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Abstract

The gig package is a collection of gretl scripts to estimate univariate
conditional heteroskedasticity models. What is described here is gig
version 2.0, which is substantially different from the previous version:
it makes use of several new gretl features and is totally incompatible
with the old version. In return, you get a package that is considerably
simpler to use, maintain and extend and integrates in a much smoother
way with the gretl GUI.
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1 Introduction

A general description of the models that gig can handle can be given by the
following system:

Et−1(yt) = π′xt (1)
ut ≡ yt − Et−1(yt) =⇒ yt = π′xt + ut (2)

ht ≡ Vt−1(ut) = v(ut−1, ut−2, . . . , ht−1, ht−2, . . . , zt) (3)

εt =
ut√
ht

(4)

which could be read as follows: it is assumed (eq. 1) that the conditional ex-
pectation1 of an observable variable yt to an information set2 Ft−1 (denoted
as Et−1) is a linear function of quantities known at time t− 1. Clearly, the
information set may contain exogenous variables as well as lags of yt, which
are all collected in the vector xt. This makes it possible to write an equation
(eq. 2) for the conditional mean of yt.

As for the conditional variance (eq. 3), this is assumed to be a known
function, with possibly also some observable exogenous variables zt. The
most basic choice is the GARCH model, in which (3) specialises to

ht = ω +
q∑
i=1

αiu
2
t−i +

p∑
j=1

βjht−j ,

but a number of exotic alternatives have been devised in the past 30 years
(see section 2). Note that the conditional variance, as specified in eq. (3),
may or may not contain exogenous explanatory variables, but a constant
term must always be present (gig adds one automatically otherwise). The
standardised innovations εt are trivially defined by eq. (4), and have zero
conditional mean and unit conditional variance by construction.

+ Nota bene: the convention used in the previous version of gig was to use the

letter p to indicate the ARCH order and q for the GARCH order, which was inconsistent

with gretl itself and, most importantly, with Bollerslev (1986). This is now reversed,

so p is the GARCH order and q is the ARCH order.

1Of course, all the relevant moments are supposed to exist.
2We could be more rigorous and impress the reader with σ-algebras and filtrations, but

we can’t be bothered, ok?
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The parameters of these models are almost invariably estimated via max-
imum likelihood (or pseudo-ML), which brings up the subject of a suitable
choice for the conditional distribution of εt. This has also been the object
of much speculation, given the need to accommodate several stylised facts,
such as leptokurtosis: gig provides algorithms for the most popular choices
in the applied literature (see Table 1).

Name Density Parameters

Normal 1√
2πht

exp
{
− ε

2
t
2

}
none

Student’s t K(ν)√
ht

[
1 +

ε2t
ν−2

]−(ν+1)/2

ν > 2

Generalised Error Distri-
bution (GED)

C(ν) exp
{
−
∣∣∣ εtκν ∣∣∣ν} ν > 0

Skewed t bK(ν)√
ht

[
1 +

ζ2t
ν−2

]−(ν+1)/2

ν > 2, ξ ∈ <

Skewed GED

{
D(ν) exp {−β1 |εt −m|ν} εt < m

D(ν) exp {−β2 |εt −m|ν} εt ≥ m
ν > 0, ξ ∈ <

K(ν) =
Γ [(ν + 1)/2]√
π(ν − 2)Γ(ν/2)

C(ν) =
ν

2

√
Γ(3/ν)
Γ(1/ν)3

κν =

√
2−

2
ν

Γ(1/ν)
Γ(3/ν)

a = K(ν) · 4λ
(
ν − 2
ν − 1

)
b =

√
1 + 3λ2 − a2

λ = tanh(ξ)

ζt =

{
bεt+a
1−λ for εt < −a/b
bεt+a
1+λ for εt > −a/b

D(ν) =
1

Γ(1/ν)

√
Γ(3/ν)

2 · Γ(1/ν)

(
1 + λ

1− λ

)3

− (2λΓ(2/ν))2

Table 1: Conditional densities for εt

A brief remark on the skewed distributions: compared to their original
parametrisation, we treat λ as the hyperbolic tangent of an unconstrained
real parameter ξ; this reparametrisation is inconsequential in substance, but
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very helpful numerically.

2 The models

2.1 The APARCH Family

Most of the models gig can handle can be thought of as special cases of
the Asymmetric Power ARCH (APARCH) model, introduced by Ding et al.
(1993). This model is able to accommodate asymmetric effects and power
transformations of the variance. Its specification for the conditional variance
is the following:

σδt = ω′zt +
q∑
i=1

αi(|ut−i| − γiut−i)δ +
p∑
j=1

βjσ
δ
t−j (5)

where σt ≡
√
ht, the parameter δ (assumed positive, but typically ranging

between 1 and 2) performs a Box-Cox transformation and γ captures the
asymmetric effects. Special values of the parameters give rise to the special
cases enumerated in Table 2.

MODEL AUTHOR CONSTRAINTS

ARCH Engle (1982) δ = 2, γi = 0 for i = 1, . . . , q
and βj = 0 for j = 1, . . . , p

GARCH Bollerslev (1986) δ = 2, γi = 0 i = 1, . . . , q

Taylor/Schwert
GARCH

Taylor (1986) and
Schwert (1990)

δ = 1, γi = 0 i = 1, . . . , q

GJR Glosten et al. (1993) δ = 2

TARCH Zakoian (1994) δ = 1

NARCH Higgins and A. (1992) γi = 0 for i = 1, . . . , p and
βj = 0 for j = 1, . . . , p

Table 2: APARCH nested sub-models

The GJR model is given a special treatment in gig. Other software
packages adopt a different, albeit equivalent, parametrization for the same
model (some programs even call it by some other name). What gig considers
to be the GJR model

σ2
t = ω′zt +

q∑
i=1

αi(|ut−i| − γiut−i)2 +
p∑
j=1

βjσ
2
t−j (6)

is sometimes reparametrized as

σ2
t = δ′zt +

q∑
i=1

(
αiu

2
t−i + γidt−iu

2
t−i
)

+
p∑
j=1

βjσ
2
t−j (7)
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where dt = 1 if ut < 0 and 0 otherwise. The correspondence between the
two sets of parameters is left as an exercise to the reader. An example will
be given in section 3.1.

In order to facilitate comparisons, when you estimate a GJR model, gig
will print out both forms. However, only the parameters corresponding to
(6) will be saved.

2.2 The EGARCH model

The Exponential GARCH (EGARCH) model, put forward by Nelson (1991),
is the only model presently available in gig that is not nested in the APARCH
model. This is because eq. (3) is written in terms of the logarithm of the
variance instead of the variance itself. Moreover, it captures asymmetric
effects as a function of the standardised innovations. The log-conditional
variance ln(ht) is thus given by:

lnht = ω̄′zt +
q∑
i=1

[
αi

(
|εt−i| −

√
2/π

)
+ γiεt−i

]
+

p∑
j=1

βj ln(ht−j) (8)

However, this is not the exact form that gig uses: there are some com-
putational advantages in moving the term

√
2/π out of the summation op-

erator. The model actually estimated is

lnht = ω′zt +
q∑
i=1

(αi|εt−i|+ γiεt−i) +
p∑
j=1

βj ln(ht−j) (9)

where the element of the vector ω corresponding to the constant equals the
corresponding term of ω̄ minus

√
2/π ·

∑
i αi.

Note that the sign of the asymmetric component in the APARCH and
EGARCH models do not match (compare equations (5) and (9)). This is
rather unfortunate, since it means that the parameter γ must be given an
opposite interpretation in the two cases. However, we decided to keep the
two formulations inconsistent for compatibility with other software packages.

3 How you do things

The central idea in gig is that your model is contained in a gretl bundle3,
which is set up first with the basic information about the model (what the
dependent variable is, what kind of model it is, etcetera), and then filled
with all the quantities available after estimation (coefficients etc).

3If you don’t know what a bundle is in gretl, you may want to have a look at the User’s
Guide, chapter 11. In short, a bundle is a container for assorted objects, such as matrices,
series etcetera.
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Like most statistical procedures that come with gretl, there are two ways
to accomplish the above: either you use a graphical interface, which is very
intuitive and easy to use, or you use a script, which is more awkward at the
beginning, but gives you more power and flexibility.

In this section, we will look at a few examples. We will assume that gig
is installed correctly as a gretl addon and that you already have a certain
degree of familiarity with gretl’s interface and scripting syntax.

3.1 The GUI way

Suppose you have already loaded the data you want to analyse, and have al-
ready performed the necessary preliminary data transformations, if any. For
example, suppose you loaded the example gretl dataset called djclose, and
already have created a variable called yt which contains the daily returns,
that is

series y = 100 * ldiff(djclose)

If you plot yt, you’ll see the typical financial time series plot, with the
volatility clustering and all the other famous “stylised facts”:
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The GUI hook to gig can be found under the Model > Time Series
> GARCH variants heading. By choosing it you’ll be presented with a
window similar to the one shown in Figure 1. The meaning of the various
element should be rather clear, except perhaps for a few that require some
explanation.

The regressors lists These are two lists holding the exogenous variables
in the conditional mean (xt in equation 1) and conditional variance
equation (zt in equation 3), respectively. They both default to null,
an empty list, although in the variance regressors list a constant term
is automatically included if absent. If some lists are already defined,
you can pick them from the list; alternatively, you can create lists on
the fly by using the “+” button. Note that, from version 1.9.3 of gretl
onwards, you can use a single series in lieu of a list proper, so for
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Figure 1: GUI hook for gig

example if you want a constant to appear in your conditional mean,
you may just type const in the “mean regressors” text box.

Note, however, that you you have two separate GUI elements for in-
cluding in your mean specification the most common choices, that is
a constant term and/or lags of the dependent variable. Hence, you’ll
need to specify the mean regressors only if you have mean terms other
than those (for example, a time trend or some other exogenous vari-
able).

Covariance estimator Here you can choose between 3 algorithms for com-
puting the variance-covariance matrix of the estimated parameters.
Sandwich (also known as QMLE: see Bollerslev and Wooldridge (1992))
is the default, but OPG is the fastest.

Verbosity An integer, ranging from 0 to 2: the defult is 1, which means
you want to see the estimated model. If you choose 0, you see nothing
(all results can be retrieved later); if you choose 2, you get to see the
iterations, which may be helpful in some cases.

Now suppose that we want to estimate a GJR(1,1) model with a constant
as mean regressor and the t distribution as the density for the standardised
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innovations εt. In practice, the following model:

yt = µ+ ut

ht ≡ Vt−1(ut) = ω + α(|ut−1| − γut−1)2 + βht−1

f(εt|Ft−1) =
K(ν)√
ht

[
1 +

ε2t
ν − 2

]−(ν+1)/2

Figure 2: GUI hook for gig (GJR example)

All you have to do is select the appropriate entries in the GUI gig win-
dow. When it looks like Figure 2, just press OK4 and, after a second or two,
the following estimate should appear5. The asterisk at the end of the first
line of the output indicates that the analytical score was used for estimation.:

Model: GJR(1,1) [Glosten et al.] (Student’s t)*
Dependent variable: y
Sample: 1980/01/03-1989/12/29 (T = 2527), VCV method: Robust

Conditional mean equation

coefficient std. error z p-value

4Note a subtle difference between Figure 1 and Figure 2. In the latter, the “close
this dialog” tick box near the bottom is not ticked. This, of course, has no effect on the
estimates, but may be quite handy if you want to revise your model interactively.

5Note that the GJR model is presented with both parametrizations discussed in section
2.1.
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-----------------------------------------------------
const 0.0483897 0.0170808 2.833 0.0046 ***

Conditional variance equation

coefficient std. error z p-value
-------------------------------------------------------
omega 0.0249070 0.00890124 2.798 0.0051 ***
alpha 0.0332144 0.00895699 3.708 0.0002 ***
gamma 0.0259622 0.108140 0.2401 0.8103
beta 0.939891 0.0155313 60.52 0.0000 ***

(alt. parametrization)

coefficient std. error z p-value
--------------------------------------------------------
delta 0.0249070 0.00890123 2.798 0.0051 ***
alpha 0.0315122 0.00726215 4.339 1.43e-05 ***
gamma 0.00344928 0.0149219 0.2312 0.8172
beta 0.939891 0.0155313 60.52 0.0000 ***

Conditional density parameters

coefficient std. error z p-value
------------------------------------------------------
ni 5.54597 0.738486 7.510 5.92e-14 ***

Llik: -3408.87517 AIC: 6829.75034
BIC: 6864.75906 HQC: 6842.45322

In fact, the estimate above will be contained in a window in which three
menus are present:

a “File” menu This should be obvious.

a “Save” menu Under this menu, you will see a list of all the objects con-
tained in the bundle holding your model. A complete list is available
as Appendix B, but most names should be self-explanatory. This is
where you retrieve stuff for later processing. You also have the option
(on top) of saving the whole bundle as such, for later processing.6 For
example, suppose that you want to save the standardised residuals.
From the Save menu, just pick the stduhat entry. A dialog similar to
the one shown in Figure 3 should appear: just give the series any time
you want and, optionally, a description. For example, you can choose
“e” as the series name and on “Estimated standardised residuals” as

6In fact, at this stage, the bundle will already be in the Icon View with a temporary
name. Do we want to advertise this or should we let the user discover this little trick by
himself?
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the description. The series e should now appear in your main gretl
window, so you can plot it, analyse it, save it etcetera.

a “Plot” menu Here, you can choose between a “Time series” plot and
a “Density” plot. For more details on the nature of these plots, see
section 4.

Figure 3: GUI window for saving bundle elements

3.2 Scripts: a plain-vanilla GARCH

The typical way to use gig from a script is to break the sequence of opera-
tions implicit in the GUI call in a series of steps. This will (hopefully) help
you write nice, tidy, modular and reusable scripts.

The two functions that you cannot avoid using are called gig setup and
gig estimate: the former creates a bundle with the basic info about your
model, the latter populates it with the estimates. The GUI interface merges
these two actions into one, but when you work from a script keeping the two
separate has its pros.

To give you a very simple example of the way the two functions work, we
will estimate the most basic GARCH model, that is one in which equations
(2) and (3) specialise to

yt = ut

ht = ω + αu2
t−1 + βht−1

and the conditional distribution of ut is assumed to be normal, that is
ut|Ft−1 ∼ N(0, ht).

The corresponding script reads as follows:

# Import the gig library
include gig.gfn

# Read the data and compute returns
open djclose
y = 100*ldiff(djclose)
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# Estimate a plain-vanilla GARCH model
plato = gig_setup(y)
gig_estimate(&plato)

The first function we use is gig setup: this function creates a bundle
(called plato in the present example), which contains the basic information
on the model that are needed for estimation, that is the dependent variable,
the model type and the regressors for the mean and variance equations. In
this case, however, the only parameter we need to pass to the function needs
is the name of the series containing yt. This is because gig setup has sev-
eral default options that allow you to omit some arguments in certain cases.
Since in this example the model for the conditional variance is GARCH (the
default) and there are no exogenous regressors either in the mean equation
nor in the variance equation, you may just omit the corresponding para-
meters. The complete list of parameters to gig setup can be found in the
Appendix, section A.1.

Once the model is set up, we pass the address of the bundle which
contains it as the argument to the function gig estimate. This function
performs the actual estimation via maximum likelihood and (by default)
prints out the results:

Model: GARCH(1,1) [Bollerslev] (Normal)*
Dependent variable: y
Sample: 1980/01/03-1989/12/29 (T = 2527), VCV method: Robust

Conditional variance equation

coefficient std. error z p-value
-------------------------------------------------------
omega 0.0476635 0.0332897 1.432 0.1522
alpha 0.0905285 0.0566925 1.597 0.1103
beta 0.871816 0.0674671 12.92 3.38e-38 ***

Llik: -3575.27720 AIC: 7156.55440
BIC: 7174.05876 HQC: 7162.90584

Note that the main purpose of gig estimate is to run the maximum
likelihood estimation routine and store its output into the bundle whose
address is given as the function’s first argument (in this case, plato). The
gig estimate function also accepts a second argument: a scalar which sets
the verbosity of the output. Its default value (which can be omitted, as
above) is 1, which causes the estimation output to be printed out. If set
to 0, the estimation takes place silently, which can be useful at times (in a
loop, for example); on the contrary, the value 2 forces gig estimate to print
out all the BFGS iterations. You can print out the contents of an estimated
model any time after it has been estimated, via the gig print function.
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3.3 Regressors

Here we run a model similar to the one shown in the previous example,
with a few differences. First, we assume that the conditional density for
innovations is a skewed GED, where its shape and skew parameters will
have to be estimated. Moreover, we will introduce explanatory variables for
both the mean and the variance equation.

yt = π0 + π1yt−1 + ut

ht = ω0 + ω1vt−1 + ω2st−1 + αu2
t−1 + βht−1

where vt is the log volume and st is the log High/Low ratio.

# Import the gig library
include gig.gfn

# Read the data
open msft.gdt

# compute returns
r = 100*ldiff(Close)

# compute the variance regressors
lv = ln(Volume/1000000)
hl = ln(High/Low) * 100

# set up the regressor lists
list X = const
list vX = const lv(-1) hl(-1)

# set up the model
socrates = gig_setup(r, 1, X, vX, 1)
gig_set_dist(&socrates, 4)

# estimate
gig_estimate(&socrates)

In this case, we call gig setup with 5 parameters: the dependent vari-
able, the model type (1, which stands for GARCH), the two lists of regressors
for the mean and the variance equation and the number of AR lags in the
mean equation.

Note that in this case you could have done things a little differently with
the same effect: first, you could have included yt−1 in the list X via

list X = const r(-1)

and this is indeed the way you would do things in earlier versions of gig.
However, it is advisable to follow the new syntax and specify lags of the
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dependent variable as regressors separately7. Second, you could have used
const instead of X in the call to gig setup and use the nice gretl feature of
being able to use a series name as a synonym for a one-element list, so

socrates = gig_setup(r, 1, const, vX, 1)

would have worked just as well.
The model will be contained in a bundle named socrates. The task of

setting the conditional distribution for εt is delegated to the gig set dist
function, which takes as parameters the address to the bundle and a numer-
ical code identifying the density. In this example, 4 stands for the skewed
GED distribution; see Table 4, right-hand side for the full list. The output
follows:

Model: GARCH(1,1) [Bollerslev] (Skewed GED)
Dependent variable: r
Sample: 1990/01/04-2009/02/11 (T = 4817), VCV method: Robust

Conditional mean equation

coefficient std. error z p-value
------------------------------------------------------
const 0.0474803 0.0274078 1.732 0.0832 *
AR1 -0.0248744 0.0141066 -1.763 0.0778 *

Conditional variance equation

coefficient std. error z p-value
--------------------------------------------------------
const 0.169134 0.183983 0.9193 0.3579
lv_1 -0.125632 0.0441290 -2.847 0.0044 ***
hl_1 0.425972 0.116401 3.660 0.0003 ***
alpha 0.0331390 0.0126196 2.626 0.0086 ***
beta 0.787553 0.0456421 17.25 1.03e-66 ***

Conditional density parameters

coefficient std. error z p-value
--------------------------------------------------------
ni 1.38025 0.0601761 22.94 1.99e-116 ***
lambda 0.0330455 0.0206053 1.604 0.1088

Llik: -9964.53237 AIC: 19947.06473
BIC: 20005.38389 HQC: 19967.54332

7Don’t ask why.
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3.4 Tweaking the model specification

In the previous subsection, we used the gig set dist function to record into
the bundle a piece of information (the conditional distribution) necessary for
estimation. Another similar function is gig set pq, which sets the GARCH
and ARCH orders. In general, however, most aspects can be set simply by
setting the bundle elements to specific values (see section B for a complete
list of the bundle elements).

The reason why you’ll want to use gig set dist and gig set pq is that
a few adjustments have to be made to other bundle elements, and by using
those functions you let gig do it for you in the proper way. But in many cases
all you have to do is set the appropriate bundle element to the appropriate
value. Table 3 provides a quick guide to common operations.

Another function that can be useful at times is gig set vQR: unfortu-
nately, the lack of analytical derivatives at this stage of development of
gig makes it relatively prone to numerical issues when exogenous variables
are present in the variance equation. It is advisable to express the vari-
ance regressors in such a way that the matrix T−1

∑
t ztz

′
t is numerically

well-conditioned. If you call gig set vQR with 1 as second parameter, gig
will will try to do it for you via a QR decomposition. In most cases we’ve
tried, it seens to work quite nicely, but this feature should be considered
experimental and is disabled by default.

4 Plots
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Figure 4: Example plots

The gig package provides two built-in functions for plotting the results
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of a model: gig plot and gig dplot, which correspond to the “Time series”
and the “Density” entries of the “Plot” GUI menu (see subsection 3.1).

The former produces a plot that is very similar to the one that gretl’s
native GARCH routine gives you after estimation, that is a time-plot of
the model residuals and the estimated conditional standard deviation. The
latter compares the estimated density of the standardised innovations to
their non-parametric kernel estimate and can be used for judging visually
how adequate the choice of a conditional distribution is.

The following code fragment exemplifies of their usage in a script; the
input code:

include gig.gfn
open b-g.gdt
epicurus = gig_setup(Y,7,const)
gig_set_dist(&epicurus, 1)
gig_estimate(&epicurus)
gig_plot(&epicurus)
gig_dplot(&epicurus)

produces the following output

Model: EGARCH(1,1) [Nelson] (Student’s t)
Dependent variable: Y
Sample: 1-1974 (T = 1974), VCV method: Robust

Conditional mean equation

coefficient std. error z p-value
---------------------------------------------------------
const -0.000238229 0.00686306 -0.03471 0.9723

Conditional variance equation

coefficient std. error z p-value
-------------------------------------------------------
omega -0.220313 0.0623767 -3.532 0.0004 ***
alpha 0.255802 0.0624886 4.094 4.25e-05 ***
gamma -0.0379411 0.0181844 -2.086 0.0369 **
beta 0.977675 0.0125505 77.90 0.0000 ***

Conditional density parameters

coefficient std. error z p-value
------------------------------------------------------
ni 4.12520 0.402748 10.24 1.28e-24 ***

Llik: -986.08927 AIC: 1984.17853
BIC: 2017.70544 HQC: 1996.49706

and the plots shown in Figure 4.
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5 Numerical issues

5.1 gig is slow, especially EGARCH

Analytical derivatives of the likelihood for APARCH model with normal
innovations were computed by Laurent (2004). At present, however, gig
relies on numerical differentiation only for some of the models it handles8.

An important difference between equation (5) and (9) is that in the
APARCH case the conditional variance can be written as a linear filter
of the ut−i variables, whereas in the EGARCH formulation you have the
εt−i variables, so the EGARCH filter is not linear. Given the way gig is
presently written (and the fact that we haven’t coded the analytical score
for EGARCH yet), this implies that EGARCH filtering is much more time-
consuming than APARCH filtering, and as a consequence estimation times
are somewhat longer. We’re working on this.

5.2 The maximisation algorithm fails to converge

All statistical models that rely on numerical optimisation methods may suf-
fer from convergence or accuracy problems. In case you encounter conver-
gence problems, you may want to try the following tricks:

• Enable the highest level of verbosity in gig estimate() to see what
goes wrong.

• Rescale your data. Estimation may be sensitive to the scale of the
dependent variable and/or your explanatory variables. There is an
internal algorithm to rescale some data “sensibly”, but is not guar-
anteed to work. Should you encounter convergence problems, it is
advisable to scale yt so that its variance is between 0.01 and 100. A
useful thumb rule is that, for example, returns should be computed as
rt = 100 ·∆ lnPt.

• Try changing the optimization algorithm via set lbfgs or set optimizer
newton; see the User’s Guide for more details.

• Try starting the algorithm from a different starting point than the
default. In order to do this, you must modify the coeff element
of the model bundle before calling gig estimate (FIXME: write an
example)

8Note to the reader: we wouldn’t feel offended if you helped with the code for the
analytical score, you know. Not in the slightest.
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5.3 The algorithm converges but complains about a singular
Hessian

All the items in the previous subsection apply. Moreover, consider that per-
haps your problem is ill-conditioned after all. Conditionally heteroskedastic
model can be very picky, especially with few datapoints. Try similar models
and/or slightly different sample ranges to see what happens.

5.4 The algorithm converges, but the maximum is outside
the admissible region!

In the fuzzy and comfortable world of GARCH(1,1), the constraints α >
0, β ≥ 0 and α + β < 1 are natural, because you want your conditional
variances ht to be positive and finite for all t. Note that each of those
requirements has a slight different reason: for example, α = 0 would make
the model underidentified, so it’s an absolute must. On the other hand,
the requirement α + β < 1 applies to the true parameters, whereas their
estimates may happily violate that requirement in a finite sample: the point
in the parameter space which maximises the likelihood may well be outside
the admissible range just because your dataset ends with a massive volatility
burst. A similar argument goes for models with q > 1; α2, for example, must
be positive to ensure that ht can never be negative, but in a finite sample
you can have that the sequence of conditional variances that maximise the
likelihood is the one associated with a small negative value for α2.

Besides, you should also handle the case, which is frequent in practice,
of parameters which go outside the admissible region during maximisation
and eventually go back into it because the maximum is inside that region
after all.

In such a situation, surely you wouldn’t want the software to hide the
problem from you, so just printing out something like

I’m sorry, your estimates are outside the admissible region

would be a pathetically patronizing decision from the software (that is, from
us). In our opinion, the best policy is to treat these results for what they are:
a finite-sample oddity if your model is right or (more likely) an indication
that perhaps your model wasn’t the best choice after all.

So, the current state of things in gig is: no constraints are put on
the parameters. In the future, we’ll issue a warning if the algorithm stops
at some unorthodox point. This is easy for a GARCH(1,1) model: for
GARCH(p,q) models, this is more complex, but still possible9 (Nelson and
Cao, 1992). However, it’s not clear what to do with models with exogenous
variables in the volatility equation or non-GARCH models. We are not

9Again, a little help with the coding of the Nelson-Cao conditions would not be unwel-
come.
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aware of a generalisation of the Nelson-Cao conditions for the APARCH
model; pointers would be appreciated, if any of you know of any.
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A List of functions

A.1 Model setup

gig setup(series depVar, scalar type, list X, list varX, scalar
ARlags)

1. a series containing yt, the dependent variable (required)

2. a scalar for the model type (see Table 4, left-hand side)

3. a list with the exogenous variables in the mean equation: in terms of
eq. (2), the xt variables. Lags of the dependent variable, if any, must
be included in this list. (Default: null)

4. a list with the exogenous variables in the variance equation: in terms
of eq. (3), the zt variables. A constant term is automatically included
if absent. (Default: null)

5. a scalar, holding the number of autoregressive terms in the mean equa-
tion. (Default: 0)

gig set dist(bundle *b, int code)

1. the address of a model bundle created via gig setup (required)

2. a scalar for the conditional density function (see Table 4, right-hand
side)

gig set pq(bundle *b, int p, int q)

1. the address of a model bundle created via gig setup (required)

2. p, the GARCH order (between 0 and 2, default 1)

3. q, the ARCH order (minimum 1, default 1)
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gig set vQR(bundle *b, boolean on off)

1. the address of a model bundle created via gig setup (required)

2. 1 to activate the QR decomposition for variance regressors, 0 to de-
activate

A.2 Estimation

gig estimate(bundle *b, int verbose[0:2:1])

General estimation function. Its arguments are:

1. the address of a model bundle created via gig setup (required)

2. a verbosity switch, from 0 to 2. (Default: 1)

A.3 Output

Note: these functions assume that the bundle they refer to contain a model
that has already been estimated. No checks is performed.

gig print(bundle *b, scalar verbose)

Prints out a model.

gig plot(bundle *b)

Plots the residuals/conditional SE graph.

gig dplot(bundle *b)

Plots the estimated density of the standardized residuals versus its non-
parametric estimate.

20



B Bundle elements

Name Type Purpose

Model descriptors

type scalar model type (as per Table 4)

AR scalar AR order (mean equation)

p scalar GARCH order

q scalar ARCH order

cdist scalar conditional density (as per Table 4)

mlistX matrix list of mean regressors

vlistX matrix list of variance regressors

mk scalar number of mean regressors

vk scalar number of variance regressors

nobs scalar number of observations

t1 scalar first observation used

t2 scalar last observation used

Strings

depvarname string dependent variable name

mXnames string mean regressors names

vXnames string variance regressors names

Data

y series dependent variable

mX matrix mean regressors

vX matrix variance regressors

s2 scalar sample variance of the OLS residuals of y on X

Estimation parameters

scale scalar auto-scaling (used internally)

vcvtype scalar method for computing the covariance matrix: 0 = Sandwich
(default), 1 = Hessian, 2 = OPG

inipar matrix Starting values for BFGS

active matrix indicates which elements of the parameter vector are active
during ML estimation

vX QR scalar Toggles QR decomposition for variance regressors

Estimation results

errcode scalar error code from BFGS (0 = ok)

coeff matrix coefficients

stderr matrix std. deviations

vcv matrix covariance matrix

uhat series residuals

h series conditional variance

stduhat series standardised residuals

criteria matrix information criteria
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It you want to. . . You have to. . .

Change the type of an ex-
isting model

You can’t. Re-create the bundle with
gig setup

Change the dependent
variable of an existing
model

You can’t. Re-create the bundle with
gig setup

Change the regressors for
an existing model

You can’t. Re-create the bundle with
gig setup

Change the AR order for
an existing model

You can’t. Re-create the bundle with
gig setup

Re-estimate an existing
model on a different sam-
ple

You can’t. Run the appropriate smpl com-
mand first and then re-create the bundle with
gig setup

Change the density for an
existing model

Use gig set dist with the appropriate den-
sity code

Change the orders of the
polynomials for an exist-
ing model

Use gig set pq

Change the way the co-
variance matrix is com-
puted

Set the bundle element vcvtype to 0, 1 or 2

Change the initial values
for BFGS

Set the bundle element inipar to your liking;
be sure you know what you’re doing

Toggle QR decomposition
for variance regressors

Use gig set vQR

Change the verbosity of
BFGS

You can’t change it permanently: it’s the sec-
ond parameter to gig estimate

Table 3: Tweaking models
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Code Model Type Code Density Type

0 ARCH 0 Normal (default)
1 GARCH (default) 1 Student’s t
2 Taylor/Schwert GARCH 2 GED
3 GJR 3 Skewed t

4 Zakoian’s TARCH 4 Skewed GED
5 NARCH
6 APARCH
7 EGARCH

Table 4: Model type/density function codes
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