as

Σ = CC ′.

This model can also arise when A = I by assumption, in which case it is called
a C model.

The matrix Σ can be consistently estimated via the covariance matrix of
VAR residuals, but estimation of A and B is impossible unless some constraints
are imposed on both matrices: Σ̂ contains n(n+1)

2 distinct entries; clearly, the
attempt to estimate 2n2 parameters violates an elementary order condition.

In Sims’s (1980) original proposal, it was implicitly assumed that A = I
and B was lower triangular, so estimating B would just involve the Cholesky
decomposition of Σ̂. In general, however, one may wish to achieve identification
by other means.2

The most immediate way to place enough constraints on the A and B ma-
trices so to achieve identification is to specify a system of linear constraints; in
other words, the restrictions on A and B take the form

Ra vecA = da (6)
Rb vecB = db (7)

1I’ll try to follow Amisano and Giannini (1997) as closely as possible.
2Necessary and sufficient conditions to achieve identification are stated in Lucchetti (2006),

but the numerical procedures therein are not implemented in SVAR yet. Another interesting
contribution in this area is Rubio-Ramirez et al. (2010).
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This setup is perhaps overly general in most cases: the restrictions that
are put almost universally on A and B are zero- or one-restrictions, that is
constraints of the form, eg, Aij = 1. In these cases, the corresponding row of
R is a vector with a 1 in a certain spot and zeros everywhere else. However,
generality is nice for exploring the identification problem.

The order condition demands that the number of restrictions is at least
2n2 − n(n+1)

2 = n2 + n(n−1)
2 , so for the order condition to be fulfilled it is

necessary that

0 < rank (Ra) ≤ n2

0 < rank (Rb) ≤ n2

n2 +
n(n− 1)

2
≤ rank (Ra) + rank (Rb) ≤ n2

For the C model, Ra = In2 and da = vec In, so to satisfy the order condition
n(n−1)

2 constraints are needed on on B: in practice, for a C model we have one
set of constraints which pertain to B, or, equivalently in this context, to C:

R vecC = d (8)

The traditional choice of zeroing the the super-diagonal elements leads to the
well-known solution where B is just the result of the Cholesky decomposition
of Σ. In most other cases, explicit expressions for A and B are hard to find
analytically and a numerical search procedure is necessary (more on this later).
Of course, it is possible to estimate constrained models by placing some extra
restrictions.

Estimation is carried out by maximum likelihood: under the assumption of
normality, the average log-likelihood can be written as

L = const− ln |C| − 0.5tr(Σ̂(CC ′)−1)

If the model is just-identified, Σ̂(CC ′)−1 will be the identity matrix and the
log-likelihood simplifies to

L = const− 0.5 ln |Σ̂| − 0.5n

For over-identified model, this makes it possible to test the over-identifying
restrictions easily by means of a LR test.

Except for trivial cases, like the Cholesky decomposition, maximisation of
the likelihood involves numerical iterations. Fortunately, analytical expressions
for the score, the Hessian and the information matrix are available, which helps
a lot3; once convergence has occurred, the covariance matrix for the unrestricted
elements of A and B is easily computed via the information matrix.

Once estimation is completed, Â and B̂ can be used to compute the struc-
tural VMA representation of the VAR, which is the base ingredient for most of
the subsequent analysis, such as Impulse Response Analysis and so forth. If the
matrix polynomial A(L) in eq. (3) is invertible, then (assuming xt = 0 for ease
of notation), yt can be written as

yt = A(L)−1εt = Θ(L)εt = εt + Θ1εt−1 + · · ·
3As advocated in Amisano and Giannini, the scoring algorithm is used.
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which is known as the VMA representation of the VAR. Note that in general
the matrix polynomial Θ(L) is of infinite order.

From the above expression, one can write the structural VMA representation
as

yt = Cut + Θ1Cut−1 + · · · = M0ut +M1ut−1 + · · · (9)

From eq. (9) it is immediate to compute the impulse response functions:

Ii,j,h =
∂yi,t

∂uj,t−h
=
∂yi,t+h

∂uj,t

which in this case equal simply

Ii,j,h = [Mh]ij

The computation of confidence intervals for impulse responses could, in prin-
ciple, be performed analytically by the delta method (see Lütkepohl (1990)).
However, this has two disadvantages: for a start, it is quite involved to code.
Moreover, the limit distribution has been shown to be a very poor approxima-
tion in finite samples, so the bootstrap is almost universally adopted, although
in some cases it may be quite CPU-heavy.

Another quantity of interest that may be computed from the structural
VMA representation is the Forecast Error Variance Decomposition (FEVD).
The forecast error variance after h steps is given by

Ωh =
h∑

k=0

MkM
′
k

hence the variance for variable i is

ω2
i = [Ωh]i,i =

h∑
k=0

e′iMkM
′
kei =

h∑
k=0

n∑
l=1

(kmi.l)2

where kmi.l is, trivially, the i, l element of Mk. As a consequence, the share of
uncertainty on variable i that can be attributed to the j-th shock after h periods
equals

VDi,j,h =
∑h

k=0(kmi.j)2∑h
k=0

∑n
l=1(kmi.l)2

.

2 C models

2.1 A simple example

As a trivial example, we will estimate a plain Cholesky model. The data are
taken from Stock and Watson’s sample data sw ch14.gdt, and our VAR will
include inflation and unemployment, with a constant and 3 lags. Then, we will
compute the IRFs and their 90% bootstrap confidence interval4.

4Why not 95%? Well, keeping the number of bootstrap replications low is one reason.
Anyway, it must be said that in the SVAR literature few people use 95%. 90%, 84% or even
66% are common choices.
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# turn extra output off

set echo off

set messages off

# open the data and do some preliminary transformations

open sw_ch14.gdt

genr infl = 400*ldiff(PUNEW)

rename LHUR unemp

list X = unemp infl

var 3 unemp infl

Sigma = $sigma

C = cholesky(Sigma)

print Sigma C

Table 1: Cholesky example via the internal gretl command

VAR system, lag order 3

OLS estimates, observations 1960:1-1999:4 (T = 160)

Log-likelihood = -267.76524

Determinant of covariance matrix = 0.097423416

AIC = 3.5221

BIC = 3.7911

HQC = 3.6313

Portmanteau test: LB(40) = 162.946, df = 148 [0.1896]

Equation 1: u

coefficient std. error t-ratio p-value

--------------------------------------------------------

const 0.137300 0.0846842 1.621 0.1070

u_1 1.56139 0.0792473 19.70 8.07e-44 ***

u_2 -0.672638 0.140545 -4.786 3.98e-06 ***

...

Sigma (2 x 2)

0.055341 -0.028325

-0.028325 1.7749

C (2 x 2)

0.23525 0.0000

-0.12041 1.3268

Table 2: Cholesky example via the internal gretl command — Output
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Figure 1: Impulse response functions for the simple Cholesky model (native)

2.1.1 Gretl native var command

In order to accomplish the above, note that we don’t need to use the SVAR
package, as a Cholesky SVAR can be handled by gretl natively. In fact, the
script shown in Table 2.1 does just that: runs a VAR, collects Σ̂ and estimates
C as its Cholesky deomposition. Part of its output is in Table 2.1. The impulse
responses as computed by gretl’s internal command can be see in figure 1. See
the Gretl’s User Guide for more details.

2.1.2 Base estimation via the SVAR package

We will now replicate the above example via the SVAR package; in order to do
so, we need to treat this model as a special case of the C-model, where εt = Cut

and identification is attained by stipulating that C is lower-triangular, that is

C =

[
c11 0
c12 c22

]
. (10)

Table 3 shows a sample script to estimate the example Cholesky model: the
basic idea is that the model is contained in a gretl bundle5. In this example, the
bundle is called Mod, but it can of course take any valid gretl identifier.

5Bundles are a fairly recent addition to the gretl weaponry: most likely, you’ll want to take
a look at the Gretl’s User Guide, section 11.7. They may be briefly described as containers in
which a certain object (a scalar, a matrix and so on) is associated to a “key” (a string). Tech-
nically speaking, a bundle is an associative array: these data structures are called “hashes”
in Perl or “dictionaries” in Python.
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# turn extra output off

set echo off

set messages off

# open the data and do some preliminary transformations

open sw_ch14.gdt

genr infl = 400*ldiff(PUNEW)

rename LHUR unemp

list X = unemp infl

list Z = const

# load the SVAR package

include SVAR.gfn

# set up the SVAR

Mod = SVAR_setup("C", X, Z, 3)

# Specify the constraints on C

SVAR_restrict(&Mod, "C", 1, 2, 0)

# Estimate

SVAR_estimate(&Mod)

Table 3: Simple C-model

After performing the same preliminary steps as in the example in Table
2.1, we load the package and use the SVAR setup function, which initialises the
model and sets up a few things. This function takes 4 arguments:

• a string, with the model type ("C" in this example);

• a list containing the endogenous variables yt;

• a list containing the exogenous variables xt (may be null);

• the VAR order p.

Once the model is set up, you can specify which elements you want to con-
strain to achieve identification; there are several ways to do this, but in most
cases you’ll want to use the SVAR restrict function. A complete description
can be found in appendix A; suffice it to say here that the result of the function

SVAR_restrict(&Mod, "C", 1, 2, 0)

is to ensure that C1,2 = 0 (see eq. 10).
The next step is estimation, which is accomplished via the SVAR estimate

function, which just takes one argument, the model to estimate. The output of
the SVAR estimate function is shown below6: note that, as an added benefit,

6For compatibility with other packages, Σ̂ is estimated by dividing the cross-products of
the VAR residuals by T − k instead of T ; this means that the actual figures will be slightly
different from what you would obtain by running var and then cholesky($sigma).
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we get asymptotic standard errors for the estimated parameters (estimated via
the information matrix).

Unconstrained Sigma:

0.05676 -0.02905

-0.02905 1.82044

coefficient std. error z-stat p-value

--------------------------------------------------------

C[ 1; 1] 0.238243 0.0131548 18.11 2.62e-73 ***

C[ 2; 1] -0.121939 0.105142 -1.160 0.2461

C[ 1; 2] 0.00000 0.00000 NA NA

C[ 2; 2] 1.34371 0.0741942 18.11 2.62e-73 ***

At this point, the model bundle contains all the quantities that will need to
be accessed later on, including the structural VMA representation; this is com-
puted up to an order called the “horizon”. The function SVAR setup initalises
automaticaly the horizon to 24 for monthly data and to 20 for quarterly data.
To change it, you just assign the desired value to the "horizon" element of the
bundle, as in (for example)

Mod["horizon"] = 40

More details on the internal organisation of the bundle can be found in
section B in the appendix. Its contents can be accessed via the ordinary gretl
syntactic constructs for dealing with bundles. For example, the number of
observations used in estimating the model is stored as the bundle member "T",
so if you ever need it you can just use the syntax Mod["T"], or Mod.T with newer
versions of gretl (from 1.9.12 onwards).

Once the model has been estimated, it becomes possible to retrieve estimates
of the structural shocks, via the function GetShocks, as in:

series foo = GetShock(&Mod, 1)

series bar = GetShock(&Mod, 2)

If we append the two lines above to example 3, two new series will be obtained.
The formula used is nothing but equation (5) in which the VAR residuals are
used in place of εt.

2.2 Impulse responses and FEVD

fevdmat = FEVD(&Mod)

print fevdmat

IRFplot(&Mod, 1, 1)

Table 4: Simple C-model (continued)

As shown in Table 4, after the model has been estimated, it can be passed to
another function called FEVD to compute the Forecast Error Variance Decom-
position, which is subsequently printed. Its usage is very simple, since it only
needs one input (a pointer to the model bundle).
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Figure 2: Impulse response functions for unemployment

The SVAR package provides a function called IRFplot for plotting the impulse
response function on your screen, with a little help from our friend gnuplot; its
syntax is relatively simple.7 The three arguments used here are:

1. The model bundle (as a pointer);

2. the number of the structural shock we want the IRF to;

3. the number of the variable we want the IRF for.

The function can be used in a more sophisticated way than this (see later). Its
output is presented in Figure 2. As can be seen, it’s very similar to the one
obtained by gretl’s native command (Figure 1).8

7A parallel function for the FEVD is not implemented, but wouldn’t be difficult to do.
Only boring.

8Warning: using the built-in GUI graph editor that gretl provides may produce ‘wrong’
results on the figures generated by the IRFplot function. All gretl’s graphics are handled by
creating a gnuplot script, executing it and then sending the result to the display. All this
is done transparently. When you edit a graph, you modify the underlying gnuplot script via
some GUI elements, so when you click ”Apply” the graphic gets re-generated. However, gretl’s
GUI interface for modifying graphics can’t handle arbitrary gnuplot scripts, but only those
generated internally.

The figures generated by IRFplot contain a few extra features that the GUI editor doesn’t
handle, so invoking the GUI controls may mess up the graph. As an alternative, you can
customise the graph by editing the gnuplot script directly: right-click on it and “Save [it] to
session as icon”. Then, in the icon view, right click on the graph icon and choose “Edit plot
commands”: you’ll have the gnuplot source to the graph, that you can modify as needed.
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2.3 Bootstrapping

bfail = SVAR_boot(&Mod, 1024, 0.90)

loop for i=1..2 -q

loop for j=1..2 -q

sprintf fnam "simpleC_%d%d.pdf", i, j

IRFsave(fnam, &Mod, i, j)

end loop

end loop

Table 5: Simple C-model (continued)

The next step is computing bootstrap-based confidence intervals for the es-
timated coefficients and, more interestingly, for the impulse responses9: as can
be seen in Table 5, this task is given to the SVAR boot function, which takes as
arguments

1. The model bundle pointer;

2. the required number of bootstrap replications (1024 here)10

3. the desired size of the confidence interval α.

The function outputs a scalar, which keeps track of how many bootstrap
replications failed to converge (none here). Note that this procedure may be
quite CPU-intensive. The output contains a table similar to the output to
Cmodel, which is used to display the bootstrap means and standard errors of
the parameters:

Bootstrap results (1024 replications)

coefficient std. error z p-value

---------------------------------------------------------

C[ 1; 1] 0.232146 0.0183337 12.66 9.57e-37 ***

C[ 2; 1] -0.114610 0.143686 -0.7976 0.4251

C[ 1; 2] 0.00000 0.00000 NA NA

C[ 2; 2] 1.30234 0.0853908 15.25 1.61e-52 ***

Failed = 0, Time (bootstrap) = 20.24

Finally, another SVAR function, IRFsave() is used to store plots the impulse
responses into pdf11 files for later use; its arguments are the same as IRFplot(),
except that the first argument must contain a valid filename to save the plot
into. In the above example, this function is used within a loop to save all impulse
responses in one go. The output is shown in Figure 3.

9What is available at the moment is the most naive form of bootstrap. None of the
fancy alternatives listed, for example, in Brüggemann (2006) are available. They are planned,
though.

10There’s a hard limit at 10000 at the moment; probably, it will be raised in the future.
However, unless your model is very simple, anything more than that is likely to take forever
and melt your CPU.

11Or PostScript. . .
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Figure 3: Impulse response functions for the simple Cholesky model

2.4 A shortcut

In many cases, a triangular, Cholesky-style specification for the C matrix like
the one analysed in this section is all that is needed. When many variables are
involved, the setting of the n×(n−1)

2 restrictions via the SVAR restrict function
could be done quite boring, although easily done via a loop.

For these cases, the SVAR package provides an alternative way: if you supply
the SVAR setup function with the string "plain" as its first argument, the
necessary restrictions are set up automatically. Thus, the example considered
above in Table 3 could by modified by replacing the lines

Mod = SVAR_setup("C", X, Z, 3)

SVAR_restrict(&Mod, "C", 1, 2, 0)

with the one-liner

Mod = SVAR_setup("plain", X, Z, 3)

and leaving the rest unchanged.

2.5 Specifying restrictions

A key ingredient in a SVAR (arguably, the key ingredient) is the set of con-
straints we put on the structural matrices. SVAR handles these restrictions via
their implicit form representation Rθ = d. Consider, for notational convenience,
the matrix R∗ = [R|d]. The SVAR restrict function we used earlier does noth-
ing but adding rows to R∗.

For a C model, the R∗ matrix is stored as the bundle element Rd1 and the
number of its rows is kept as bundle element nc1. If you feel like building the
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matrix R∗ via gretl’s ordinary matrix functions, all you have to do is to fill up
the bundle elements Rd1 and nc1 properly before calling SVAR estimate().

2.6 The GUI interface

Most of the above can be accomplished via the GUI interface, which can be
accessed via the Model > Time Series > Structural VAR menu entry of the
the graphical gretl client. While we recommend to use the script interface to
use the full capabilities of the SVAR package, the GUI interface may be less
intimidating for less experienced users.

Figure 4: Plain Cholesky model through the GUI interface

The contents of the window displayed in figure 4 should be rather self-
explanatory, with one exception, that is the “template” matrix. This can be
used for estimating C models with a restriction scheme other than the lower
diagonal one.

For example, suppose we wanted to estimate a C model like the one used
as example so far, with the only difference that we want the C matrix to be
upper triangular, rather than lower trangular. Via a script, you would use the
function SVAR restrict(), as in

# Force C_{2,1} to 0

SVAR_restrict(&Mod, "C", 2, 1, 0)

but you can do the same via the GUI interface by using a template matrix. A
template matrix is a n× n matrix (that is, the same size as C) which contains
valid numerical values for the corresponding restricted elements of C and NAs
for unrestricted elements. This can be a pre-existing matrix or a matrix you
define on the spot by clicking on the “+” button. In this case, you’ll be presented
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with gretl’s GUI window for creating matrices. Suppose we call the template
matrix TMPL and that we select the option “Build Numerically” (of course, with
2 rows and 2 columns in this example). A further window will appear, that you
can use for filling the matrix elements with the desired values, as in Figure 5
When you’re done, you return to the main SVAR window (be sure to select C-

Figure 5: Template matrix

model as the model type). After clicking “OK”, the results window will appear,
as in Figure 6. Note that the estimated C matrix is now upper triangular.

From the output window, you can save the model bundle to the Icon view
through the File menu and re-use it as needed for further processing.

Figure 6: Template matrix

3 C-models with long-run restrictions (Blanchard-
Quah style)

An alternative way to impose restrictions on C is to use long-run restrictions,
as pioneered by Blanchard and Quah (1989). The economic rationale of impos-
ing restictions on the elements of C is that C is equal to M0, the instantaneous
IRF. For example, Cholesky-style restrictions mean that the j-th shock has no
instantaneous impact on the i-th variable if i < j. Assumptions of this kind
are normally motivated by institutional factors such as sluggish adjustments,
information asymmetries, and so on.

Long-run restrictions, instead, stem from more theoretically-inclined reason-
ing: in Blanchard and Quah (1989), for example, it is argued that in the long
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run the level of GDP is ultimately determined by aggregate supply. Fluctu-
ations in aggregate demand, such as those induced by fiscal/monetary policy,
impact the level of GDP only in the short term. As a consequence, the impulse
response of GDP with respect to demand shocks should go to 0 asymptotically,
whereas the response of GDP to a supply shock shoud settle to some positive
value.

3.1 A modicum of theory

To translate this intuition into formulae, assume that the bivariate process GDP
growth-unemployment

xt =

[
∆Yt

Ut

]
is I(0) (which implies that Yt is I(1)), and that it admits a finite-order VAR
representation

A(L)xt = εt

where the prediction errors are assumed to be a linear combination of demand
and supply shocks [

ε∆Y
t

εU
t

]
= C

[
ud

t

us
t

]
,

Considering the structural VMA representation[
∆Yt

Ut

]
= Θ(L)εt = εt + Θ1εt−1 + · · · =

= Cut + Θ1Cut−1 + · · · = M0ut +M1ut−1 + · · · ,

it should be clear that the impact of demand shocks on ∆Yt after h periods is
given by the north-west element of Mh. Since xt is assumed to be stationary,
limh→∞Θh = 0 and the same holds for Mk, so obviously the impact of either
shock on ∆Yt goes to 0. However, the impact of ut on the level of Yt is given
by the sum of the corresponding elements of Mh, since

Yt+h = Yt−1 +
h∑

i=0

∆Yt+i,

so
∂Yt+h

∂ud
t

=
h∑

i=0

∂∆Yt+i

∂ud
t

=
h∑

i=0

[Mi]11

and in the limit

lim
h→∞

∂Yt+h

∂ud
t

=
∞∑

i=0

∂∆Yt+i

∂ud
t

=
∞∑

i=0

[Mi]11 ,

In general, if xt is stationary, the above limit is finite, but needn’t go to 0;
however, if we assume that the long-run impact of ud

t on Yt is null, then

lim
k→∞

∂Yt+k

∂ud
t

= 0
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and this is the restriction we want. In practice, instead of constraining elements
of M0, we impose an implicit constraint on the whole sequence Mi.

How do we impose such a constraint? First, write
∑∞

i=0 Θi as Θ(1); then,
observe that

Θ(1)C =
∞∑

i=0

Mi;

the constraint we seek is that the north-west element of Θ(1)C equals 0. The
matrix Θ(1) is easy to compute after the VAR coefficients have been estimated:
since Θ(L) = A(L)−1, an estimate of Θ(1) is simply

Θ̂(1) = Â(1)−1

Of course, for this to work A(1) needs to be invertible. This rules out processes
with one or more unit roots. The cointegrated case, however, is an interesting
related case and will be analysed in section 5.

The long-run constraint we seek can then be written as

R vec[Θ(1)C] = 0, (11)

where R = [1, 0, 0, 0]; since

vec[Θ(1)C] = [I ⊗Θ(1)] vec(C),

the constraint can be equivalently expressed as

[Θ(1)11,Θ(1)12, 0, 0] vec(C) = Θ(1)11 · c11 + Θ(1)12 · c21 = 0. (12)

Note that we include in R elements that, stictly speaking, are not constant, but
rather functions of the estimated VAR parameters. Bizarre as this may seem,
this poses no major inferential problems under a suitable set of conditions (see
Amisano and Giannini (1997), section 6.1).

3.2 Example

The way all this is handled in SVAR is hopefully quite intuitive: an example script
is reported in Table 6. After reading the data in, the function SVAR setup is
invoked in pretty much the same way as in section 2.

Then, the SVAR restrict is used to specify the identifying restriction. Note
that in this case the code for the restriction type is "lrC", which indicates that
the restriction applies to the long-run matrix, so the formula (12) is employed.
Next, we insert into the model the information that we will want IRFs for
yt, so those for ∆yt will have to be cumulated. This is done via the function
SVAR cumulate(), in what should be a rather self-explanatory way (the number
1 refers in this case to the position of ∆Yt in the list X). Finally, a cosmetic touch:
we store into the model the string "Supply Demand", which will be used to label
the shocks in the graphs. Note that in this case there is no ad-hoc function, but
we rely on the standard gretl syntax for bundles.

In Table 7 I reported the output to the example code in Table 6, while the
pretty pictures are in Figure 7. Note that in the two calls to IRFplot which
are used to plot the responses to a demand shock, the number to identify the
shock is not 2, but rather -2. This is a little trick the plotting functions use
to flip the sign of the impulse responses, which may be necessary to ease their
interpretation (since the shocks are identified only up to their sign).
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Figure 7: Impulse response functions for the Blanchard-Quah model

3.3 Combining short- and long-run restrictions

In the previous example, it turned out that the estimated coefficient for c1,1

was seemingly insignificant; if true, this would mean that the supply shock has
no instantaneous effect on ∆Yt; in other words, the IRF of output to supply
starts from 0. Leaving the economic implications aside, from a statistical view-
point this could have suggested an alternative identification strategy or, more
interestingly, to combine the two hypotheses into one.

The script presented in Table 6 is very easy to modify to this effect: in this
case, we simply need to insert the line

SVAR_restrict(&BQModel, "C", 1, 1, 0)

somewhere between the SVAR setup and the SVAR estimate function. The rest
is unchanged, and below is the output.

coefficient std. error z p-value

--------------------------------------------------------

C[ 1; 1] 0.00000 0.00000 NA NA

C[ 2; 1] -0.230192 0.0128681 -17.89 1.45e-71 ***

C[ 1; 2] -0.909033 0.0508165 -17.89 1.45e-71 ***

C[ 2; 2] 0.199859 0.0111725 17.89 1.45e-71 ***

Overidentification LR test = 0.642254 (1 df, pval = 0.422896)

Note that, since this model is over-identified, SVAR automatically computes
a LR test of the overidentifying restrictions. Of course, all the subsequent steps
(bootstrapping and IRF plotting) can be performed just like in the previous
example if so desired.

16



4 AB models

4.1 A simple example

AB models are more general than the C model, but more rarely used in
practice. In order to exemplify the way in which they are handled in the SVAR
package, I will replicate the example given in section 4.7.1 of Lütkepohl and
Krätzig (2004). See Table 8.

This is an empirical implementation of a standard Keynesian IS-LM model
in the formulation by Pagan (1995). The vector of endogenous variables includes
output qt, interest rate it and real money mt; the matrices A and B are

A =

 1 a12 0
a21 1 a31

0 0 1

 B =

 b11 0 0
0 b22 0
0 0 b33


so for example the first structural relationship is

εq
t = −a12ε

i
t + uIS

t (13)

which can be read as an IS curve. The LM curve is the second relationship,
while money supply is exogenous.

The model is set up via the function SVAR setup, like in the previous section.
Note, however, that in this case the model code is "AB" rather than "C". The
base VAR has 4 lags, with the constant and a linear time trend as exogenous
variables. The horizon of impulse response analysis is set to 48 quarters.

The constraints on the matrices A and B can be set up quite simply by using
a the function SVAR restrict via a special syntax construct: the line

SVAR_restrict(&ISLM, "Adiag", 1)

sets up a system of constraints such that all elements on the diagonal of A are set
to 1. More precisely, SVAR restrict(&Model, "Adiag", x) sets all diagonal
elements of A to the value x, unless x is NA. In that case, all non-diagonal
elements are constrained to 0, while diagonal elements are left unrestricted; in
other words, the syntax

SVAR_restrict(&ISLM, "Bdiag", NA)

is a compact form for saying “B is diagonal”. The other three constraints are
set up as usual.

Estimation is then carried out via the SVAR estimate function; as an exam-
ple, Figure 8 shows the effect on the interest rate of a shock on the IS curve.
This example also shows how to retrieve extimated quantities from the model:
after estimation, the bundle elements "S1" and "S2" contain the estimated A
and B matrices; the C matrix is then computed and printed out.

The output is shown below:

coefficient std. error z p-value

---------------------------------------------------------

A[ 1; 1] 1.00000 0.00000 NA NA

A[ 2; 1] -0.144198 0.280103 -0.5148 0.6067

A[ 3; 1] 0.00000 0.00000 NA NA
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A[ 1; 2] -0.0397571 0.155114 -0.2563 0.7977

A[ 2; 2] 1.00000 0.00000 NA NA

A[ 3; 2] 0.00000 0.00000 NA NA

A[ 1; 3] 0.00000 0.00000 NA NA

A[ 2; 3] 0.732161 0.146135 5.010 5.44e-07 ***

A[ 3; 3] 1.00000 0.00000 NA NA

coefficient std. error z p-value

--------------------------------------------------------

B[ 1; 1] 0.00671793 0.000473619 14.18 1.15e-45 ***

B[ 2; 1] 0.00000 0.00000 NA NA

B[ 3; 1] 0.00000 0.00000 NA NA

B[ 1; 2] 0.00000 0.00000 NA NA

B[ 2; 2] 0.00858125 0.000581359 14.76 2.63e-49 ***

B[ 3; 2] 0.00000 0.00000 NA NA

B[ 1; 3] 0.00000 0.00000 NA NA

B[ 2; 3] 0.00000 0.00000 NA NA

B[ 3; 3] 0.00555741 0.000371320 14.97 1.21e-50 ***

Estimated contemporaneous impact matrix (x100) =

0.675666 0.034313 -0.016270

0.097430 0.863073 -0.409238

0.000000 0.000000 0.555741

Bootstrap results (2000 replications)

coefficient std. error z p-value

---------------------------------------------------------

A[ 1; 1] 1.00000 0.00000 NA NA

A[ 2; 1] -0.0909784 0.395312 -0.2301 0.8180

A[ 3; 1] 0.00000 0.00000 NA NA

A[ 1; 2] -0.0377229 0.228185 -0.1653 0.8687

A[ 2; 2] 1.00000 0.00000 NA NA

A[ 3; 2] 0.00000 0.00000 NA NA

A[ 1; 3] 0.00000 0.00000 NA NA

A[ 2; 3] 0.782728 0.181538 4.312 1.62e-05 ***

A[ 3; 3] 1.00000 0.00000 NA NA

coefficient std. error z p-value

---------------------------------------------------------

B[ 1; 1] 0.00635862 0.000850539 7.476 7.66e-14 ***

B[ 2; 1] 0.00000 0.00000 NA NA

B[ 3; 1] 0.00000 0.00000 NA NA

B[ 1; 2] 0.00000 0.00000 NA NA

B[ 2; 2] 0.00814276 0.00111305 7.316 2.56e-13 ***

B[ 3; 2] 0.00000 0.00000 NA NA

B[ 1; 3] 0.00000 0.00000 NA NA

B[ 2; 3] 0.00000 0.00000 NA NA

B[ 3; 3] 0.00512819 0.000478826 10.71 9.14e-27 ***
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Figure 8: uIS → i

5 Structural VECMs

The functions for these models aren’t ready for production use yet.
Hopefully, they will be soon. If you’re feeling brave, have a look at
the awm.inp file in the examples directory.

This class of models was first proposed in King et al. (1991). A SVECM
is basically a C-model in which the interest is centred on classifying structural
shocks as permanent or transitory by exploiting the presence of cointegration.

Suppose we have an n-dimensional system with cointegration rank r. Apart
from the usual ECM representation

Γ(L)∆yt = αβ′yt−1 + εt

it is also possible to express ∆yt as a vector moving average process

∆yt = C(L)εt. (14)

The main consequence of cointegration for eq. (14) is that C(1) is a singular
matrix. As Granger’s representation theorem shows, the C(1) matrix satisfies

β′C(1) = 0
C(1)α = 0;

thus, the rank of C(1) is n− r.
The implications of the above on structural estimation stem from the con-

sideration that the ij-th element of C(1) can be thought of as the long-run
response of yi,t to εj,t or, more precisely

C(1)i,j = lim
k→∞

∂yi,t+k

∂εj,t
.
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The response of yt to structural shocks is easily seen (via eq. 5) to be C(1) ·C.
Now, define a transitory shock as a structural shock that has no long-run effect
on any variable: hence, the corresponding column of C(1) · C must be full of
zeros. But this, in turn, implies that the corresponding column of C must be
a linear combination of the columns of α. Since α has r linearly independent
columns, the vector of structural shocks must contain r transitory shocks and
n− r permanent ones.

By ordering the structural shocks with the permanent ones first,

ut =

[
up

t

ut
t

]

it’s easy to see that identification of the permanent shocks can be achieved by
imposing that the last r columns of C lie in the space spanned by α; in formulae,

α′⊥CJ = 0, (15)

where J is the matrix

J =

[
0n−r×r

Ir×r

]
and ⊥ is the “nullspace” operator, that is: if M is an r × c matrix, with r > c
and rank (M) = c, then M⊥ is some matrix12 such that M ′⊥M = 0.

Equation (15) can be expressed in vector form as

(J ′ ⊗ α′⊥) vec(C) = 0;

since α⊥ has n − r columns, this provides r · (n − r) constraints of the type
R vec(C) = d, that we know how to handle. Since 0 < r < n, this system of
constraints is not sufficient to achieve identification, apart from the special case
n = 2, r = 1.

For this type of models, the keyword to use in the SVAR setup function is
KPSW.

The matrix β is not estimated within SVAR and must be supplied by the
user and put into the "aux" element of the model bundle. This allows you to
estimated the cointegration vectors by any method you like (or pre-set them
to some theory-derived value). Note that the $jbeta standard gretl accessor
makes it painless to fetch it from a Johansen-style VECM if necessary.
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A Alphabetical list of functions

FEVD(bundle *SVARobj)

Computes the Forecast Error Variance Decomposition from the structural
IRFs, as contained in the model SVARobj. Returns an h× n2 matrix.

GetShock(bundle *SVARobj, scalar i)

Retrieves, as a series, the estimate of i-th structural shock of the system via
equation (2), in which VAR residuals are used instead of the one-step-ahead
prediction errors εt. If the bundle SVARobj contains a non-null string snames
with shock names, those are used in the description for the generated series.

IRFplot(bundle *obj, scalar snum, scalar vnum)

Plots an impulse response function on screen. Its arguments are:

1. a bundle holding the model

2. the progressive number of the shock (may be negative, in which case the
IRF is flipped)

3. the progressive number of the variable
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IRFsave(string outfilename, bundle *obj, scalar snum, scalar vnum)

Saves an impulse response function to a graphic file, whose format is identi-
fied by its extension. Its arguments are:

1. The graphic file name

2. a bundle holding the model

3. the progressive number of the shock (may be negative, in which case the
IRF is flipped)

4. the progressive number of the variable

SVAR boot(bundle *obj, scalar rep, scalar alpha)

Perform a bootstrap analysis of a model. Returns the number of bootstrap
replications in which the model failed to converge. Its arguments are:

1. a bundle holding the model

2. the number of bootstrap replications

3. the quantile used for the confidence bands

SVAR cumulate(bundle *b, scalar nv)

Stores into the model the fact that the cumulated IRFs for variable nv are
desired. This is typically used jointly with long-run restrictions.

SVAR estimate(bundle *obj, int quiet)

Estimates the model by maximum likelihood. Its second argument is a scalar,
which controls the verbosity of output. If omitted, estimation proceeds silently.

SVAR restrict(bundle *b, string code, scalar r, scalar c, scalar d)

Sets up contraints for an existing model. The function which takes at most
five arguments:

1. A pointer to the model for which we want to set up the restriction(s)

2. A code for which type of restriction we want:
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"C" Applicable to C models. Used for short-run restrictions.

"lrC" Applicable to C models. Used for long-run restrictions.

"A" Applicable to AB models. Used for constraints on the A matrix.

"B" Applicable to AB models. Used for constraints on the B matrix.

"Adiag" Applicable to AB models. Used for constraints on the whole
diagonal of the A matrix (see below).

"Bdiag" Applicable to AB models. Used for constraints on the whole
diagonal of the B matrix (see below).

3. An integer:

case 1 : applies to the codes "C", "lrC", "A" and "B". Indicates the row
of the restricted element.

case 2 : applies to the codes "Adiag" and "Bdiag". Indicates what kind
of restriction is to be placed on the diagonal: any valid scalar in-
dicates that the diagonal of A (or B) is set to that value. Almost
invariably, this is used with the value 1. IMPORTANT: if this ar-
gument is NA, all non-diagonal elements are constrained to 0, while
diagonal elements are left unrestricted.

4. An integer: the column of the restricted element, for the codes "C", "lrC",
"A" and "B". Otherwise, unused.

5. A scalar: for the codes "C", "lrC", "A" and "B", the fixed value the matrix
element should be set to (may be omitted if 0). Otherwise, unused.

A few examples:

• SVAR restrict(&M, "C", 3, 2, 0); in a C model called M, sets C3,2 = 0.
As a consequence, the IRF for variable number 3 with respect to the shock
number 2 starts from zero.

• SVAR restrict(&foo, "A", 1, 2, 0); in an AB model called foo, sets
A1,2 = 0.

• SVAR restrict(&MyMod, "lrC", 5, 3, 0); in a C model called MyMod,
restricts C such that the long-run impact of shock number 3 on variable
number 5 is 0. This implies that the cumulated IRF for variable 5 with
respect to shock 3 tends to zero.

• SVAR restrict(&bar, "Adiag", 1); in an AB model called bar, sets
Ai,i = 1 for 1 ≤ i ≤ n.

• SVAR restrict(&baz, "Bdiag", NA); in an AB model called baz, sets
Bi,j = 0 for i 6= j.

SVAR setup(string type, list Y, list X, int varorder)

Initialises a model: the function’s output is a bundle. The function argu-
ments are:
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1. A type string: at the moment, valid values are "C", "plain" and "AB";

2. a list containing the endogenous variables;

3. a list containing the exogenous variables;

4. a positive integer, the VAR order.

B Contents of the model bundle

Basic setup
step done so far
type string, model type

n number of endogenous variables
p VAR order
k number of exogenous variables
T number of observations

Xlist list of exogenous variables (as matrix)
X exogenous variables data matrix

Ylist list of endogenous variables (as matrix)
VAR

VARpar autoregressive parameters
mu coefficients for the deterministic terms
E residuals from base VAR (as matrix)

Sigma unrestricted covariance matrix
SVAR setup

Rd1 main matrix of constraints
aux depends
nc1 number of constraints in Rd1

nc2 number of constraints in aux

horizon horizon for structural VMA
cumul vector of cumuland variables

ncumul number of cumuland variables
snames string, Names for shocks (may be empty)

SVAR post-estimation
S1 estimated A (or C)
S2 estimated B

theta coefficient vector
IRFs IRFs

Bootstrap-related
nboot number of bootstrap replications

boot alpha bootstrap confidence level
bootdata output from the bootstrap
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set echo off

set messages off

include SVAR.gfn

open BlQuah.gdt

list X = DY U

list exog = const time

maxlag = 8

# set up the model

BQModel = SVAR_setup("C", X, exog, maxlag)

BQModel["horizon"] = 40

# set up the long-run restriction

SVAR_restrict(&BQModel, "lrC", 1, 2, 0)

# cumulate the IRFs for variable 1

SVAR_cumulate(&BQModel, 1)

# set up names for the shocks

BQModel["snames"] = "Supply Demand"

# do estimation

SVAR_estimate(&BQModel)

# retrieve the demand shocks

dShock = GetShock(&BQModel, 2)

# bootstrap

bfail = SVAR_boot(&BQModel, 1024, 0.9)

# page 662

IRFsave("bq_Yd.pdf", &BQModel, 1, 1)

IRFsave("bq_ud.pdf", &BQModel, -2, 1)

IRFsave("bq_Ys.pdf", &BQModel, 1, 2)

IRFsave("bq_us.pdf", &BQModel, -2, 2)

Table 6: Blanchard-Quah example
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coefficient std. error z p-value

---------------------------------------------------------

C[ 1; 1] 0.0575357 0.0717934 0.8014 0.4229

C[ 2; 1] 0.217542 0.0199133 10.92 8.80e-28 ***

C[ 1; 2] -0.907210 0.0507146 -17.89 1.45e-71 ***

C[ 2; 2] 0.199459 0.0111501 17.89 1.45e-71 ***

Bootstrap results (1000 replications)

coefficient std. error z p-value

--------------------------------------------------------

C[ 1; 1] 0.232452 0.285316 0.8147 0.4152

C[ 2; 1] 0.191064 0.0786388 2.430 0.0151 **

C[ 1; 2] -0.829021 0.113861 -7.281 3.31e-13 ***

C[ 2; 2] 0.222009 0.0648956 3.421 0.0006 ***

Table 7: Output for the Blanchard-Quah model

set echo off

set messages off

include SVAR.gfn

open IS-LM.gdt

list X = q i m

list Z = const time

ISLM = SVAR_setup("AB", X, Z, 4)

ISLM["horizon"] = 48

SVAR_restrict(&ISLM, "Adiag", 1)

SVAR_restrict(&ISLM, "A", 1, 3, 0)

SVAR_restrict(&ISLM, "A", 3, 1, 0)

SVAR_restrict(&ISLM, "A", 3, 2, 0)

SVAR_restrict(&ISLM, "Bdiag", NA)

ISLM["snames"] = "uIS uLM uMS"

SVAR_estimate(&ISLM)

Amat = ISLM["S1"]

Bmat = ISLM["S2"]

printf "Estimated contemporaneous impact matrix (x100) =\n%10.6f", \

100*inv(Amat)*Bmat

rej = SVAR_boot(&ISLM, 2000, 0.95)

IRFplot(&ISLM, 1, 2)

Table 8: Estimation of an AB model — example from Lütkepohl and Krätzig
(2004)
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