
IContents

I

Table of Contents

..1Overview

..3Editions

..5Getting Started

..9Features

..12What's New

..18Demo Projects

..23Component List

..25Hierarchy Chart

..26Requirements

..27Compatibility

..29Installation

..32Deployment

..33Licensing and Subscriptions

..34Getting Support

..35Frequently Asked Questions

..40Using MyDAC

.. 40Updating Data with MyDAC Dataset Components

.. 41Master/Detail Relationships

.. 43Migration from BDE

.. 45Secure Connections

.. 47Network Tunneling

.. 49Embedded Server

.. 51National Characters

.. 52Working in an Unstable Network

.. 53Disconnected Mode

.. 54Data Type Mapping

.. 58Data Encryption

.. 60Increasing Performance

.. 62Connection Pooling

Data Access Components for MySQLII

.. 64Macros

.. 65Using Several DAC Products in One IDE

.. 66DataSet Manager

.. 71DBMonitor

.. 72Migration Wizard

.. 73Writing GUI Applications with MyDAC

.. 74Compatibility with Previous Versions

.. 75dbForge Fusion for MySQL

.. 80MyBuilder Add-In

.. 8164-bit Development with Embarcadero RAD Studio XE2

.. 85Database Specific Aspects of 64-bit Development

..86Reference

.. 88CRAccess

... 89Classes
.. 89TCRCursor Class

... 89Members

... 90Types
.. 90TBeforeFetchProc Procedure Reference

... 91Enumerations
.. 91TCRIsolationLevel Enumeration

.. 91TCRTransactionAction Enumeration

.. 92CRBatchMove

... 93Classes
.. 93TCRBatchMove Class

... 93Members

... 94Properties

... 99Methods

... 99Events

... 101Types
.. 101TCRBatchMoveProgressEvent Procedure Reference

... 102Enumerations
.. 102TCRBatchMode Enumeration

.. 102TCRFieldMappingMode Enumeration

.. 103CRDataTypeMap

... 104Classes
.. 104EDataMappingError Class

... 104Members

.. 104EDataTypeMappingError Class

... 105Members

.. 105EInvalidDBTypeMapping Class

... 105Members

.. 105EInvalidFieldTypeMapping Class

... 106Members

.. 106EUnsupportedDataTypeMapping Class

... 106Members

.. 106TMapRule Class

... 106Members

IIIContents

III

... 107Properties

.. 110CREncryption

... 111Classes
.. 111TCREncryptor Class

... 111Members

... 111Properties

... 113Methods

... 115Enumerations
.. 115TCREncDataHeader Enumeration

.. 115TCREncryptionAlgorithm Enumeration

.. 116TCRHashAlgorithm Enumeration

.. 116TCRInvalidHashAction Enumeration

.. 117CRVio

... 118Classes
.. 118THttpOptions Class

... 118Members

... 118Properties

.. 120TProxyOptions Class

... 120Members

... 120Properties

.. 123DADump

... 124Classes
.. 124TDADump Class

... 124Members

... 125Properties

... 127Methods

... 130Events

.. 132TDADumpOptions Class

... 132Members

... 132Properties

... 134Types
.. 134TDABackupProgressEvent Procedure Reference

.. 134TDARestoreProgressEvent Procedure Reference

.. 135DALoader

... 136Classes
.. 136TDAColumn Class

... 136Members

... 136Properties

.. 137TDAColumns Class

... 138Members

... 138Properties

.. 138TDALoader Class

... 139Members

... 139Properties

... 141Methods

... 143Events

... 146Types
.. 146TDAPutDataEvent Procedure Reference

.. 146TGetColumnDataEvent Procedure Reference

.. 147TLoaderProgressEvent Procedure Reference

.. 148DAScript

... 149Classes

Data Access Components for MySQLIV

.. 149TDAScript Class

... 149Members

... 150Properties

... 155Methods

... 158Events

.. 159TDAStatement Class

... 160Members

... 160Properties

.. 163TDAStatements Class

... 164Members

... 164Properties

... 165Types
.. 165TAfterStatementExecuteEvent Procedure Reference

.. 165TBeforeStatementExecuteEvent Procedure Reference

.. 165TOnErrorEvent Procedure Reference

... 167Enumerations
.. 167TErrorAction Enumeration

.. 168DASQLMonitor

... 169Classes
.. 169TCustomDASQLMonitor Class

... 169Members

... 170Properties

... 171Events

.. 172TDBMonitorOptions Class

... 172Members

... 172Properties

... 174Types
.. 174TDATraceFlags Set

.. 174TMonitorOptions Set

.. 174TOnSQLEvent Procedure Reference

... 175Enumerations
.. 175TDATraceFlag Enumeration

.. 175TMonitorOption Enumeration

.. 177DBAccess

... 180Classes
.. 181EDAError Class

... 181Members

... 181Properties

.. 182TCRDataSource Class

... 182Members

.. 182TCustomConnectDialog Class

... 183Members

... 183Properties

... 187Methods

.. 188TCustomDAConnection Class

... 188Members

... 189Properties

... 194Methods

... 203Events

.. 204TCustomDADataSet Class

... 204Members

... 209Properties

... 224Methods

... 238Events

VContents

V

.. 241TCustomDASQL Class

... 241Members

... 242Properties

... 248Methods

... 252Events

.. 253TCustomDAUpdateSQL Class

... 253Members

... 254Properties

... 258Methods

.. 260TDAConnectionOptions Class

... 260Members

... 260Properties

.. 262TDADataSetOptions Class

... 262Members

... 263Properties

.. 269TDAEncryptionOptions Class

... 270Members

... 270Properties

.. 271TDAMapRule Class

... 271Members

... 272Properties

.. 274TDAMapRules Class

... 275Members

... 275Methods

.. 282TDAMetaData Class

... 283Members

... 284Properties

... 287Methods

.. 289TDAParam Class

... 290Members

... 290Properties

... 295Methods

.. 298TDAParams Class

... 298Members

... 298Properties

... 299Methods

.. 300TDATransaction Class

... 300Members

... 301Properties

... 302Methods

... 303Events

.. 304TMacro Class

... 304Members

... 304Properties

.. 307TMacros Class

... 307Members

... 307Properties

... 308Methods

.. 310TPoolingOptions Class

... 310Members

... 311Properties

... 313Types
.. 313TAfterExecuteEvent Procedure Reference

.. 313TAfterFetchEvent Procedure Reference

.. 314TBeforeFetchEvent Procedure Reference

Data Access Components for MySQLVI

.. 314TConnectionLostEvent Procedure Reference

.. 314TDAConnectionErrorEvent Procedure Reference

.. 315TDATransactionErrorEvent Procedure Reference

.. 315TRefreshOptions Set

.. 315TUpdateExecuteEvent Procedure Reference

... 317Enumerations
.. 317TLabelSet Enumeration

.. 317TLockMode Enumeration

.. 318TRefreshOption Enumeration

.. 318TRetryMode Enumeration

... 319Variables
.. 319BaseSQLOldBehavior Variable

.. 319ChangeCursor Variable

.. 320MacroChar Variable

.. 320SQLGeneratorCompatibility Variable

.. 321Devart.Dac.DataAdapter

... 322Classes
.. 322DADataAdapter Class

... 322Members

... 323Properties

... 323Methods

.. 325Devart.MyDac.DataAdapter

... 326Classes
.. 326MyDataAdapter Class

... 326Members

.. 328MemData

... 329Classes
.. 329TAttribute Class

... 329Members

... 330Properties

.. 333TBlob Class

... 333Members

... 334Properties

... 335Methods

.. 340TCompressedBlob Class

... 340Members

.. 341TDBObject Class

... 342Members

.. 342TObjectType Class

... 342Members

... 343Properties

... 344Methods

.. 346TSharedObject Class

... 346Members

... 346Properties

... 347Methods

... 349Types
.. 349TLocateExOptions Set

.. 349TUpdateRecKinds Set

... 350Enumerations
.. 350TConnLostCause Enumeration

.. 351TDANumericType Enumeration

.. 351TLocateExOption Enumeration

VIIContents

VII

.. 351TSortType Enumeration

.. 352TUpdateRecKind Enumeration

.. 353MemDS

... 354Classes
.. 354TMemDataSet Class

... 354Members

... 355Properties

... 359Methods

... 369Events

... 372Variables
.. 372DoNotRaiseExcetionOnUaFail Variable

.. 372SendDataSetChangeEventAfterOpen Variable

.. 373MyAccess

... 375Classes
.. 376TCustomMyConnection Class

... 376Members

... 378Properties

... 382Methods

.. 388TCustomMyConnectionOptions Class

... 388Members

... 389Properties

.. 391TCustomMyDataSet Class

... 392Members

... 396Properties

... 404Methods

.. 411TCustomMyStoredProc Class

... 411Members

... 416Properties

... 421Methods

.. 427TCustomMyTable Class

... 427Members

... 432Properties

... 438Methods

.. 443TMyCommand Class

... 443Members

... 445Properties

... 447Methods

.. 449TMyConnection Class

... 449Members

... 451Properties

.. 455TMyConnectionOptions Class

... 456Members

... 457Properties

.. 459TMyConnectionSSLOptions Class

... 460Members

... 460Properties

.. 461TMyDataSetOptions Class

... 461Members

... 463Properties

.. 470TMyDataSource Class

... 471Members

.. 471TMyEncryptor Class

... 471Members

.. 472TMyMetaData Class

Data Access Components for MySQLVIII

... 472Members

.. 474TMyQuery Class

... 474Members

... 479Properties

.. 485TMyStoredProc Class

... 486Members

... 490Properties

.. 496TMyTable Class

... 497Members

... 501Properties

.. 508TMyTableOptions Class

... 508Members

... 510Properties

.. 513TMyTransaction Class

... 513Members

.. 513TMyUpdateSQL Class

... 514Members

... 515Types
.. 515TMyUpdateExecuteEvent Procedure Reference

... 516Enumerations
.. 516TLockRecordType Enumeration

.. 516TLockType Enumeration

.. 517TMyIsolationLevel Enumeration

... 518Routines
.. 518GetServerList Procedure

... 519Constants
.. 519MydacVersion Constant

.. 520MyBackup

... 521Classes
.. 521TMyBackup Class

... 521Members

... 522Properties

... 528Methods

... 529Events

... 531Types
.. 531TMyTableMsgEvent Procedure Reference

... 532Enumerations
.. 532TMyBackupMode Enumeration

.. 532TMyBackupPriority Enumeration

.. 533TMyRestoreDuplicates Enumeration

.. 534MyBuilderClient

... 535Classes
.. 535TMyBuilder Class

... 535Members

... 536Properties

... 537Methods

.. 539MyClasses

... 540Classes
.. 540EMyError Class

... 540Members

... 540Properties

... 542Enumerations
.. 542TMyProtocol Enumeration

IXContents

IX

... 543Variables
.. 543__Strings65535ToMemo Variable

.. 544MyConnectionPool

... 545Classes
.. 545TMyConnectionPoolManager Class

... 545Members

.. 546MyDacVcl

... 547Classes
.. 547TMyConnectDialog Class

... 547Members

... 548Properties

.. 552MyDump

... 553Classes
.. 553TMyDump Class

... 553Members

... 554Properties

.. 557TMyDumpOptions Class

... 558Members

... 558Properties

... 561Types
.. 561TMyDumpObjects Set

... 562Enumerations
.. 562TMyDumpObject Enumeration

.. 563MyEmbConnection

... 564Classes
.. 564TMyEmbConnection Class

... 564Members

... 566Properties

... 570Events

.. 573MyLoader

... 574Classes
.. 574TMyColumn Class

... 574Members

.. 574TMyLoader Class

... 575Members

... 576Properties

... 578Types
.. 578TMyLoaderOptions Set

... 579Enumerations
.. 579TMyDuplicateKeys Enumeration

.. 579TMyLoaderOption Enumeration

.. 580MyScript

... 581Classes
.. 581TMyScript Class

... 581Members

... 582Properties

.. 585MyServerControl

... 586Classes
.. 586TMyServerControl Class

... 586Members

... 592Properties

Data Access Components for MySQLX

... 598Methods

.. 610MySqlApi

... 611Types
.. 611TMyLogEvent Procedure Reference

... 612Variables
.. 612MySQLClientLibrary Variable

.. 613MySQLMonitor

... 614Classes
.. 614TMySQLMonitor Class

... 614Members

.. 615VirtualTable

... 616Classes
.. 616TVirtualTable Class

... 616Members

... 618Properties

... 619Methods

... 626Types
.. 626TVirtualTableOptions Set

... 627Enumerations
.. 627TVirtualTableOption Enumeration

1Data Access Components for MySQL

1 Overview

Data Access Components for MySQL (MyDAC) is a library of components that provides direct access to
MySQL database servers from Delphi, Delphi for .NET, C++Builder, Free Pascal, and Kylix. MyDAC can
connect directly to MySQL server or work through the MySQL client library. The MyDAC library is
designed to help programmers develop faster and cleaner MySQL database applications. MyDAC is a
complete replacement for standard MySQL connectivity solutions and presents an efficient alternative to
the Borland Database Engine for access to MySQL.
The MyDAC library is actively developed and supported by the Devart Team. If you have any questions
about MyDAC, email the developers at mydac@devart.com or visit MyDAC online at http://www.devart.
com/mydac/.

Advantages of MyDAC Technology

MyDAC is a direct database connectivity wrapper built specifically for the MySQL server. MyDAC offers
wide coverage of the MySQL feature set, supports both client and direct connection modes, and
emphasizes optimized data access strategies.

Wide Coverage of MySQL Features

By providing access to the most advanced database functionality, MyDAC allows developers to harness
the full capabilities of the MySQL server and optimize their database applications. MyDAC provides a
complete support of MySQL Embedded Server, row-level locking, using HANDLER statements, MySQL
administration tasks. Get a full list of supported MySQL features in the Features topic.

Native Connection Options

MyDAC offers two connection modes to the MySQL server: Direct connection and connection through the
standard MySQL Client in Client mode. MyDAC-based database applications are easy to deploy, do not
require installation of other data provider layers (such as BDE), and tend to be faster than those that use
standard data connectivity solutions. See the How does MyDAC work section.

Optimized Code

The goal of MyDAC is to enable developers to write efficient and flexible database applications. The
MyDAC library is implemented using optimized code and advanced data access algorithms. Component
interfaces undergo comprehensive performance tests and are designed to help you write thin and
efficient product data access layers. Find out more about how to use MyDAC to optimize your database
applications in Increasing Performance.

Compatibility with other Connectivity Methods

The MyDAC interface retains compatibility with standard VCL data access components BDE. Existing
BDE-based applications can be easily migrated to MyDAC and enhanced to take advantage of MySQL-
specific features. Migration of a Delphi project can be automated with the BDE Migration Wizard. Find out
more about Migration Wizard in the Migration from BDE topic.

Development and Support

MyDAC is a MySQL connectivity solution that is actively developed and supported. MyDAC comes with
full documentation, demo projects, and fast (usually within one business day) technical support by the
MyDAC development team. Find out more about how to get help or submit feedback and suggestions to
the MyDAC Development Team in the Getting Support topic.
A description of the MyDAC components is provided in the Component List.

Key Features
 Direct access to server data without using client library. Does not require installation of other data

provider layers (such as BDE and ODBC)
 VCL, VCL.NET, and CLX versions of library available
 Full support of the latest versions of MySQL Server
 Support for all MySQL Server data types
 Disconnected Model with automatic connection control for working with data offline
 Local Failover for detecting connection loss and implicitly reexecuting certain operations
 All types of local sorting and filtering, including by calculated and lookup fields
 Automatic data updating with TMyQuery, TMyTable, and TMyStoredProc components
 Unicode and national charset support
 Supports many MySQL-specific features, such as locking, SET and ENUM types

mailto:mydac@devart.com
http://www.devart.com/mydac/
http://www.devart.com/mydac/

Data Access Components for MySQL2

 Advanced script execution functionality with TMyScript component
 Support for using macros in SQL
 Integration with dbForge Fusion for MySQL Standard Edition for performing advanced database

development and administration tasks
 Easy migration from BDE with Migration Wizard
 Lets you use Professional Edition of Delphi and C++Builder to develop client/server applications
 Included annual MyDAC Subscription with Priority Support
 Licensed royalty-free per developer, per team, or per site

The full list of MyDAC features are available in the Features topic.

© 1997-2012 Devart. All Rights Reserved.

3Data Access Components for MySQL

2 Editions

Data Access Components for MySQL comes in four basic editions levels: MyDAC Standard Edition,
MyDAC Professional Edition, MyDAC Developer Edition, and MyDAC Trial Edition.
MyDAC Standard Edition includes the MyDAC basic connectivity components and the MyDAC Migration
Wizard. MyDAC Standard Edition is a good choice for beginning MySQL developers and a cost-effective
solution for database application developers who only need basic connectivity functionality for MySQL.
MyDAC Professional Edition shows off the full power of MyDAC, enhancing MyDAC Standard Edition with
support for MySQL-specific functionality, and some advanced connection management features. MyDAC
Professional Edition is intended for serious application developers who want to take advantage of all the
MySQL-specific functionality support provided by MyDAC.
MyDAC Developer Edition is a bundle package of MyDAC Professional Edition with dbForgeFusion for
MySQL Standard Edition, an advanced add-in for MySQL database development and administration.
MyDAC Developer Edition is the best choice for enterprises and database industry professionals.
MyDAC Trial Edition is the evaluation version of MyDAC. It includes all the functionality of MyDAC
Professional Edition with a trial limitation of 60 days. Kylix, C++Builder, and supported .NET IDEs have
additional trial limitations*.
You can get source code of all the component classes in MyDAC by purchasing the special MyDAC
Professional Edition with Source Code or MyDAC Developer Edition with Source Code**.
For more information about how to get the MyDAC edition you want, visit the How to Order section.

MyDAC Edition Matrix

Feature
Devel
oper*
*

Profe
ssion
al**

Stand
ard

Trial

Base Components

TMyConnection

TMyQuery

TMyCommand
TMyTable
TMyStoredProc
TMyUpdateSQL
TMyConnectDialog
TMySQLMonitor
TMyScript
TMyDataSource
TVirtualTable
TCRDBGrid
MyDataAdapter

+ + + +

Additional Components
TMyEncryptor
TMyLoader
TMyDump
TMyBackup
TMyServerControl
TMyEmbConnection
TMyBuilder
TMyMetaData
TCRBatchMove

+ + - +

Direct connectivity (without MySQL client) + + + +

Design-time features, including
component editors and property editors

+ + + +

DataSet Manager*** + - - +

Data Access Components for MySQL4

Migration Wizard*** + + + +

dbForge Fusion for MySQL Standard
Edition****

+ - - +

Trial limitations* - - - +

* Trial Edition is a fully working version of MyDAC Professional Edition for a trial period of 60 days on
most supported IDEs. After the trial period expires you must either register or uninstall MyDAC. MyDAC
Trial Edition for Kylix has an additional nag screen trial limitation. MyDAC Trial Edition requires the IDE to
be launched on the target workstation when testing .NET applications and applications written on C+
+Builder. For more information about trial limitations see the Ordering topic.
** Developer and Professional editions with source code are available. Migration Wizard, DataSet
Manager source code, and code for other products, including dbForge Fusion for MySQL Standard Edition
and SQL Builder for MySQL, is not distributed.
*** Not available for C++Builder, Delphi 8, FreePascal or Kylix.
**** List of environments this feature is compatible with you can find in the Using dbForge Fusion for
MySQL topic

© 1997-2012 Devart. All Rights Reserved.

5Data Access Components for MySQL

3 Getting Started

This page contains a quick introduction to setting up and using the Data Access Components for MySQL
library. It gives a walkthrough for each part of the MyDAC usage process and points out the most
relevant related topics in the documentation.

 What is MyDAC?
 How does MyDAC work?
 Installing MyDAC.
 Working with the MyDAC demo projects.
 Compiling and deploying your MyDAC project.
 Using the MyDAC documentation.
 How to get help with MyDAC.

What is MyDAC?

Data Access Components for MySQL (MyDAC) is a component library which provides direct connectivity
to MySQL for Delphi, Delphi for .NET, C++Builder, and Kylix, and helps you develop fast MySQL-based
database applications with these environments.
Many MyDAC classes are based on VCL, VCL for .NET, and CLX classes and interfaces. MyDAC is a
replacement for the Borland Database Engine, it provides native database connectivity, and is specifically
designed as an interface to the MySQL database.
An introduction to MyDAC is provided in the Overview section.
A list of the MyDAC features you may find useful is listed in the Features section.
An overview of the MyDAC component classes is provided in the Components List section.

How does MyDAC work?

MyDAC allows you to connect to MySQL in two ways: in Client mode, using MySQL Client software, or in
Direct mode. The chosen connection mode is regulated by the Direct option.
In Direct mode, MyDAC connects to MySQL directly without using MySQL client software.
In Client mode, MyDAC connects to MySQL through the MySQL client library. MySQL client library is
supplied with MySQL server.
In comparison, the Borland Database Engine (BDE) uses several layers to access MySQL, and requires
additional data access software to be installed on client machines.
The BDE data transfer protocol is shown below.

BDE Connection Protocol

MyDAC works directly through native MySQL interface. It allows to avoid using BDE and ODBC:

MyDAC Connection Flow [Client Mode]

Using MySQL network protocol provides optimal transfer way:

http://info.borland.com/devsupport/bde/

Data Access Components for MySQL6

MyDAC Connection Flow [Direct Mode]

Installing MyDAC

To install MyDAC, complete the following steps.
1. Choose and download the version of the MyDAC installation program that is compatible with your

IDE. For instance, if you are installing MyDAC 5.00, you should use the following files:

For BDS 2006 and Turbo - mydac500d10*.exe
For Delphi 7 - mydac500d7*.exe

For more information, visit the the MyDAC download page.
2. Close all running Borland applications.
3. Launch the MyDAC installation program you downloaded in the first step and follow the instructions

to install MyDAC.

By default, the MyDAC installation program should install compiled MyDAC libraries automatically on all
IDEs except for Kylix. View the installation instructions for Kylix here.
To check if MyDAC has been installed properly, launch your IDE and make sure that a MySQL Access
page has been added to the Component palette and that a MySQL menu was added to the Menu bar.
If you have bought MyDAC Professional Edition with Source Code or MyDAC Developer Edition with
Source Code, you will be able to download both the compiled version of MyDAC and the MyDAC source
code. The installation process for the compiled version is standard, as described above.The MyDAC
source code must be compiled and installed manually. Consult the supplied ReadmeSrc.txt file for more
details.
To find out what gets installed with MyDAC or to troubleshoot your MyDAC installation, visit the
Installation topic.

Working with the MyDAC demo projects

The MyDAC installation package includes a number of demo projects that demonstrate MyDAC
capabilities and use patterns. The MyDAC demo projects are automatically installed in the MyDAC
installation folder.
To quickly get started working with MyDAC, launch and explore the introductory MyDAC demo project,
MyDacDemo, from your IDE. This demo project is a collection of demos that show how MyDAC can be
used. The project creates a form which contains an explorer panel for browsing the included demos and
a view panel for launching and viewing the selected demo.

MyDACDemo Walkthrough
1. Launch your IDE.
2. Choose File | Open Project from the menu bar
3. Find the MyDAC directory and open the MyDacDemo project. This project should be located in the

Demos\MyDacDemo folder.

For example, if you are using Borland Developer Studio 2006, the demo project may be found at
\Program Files\Devart\MyDac for Delphi 2006\Demos\Win32\MyDacDemo\MyDacDemo.
bdsproj

4. Select Run | Run or press F9 to compile and launch the demo project. MyDacDemo should start,
and a full-screen MyDAC Demo window with a toolbar, an explorer panel, and a view panel will
open. The explorer panel will contain the list of all demo sub-projects included in MyDACDemo, and
the view panel will contain an overview of each included demo.

At this point, you will be able to browse through the available demos, read their descriptions, view
their source code, and see the functionality provided by each demo for interacting with MySQL.
However, you will not be able to actually retrieve data from MySQL or execute commands until you
connect to the database.

5. Click on the "Connect" button in the MyDacDemo toolbar. A Connect dialog box will open. Enter the
connection parameters you use to connect to your MySQL server and click "Connect" in the dialog
box.

Now you have a fully functional interface to your MySQL server. You will be able to go through the
different demos, to browse tables, create and drop objects, and execute SQL commands.

Warning! All changes you make to the database you are connected to, including creating and
dropping objects used by the demo, will be permanent. Make sure you specify a test database
in the connection step.

6. Click on the "Create" button to create all the objects that will be used by MyDacDemo. If some of
these objects already exist in the database you have connected to, the following error message will
appear.

An error has occurred:
#42S01Table 'dept' already exists
You can manually create objects required for demo by using the following file: %MyDAC%
\Demos\InstallDemoObjects.sql

http://www.devart.com/odac/download.html

7Data Access Components for MySQL

%MyDAC% is the MyDAC installation path on your computer.
Ignore this exception?

This is a standard warning from the object execution script. Click "Yes to All" to ignore this
message. MyDacDemo will create the MyDacDemo objects on the server you have connected to.

7. Choose a demo that demonstrates an aspect of working with MySQL that you are interested in, and
play with the demo frame in the view window on the right. For example, to find out more about
how to work with MySQL tables, select the Table demo from the "Working with Components"
folder. A simple MySQL table browser will open in the view panel which will let you open a table in
your database by specifying its name and clicking on the Open button.

8. Click on the "Demo source" button in the MyDacDemo toolbar to find out how the demo you
selected was implemented. The source code behind the demo project will appear in the view panel.
Try to find the places where MyDAC components are used to connect to the database.

9. Click on the "Form as text" button in the MyDacDemo toolbar to view the code behind the interface
to the demo. Try to find the places where MyDAC components are created on the demo form.

10.Repeat these steps for other demos listed in the explorer window. The available demos are
organized in three folders.

Working with components
A collection of projects that show how to work with the basic MyDAC components.
General demos
A collection of projects that show off the MyDAC technology and demonstrate some ways to
work with data.
MySQL-specific demos
A collection of projects that demonstrate how to incorporate MySQL features in database
applications.

11.When you are finished working with the project, click on the "Drop" button in the MyDacDemo
toolbar to remove all the schema objects added in Step 6.

Other MyDAC demo projects

MyDAC is accompanied by a number of other demo projects. A description of all the MyDAC demos is
located in the Demo Projects topic.

Compiling and deploying your MyDAC project

Compiling MyDAC-based projects

By default, to compile a project that uses MyDAC classes, your IDE compiler needs to have access to the
MyDAC dcu (obj) files. If you are compiling with runtime packages, the compiler will also need to have
access to the MyDAC bpl files. All the appropriate settings for both these scenarios should take
place automatically during installation of MyDAC. You should only need to modify your
environment manually if you are using one of the MyDAC editions that comes with source code - MyDAC
Professional Edition with Source Code or MyDAC Developer Edition with Source Code.
You can check that your environment is properly configured by trying to compile one of the MyDAC
demo projects. If you have no problems compiling and launching the MyDAC demos, your environment
has been properly configured.
For more information about which library files and environment changes are needed for compiling
MyDAC-based projects, consult the Installation topic.

Deploying MyDAC-based projects

To deploy an application that uses MyDAC, you will need to make sure the target workstation has access
to the following files.
 The MySQL client library, if connecting using MySQL client.
 The MyDAC bpl files, if compiling with runtime packages.
 The MyDAC assembly files, if are using VCL for .NET components.

If you are evaluating deploying projects with MyDAC Trial Edition, you will also need to deploy some
additional bpl files with your application even if you are compiling without runtime packages. As another
trial limitation for C++Builder, applications written MyDAC Trial Edition for C++Builder will only work if
the C++Builder IDE is launched. More information about MyDAC Trial Edition limitations is provided here.
A list of the files which may need to be deployed with MyDAC-based applications is included in the
Deployment topic.

Using the MyDAC documentation

The MyDAC documentation describes how to install and configure MyDAC, how to use MyDAC Demo
Projects, and how to use the MyDAC libraries.

Data Access Components for MySQL8

The MyDAC documentation includes a detailed reference of all the MyDAC components and classes. Many
of the MyDAC components and classes inherit or implement members from other VCL, VCL for .NET, CLX
classes and interfaces. The product documentation also includes a summary of all members within each
of these classes. To view a detailed description of a particular component, look it up in the Components
List section. To find out more about a specific standard VCL/CLX class an MyDAC component is inherited
from, see the corresponding topic in your IDE documentation.
At install time, the MyDAC documentation is integrated into your IDE. It can be invoked from the MySQL
menu added to the Menu Bar, or by pressing F1 in an object inspector or on a selected code segment.

How to get help with MyDAC

There are a number of resources for finding help on using MyDAC classes in your project.


If you have a question about MyDAC installation or licensing, consult the

Licensing

 and

FAQ

 sections.


You can get community assistance and MyDAC technical support on the

MyDAC Support Forum

.

 To get help through the MyDAC Priority Support program, send an email to the MyDAC development

team at mydac@devart.com.

 If you have a question about ordering MyDAC or any other Devart product, contact sales@devart.

com.

For more information, consult the Getting Support topic.

© 1997-2012 Devart. All Rights Reserved.

http://www.devart.com/forums/viewforum.php?f=5
mailto:mydac@devart.com
mailto:sales@devart.com
mailto:sales@devart.com

9Data Access Components for MySQL

4 Features

General usability:
 Direct access to server data without using client library. Does not require installation of other data

provider layers (such as BDE and ODBC)
 Interface compatible with standard data access methods, such as BDE and ADO
 VCL, VCL for .NET, and CLX versions of library available
 Separated run-time and GUI specific parts allow you to create pure console applications such as CGI
 Unicode and national charset support

Network and connectivity:
 Disconnected Model with automatic connection control for working with data offline
 Local Failover for detecting connection loss and implicitly reexecuting certain operations
 Support for all existing MySQL protocols including the prepared statement (binary) protocol
 SSH and SSL encrypted connection support with Devart SecureBridge
 Full support for all current authentication protocols
 Ability to search for installed MySQL servers in a local network
 Connection timeout and command timeout management

Compatibility:
 Full support of the latest versions of MySQL
 Support for Embedded MySQL server
 Support for all MySQL Server data types
 Compatible with all IDE versions starting with Delphi 5, C++Builder 5, FreePascal, and Kylix 2

(except Delphi 8)
 Includes provider for UniDAC Standard Edition
 Wide reporting component support, including support for InfoPower, ReportBuilder, FastReport
 Wide support of all standard Borland and third-party visual data-aware controls
 Allows you to use Professional Edition of Delphi and C++Builder to develop client/server applications

MySQL Server technology support:
 Fast record insertion with TMyLoader component
 HANDLER syntax support
 Transaction isolation level support
 Possibility to retrieve last auto-incremented value
 Session identifer retrieval
 Server object information retrieval
 Row-level and table-level locking support

Performance:
 High overall performance
 Fast controlled fetch of large data blocks
 Optimized string data storing
 Advanced connection pooling
 High performance applying of cached updates with batches
 Caching of calculated and lookup fields
 Fast Locate in a sorted DataSet
 Preparing of user-defined update statements

Local data storage operations:
 Database-independent data storage with TVirtualTable component
 CachedUpdates operation mode
 Local sorting and filtering, including by calculated and lookup fields
 Local master/detail relationship
 Master/detail relationship in CachedUpdates mode

Data access and data management automation:
 Automatic data updating with TMyQuery, TMyTable and TMyStoredProc components
 Automatic record refreshing
 Automatic query preparing

http://devart.com/sbridge/

Data Access Components for MySQL10

 Automatic checking for row modifications by another user
 Support for ftWideMemo field type in Delphi 2006 and higher

Extended data access functionality:
 Separate component for executing SQL statements
 Simplified access to table data with TMyTable component
 BLOB compression support
 Support for using macros in SQL
 FmtBCD fields support
 Ability to customize update commands by attaching external components to TMyUpdateSQL objects
 Ability to perform MySQL administration tasks with the TMyServerControl component
 Value range retrieval for ENUM and SET fields
 Retrieval of output parameters from stored procedures and functions
 Automatic retrieval of default field values
 Deferred detail DataSet refresh in master/detail relationships
 MIDAS technology support
 MyDataAdapter component for WinForms and ASP.NET applications

Data exchange:
 Transferring data between all types of TDataSet descendants with TCRBatchMove component
 Data export and import to/from XML (ADO format)
 Ability to synchronize positions in different DataSets
 Extended data management with TMyDump, TMyBackup components

Script execution:
 Advanced script execution features with TMyScript component
 Support for executing individual statements in scripts
 Support for executing huge scripts stored in files with dynamic loading
 Optimized multi-statement script execution
 Ability to use standard MySQL client tool syntax in scripts
 Ability to break long-running query execution

SQL execution monitoring:
 Extended SQL tracing capabilities provided by TMySQLMonitor component and DBMonitor
 Borland SQL Monitor support
 Ability to send messages to DBMonitor from any point in your program
 Ability to retrieve information about the last query execution

Visual extensions:
 Includes source code of enhanced TCRDBGrid data-aware grid control
 Customizable connection dialog
 Cursor changes during non-blocking execution

Design-time enhancements:
 DataSet Manager tool to control DataSet instances in the project
 Advanced design-time component and property editors
 Integration with dbForge Fusion for MySQL for browsing database schemas, manipulating database

objects and visual building of queries
 Automatic design-time component linking
 Easy migration from BDE with Migration Wizard
 More convenient data source setup with the TMyDataSource component
 Syntax highlighting in design-time editors

dbForge Fusion for MySQL main features
 Integration with MyDirect .NET for enhanced component designers and drag-and-drop features
 Stored routines and SQL script debugger
 SQL code completion and navigation
 Visual query builder
 Database Explorer
 Visual object editors
 Database search engine
 Code template library
 Security Manager
 Session Manager
 Export/Import Wizards

11Data Access Components for MySQL

Product clarity:
 Complete documentation sets
 Printable documentation in PDF format
 A large amount of helpful demo projects

Licensing and support:
 Included annual MyDAC Subscription with Priority Support
 Licensed royalty-free per developer, per team, or per site

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL12

5 What's New

05-Sep-12 New Features in MyDAC 7.5:
 Rad Studio XE3 is supported
 Windows 8 is supported

21-Jun-12 New Features in MyDAC 7.2:
 Update 4 Hotfix 1 for RAD Studio XE2, Delphi XE2, and C++Builder XE2 is now required
 Data Type Mapping support is added
 Data encryption in a client application is added
 The TMyEncryptor component for data encryption is added
 Calling of the TCustomDASQL.BeforeExecute event is added

23-Nov-11 New Features in MyDAC 7.1:
 Update 4 for RAD Studio XE2, Delphi XE2, and C++Builder XE2 is now required
 Mac OS X and iOS in RAD Studio XE2 is supported
 FireMonkey support is improved
 Lazarus 0.9.30.4 and FPC 2.6.0 are supported
 Mac OS X in Lazarus is supported
 Linux x64 in Lazarus is supported
 FreeBSD in Lazarus is supported
 Performance of SQL query generation for stored procedure execution is improved

15-Sep-11 New Features in Data Access Components for MySQL 7.00:
 Embarcadero RAD Studio XE2 is supported
 Application development for 64-bit Windows is supported
 FireMonkey application development platform is supported
 Support of master/detail relationship for TVirtualTable is added
 OnProgress event in TVirtualTable is added
 TDADataSetOptions.SetEmptyStrToNull property that allows inserting NULL value instead of empty

string is added

28-Apr-11 New Features in Data Access Components for MySQL 6.10:
 Lazarus 0.9.30 and FPC 2.4.2 is supported
 Now the BreakExec method also stops working when getting record count if QueryRecCount=True

13-Sep-10 New Features in Data Access Components for MySQL 6.00:
 Embarcadero RAD Studio XE suppored

10-Sep-09 New Features in Data Access Components for MySQL 5.90:
 Embarcadero RAD Studio 2010 supported

02-Apr-09 New Features in Data Access Components for MySQL 5.80:
 Free Pascal under Linux supported
 Added NoPreconnect property to TMyScript for executing CONNECT and CREATE DATABASE

commands

23-Oct-08 New Features in Data Access Components for MySQL 5.70:
 Delphi 2009 and C++Builder 2009 supported
 Extended Unicode support for Delphi 2007 added (special Unicode build)
 Free Pascal 2.2 supported
 Powerful design-time editors implemented in Lazarus
 Completed with more comprehensive structured Help

21-Aug-08 New Features in Data Access Components for MySQL 5.55:
 dbForge Fusion for MySQL support added

23-May-08 New Features in Data Access Components for MySQL 5.50:
 Added compatibility with UniDAC
 Improved support of default field values
 The new component for metadata receiving added

13Data Access Components for MySQL

 Added ability to specify key fields for a dataset
 Added support of automatic records locking

27-Sep-07 New Features in Data Access Components for MySQL 5.20:
 CodeGear RAD Studio 2007 supported
 Added the OnProgress event in TMyLoader

12-Jun-07 New Features in MySQL Data Access Components 5.10:
 C++Builder 2007 supported

22-Mar-07 New Features in MySQL Data Access Components 5.00:

New functionality:
 Delphi 2007 for Win32 supported
 Implemented Disconnected Model for working offline and automatically connecting and

disconnecting
 Implemented Local Failover for detecting connection loss and implicitly re-executing some

operations
 Support for SSH protocol via SecureBridge component set added
 Added DataSet Manager to control project datasets
 Integration with MyDeveloper Tools 2.00 added
 New TCRBatchMove component for transferring data between all types of TDataSet descendants

added
 Output parameters from stored procedures and functions retrieval supported
 Data export and import to/from XML supported
 WideMemo field type in Delphi 2006 supported
 AutoRefresh mode support added
 Option to break long-duration query execution added
 Ability to search for installed MySQL servers on the network added
 Support for sending messages to DBMonitor from any point in your program added

Support for more MySQL server functionality:
 HANDLER syntax support in TMyTable added
 Enumeration value retrieval for ENUM and SET fields added

Extensions and improvements to existing functionality:
 General performance improved
 Master/detail functionality extensions:
 Local master/detail relationship support added
 Support for master/detail relationships in CachedUpdates mode added
 TMyScript component improvements:
 Support for executing individual statements in scripts added
 Support for executing huge scripts stored in files with dynamic loading added
 Ability to use standard MySQL client tool syntax added
 Working with calculated and lookup fields improvements:
 Local sorting and filtering added
 Record location speed increased
 Improved working with lookup fields
 Greatly increased performance of applying updates in CachedUpdates mode
 Connection pool functionality improvements:
 Efficiency significantly improved
 API for draining the connection pool added
 Option to ignore or replace records with duplicated key values in TMyLoader added
 Enhanced TMyServerControl functionality for working with server values
 Ability to customize update commands by attaching external components to TMyUpdateSQL objects

added
 Ability to include all fields in automatically generated update SQLs added

Usability improvements:
 Syntax highlighting in design-time editors added
 Completely restructured and clearer demo projects

28-Aug-06 New Features in MySQL Data Access Components 4.40:
 Optimized TDALoader.CreateColumns method
 Support for Professional editions of Turbo Delphi, Turbo Delphi for .NET, Turbo C++ added
 Added support for macros names in which first symbol is digit
 Added capability to use quoted field names in IndexFieldNames property

http://www.devart.com/sbridge/

Data Access Components for MySQL14

18-May-06 New Features in MySQL Data Access Components 4.30.1:
 MyDAC is now compatible with InterBase Data Access Components
 Modifying FieldDefs in TVirtualTable component accelerated
 Performance of SaveToFile and LoadFromFile functions in TVirtualTable improved

26-Jan-06 New Features in MySQL Data Access Components 4.30:
 Support for Delphi 2006 added
 BIT fields of MySQL 5.0 and above are now represented as TLargeintField
 FastReport 3.20 support added
 Added server version checking on Prepare method
 Added capability to close DataSet quicker when FetchAll property is False
 Improved performance of updating recordsets with multiple fields
 TCustomDADataSet.Locate now centers position in DBGrid
 Added support for MIDAS TDataSet.PSExecuteStatement ResultSet parameter

07-Dec-05 New Features in MySQL Data Access Components 4.00.2:
 Added 'delimiter' keyword support in TMyScript
 TCustomDADataSet.FindKey, TCustomDADataSet.FindNearest methods added for BDE compatibility
 Added BIT and INTEGER types support in parameters of stored procedures

02-Sep-05 New Features in MySQL Data Access Components 4.00.1:
 Deferred detail dataset refresh feature with TCustomDADataSet.Options.DetailDelay property added
 TCustomMyConnection.Ping behavior in case connection loss improved
 FieldDefs.Update behavior in case of temporary tables improved
 Added capability to prevent simultaneous access of several MyEmbConnection instances to single

data folder

29-Jul-05 New Features in MySQL Data Access Components 4.00:
 Unicode support added
 Enhanced support for Embedded MySQL Server with TMyEmbConnection component added
 Binary protocol support for MySQL 4.1 and above added
 Encrypted SSL connections support with OpenSSL added
 Enhanced support for national charsets added with TMyConnectionOptions.Charset property
 BLOB compression support added
 RefreshQuick for TCustomMyDataSet added
 Retrieve field's default value added with TCustomMyDataSet.Options.DefaultValues property
 Large amount of data support for TMyDump added
 Server start/stop ability for TMyServerControl added
 TMyBuilder component added for easy using SQL Builder for MySQL at run-time
 Optimized macros processing
 FAQ added
 Tested with MySQL server 5.0.9

30-May-05 New Features in MySQL Data Access Components 3.55:
 MySQL 5.0.3 BIT type support added
 Optimized MySQLMonitor BLOB parameters processing
 Ability of automatic preparing query with TCustomDADataSet.Options.AutoPrepare property added
 Ability to synchronize position at different DataSets with TCustomDADataSet.GotoCurrent method

added

21-Jan-05 MySQL Data Access Components 3.50:
 Support for Delphi 2005 added
 TMySQLMonitor.OnSQL can return statement encoded to an escaped SQL string
 Support for ConnectionTimeout in TMyConnection.ExecSQL added
 CommandTimeout default value set to 0 (infinite)
 TCustomDADataSet.UpdateObject support for MIDAS added
 Lock Demo added
 DECIMAL column type in MySQL 5.0.3 support added
 Update Pack 3 is required for Delphi 8

21-Oct-04 New Features in MySQL Data Access Components 3.30:
 Full support for all current authentication protocols added
 Generating update SQL for tables from other database added
 TCustomMyDataSet.Options.EnableBoolean property added
 TMyConnection.ThreadId property added

15Data Access Components for MySQL

 lxPartialCompare option for DataSet.LocateEx added
 FastReport3 engine and demo added
 Ability to store only a part of data in TMyDump.BackupQuery added
 Creating additional connection for TMyDump disabled
 TCustomMyDataSet.CommandTimeout property added
 "True" value for boolean fields and parameters stored as "1"

10-Sep-04 New Features in MySQL Data Access Components 3.10.2:
 Common class DADataAdapter isolated to Devart.Dac.AdoNet.dll library

22-Jul-04 New Features in MySQL Data Access Components 3.10.1 new features:
 Assembly Devart.MyDac.Data renamed to Devart.MyDac.AdoNet
 Fatal errors processing improved
 TINYINT(1) fields now represented as TBooleanField

08-Jul-04 New Features in MySQL Data Access Components 3.10:
 Local sorting ability with TMemDataSet.IndexFieldNames added
 TCustomMyTable.IndexDefs property added
 TMyConnection.Options.NumericType property added
 TMyStoredProc component added
 MyDataAdapter component added

29-Apr-04 New Features in MySQL Data Access Components 3.00.1:
 TCustomMyDataSet.Options.LongStrings property added
 TMyLoader.OnPutData event published again
 Trial version IDE warning disabled
 TCRColumn.TotalValue property added

09-Apr-04 New Features in MySQL Data Access Components 3.00:
 Support for Delphi 8 added
 Connection pooling support
 Performance improved
 TMyLoader performance greatly improved
 TCRGrid sources in Standard edition
 .NET Windows Forms demo project added
 ASP.NET demo project added
 Global variable MySQLClientLibrary added
 New time trial limitation

05-Feb-04 New Features in MySQL Data Access Components 2.00.3:
 SELECT '' support added
 Method TMyConnection.Ping added
 Method TMyConnection.GetExecuteInfo added
 Mouse wheel support added to CRDBGrid
 Embedded MySQL Server Demo added
 ConnectDialog Demo added

30-Dec-03 New Features in MySQL Data Access Components 2.00.2:
 BDE Migration Wizard algorithm optimized
 Limited MySQL server 4.1.1 support added
 If libmysql.dll not found then raise EOSError (instead of Exception)
 Property TCustomMyDataSet.InsertId: int64 added
 timestamp support added for CheckRowVersion = True

24-Nov-03 New Features in MySQL Data Access Components 2.00.1:
 Property MyConnection.Options.Direct is set to True by default
 TCustomMyDataSet.Lock method added
 AutoInc fields can be modified now

02-Oct-03 New Features in MySQL Data Access Components 2.00:
 Access to MySQL without client library using DirectMySQLObjects by Cristian Nicola
 Prepare support and new parameter binding schema for MySQL 4.1 added
 Supports working with MySQL server and Embedded server at the same time
 BDE migration wizard
 TMyDump component to store a database or its parts as a script
 TMyBackup component for backup coping specified tables on the server

Data Access Components for MySQL16

 TMyServerControl component to manage the server and standard service tasks execution
 TMyLoader component for fast loading data to the server
 New options of TMyConnection such as Compress, Protocol, Direct and Embedded added
 New properties ClientVersion, ServerVersion were added to TMyConnection
 Method ExecSQL in TMyConnection added
 Methods GetTableNames and GetDatabaseNames in TMyConnection added
 Property TMyConnection.Charset added
 Property TMyConnection.IsolationLevel added
 Methods LockTable and UnlockTable added to TCustomMyDataset
 Properties Limit and Offset added to TCustomMyTable
 Method TCustomMyTable.EmptyTable added
 FetchAll set to True by default
 Large SQL (INSERT/UPDATE BLOB's) executing performance greatly improved

06-Jun-03 New Features in MySQL Data Access Components 1.50:
 Embedded MySQL Server support added
 MySQL Server 4.1 limited support added
 Properties Port and Database in ConnectForm added
 RefreshRecord performance improved
 InfoPower demos added
 'Explain query...' added to design-time MyQuery menu
 'Show CREATE...' added to design-time MyQuery and MyTable menus
 SQL Generator improved - support for complicated statements added
 SQL Generator improved - "Quote names" checkbox added
 Complex keys support added
 Design-time SQL Generator was simplified
 TParam -> TDAParam
 Embedded MySQL Server support added for Kylix
 Check for datadir present added
 Changed behavior on calculating affected rows count

04-Apr-03 New Features in MySQL Data Access Components 1.30.2:
 Unit MySQLAccess renamed to MyClasses
 Property TMyDataSetOptions.LongStrings removed
 Parameters parsing improved. Symbol ':' in string literals is ignored
 Search algorithm for 'libmysqlclient.so' under Linux improved

24-Feb-03 New Features in MySQL Data Access Components 1.30.1:
 Refresh improved - current record is restored after Refresh call
 Property MyConnection.Options.KeepDesignConnected added
 Property MyConnectDialog.StoreLogInfo published
 Property MyScript.DataSet was published
 Property TMyCommand.InsertId: int64 added
 TINYTEXT -> TMemoField, TINYBLOB -> TBlobField
 Support for TIMESTAMP (10), TIMESTAMP (4), TIMESTAMP (2) added
 Support for LIKE expressions in Filter property added (D2706)

30-Jan-03 New Features in MySQL Data Access Components 1.30:
 MySQL v4.0 support added
 Dataset 'with many fields' update performance improved
 Improved performance for opening queries with lot of parameters

26-Dec-02 New Features in MySQL Data Access Components 1.20:
 Kylix2 and Kylix3 support
 ReportBuilder demos added
 DBMonitor client implementation moved to COM server
 Fetch performance improved for DataSet.FetchAll = True
 'Connection Lost' error processing improved

08-Oct-02 New Features in MySQL Data Access Components 1.10:
 Delphi 7 support
 New memory management model for ftString and ftVarBytes types. Allows significantly decrease

memory usage on large tables fetch. Controlled by FlatBuffers dataset option
 Support for blob fields in CachedUpdates mode

17Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL18

6 Demo Projects

MyDAC includes a number of demo projects that show off the main MyDAC functionality and
development patterns.
The MyDAC demo projects consist of one large project called MyDacDemo with demos for all main
MyDAC components, use cases, and data access technologies, and a number of smaller projects on how
to use MyDAC in different IDEs and how to integrate MyDAC with third-party components.
Most demo projects are built for Delphi, Borland Developer Studio, and Kylix. There are only two MyDAC
demos for C++Builder. However, the C++Builder distribution includes source code for all the other demo
projects as well.

Where are the MyDAC demo projects located?

In most cases all the MyDAC demo projects are located in "%MyDac%\Demos\".
In Delphi 2007 for Win32 under Windows Vista all the MyDAC demo projects are located in "My
Documents\Devart\MyDac for Delphi 2007\Demos", for example "C:\Documents and Settings\All Users
\Documents\Devart\MyDac for Delphi 2007\Demos\".
The structure of the demo project directory depends on the IDE version you are using.
For most new IDEs with .NET support, the structure will be as follows.
Demos

|—dotNet
| |—MyDacDemo [.NET version of the main MyDAC demo project]
| |—TechnologySpecific
| | |— Embedded [.NET version of the Embedded MySQL server using demo]
| | |— SecureBridge [.NET version of A component and a demo for integration with the
SecureBridge library]
| |—Miscellaneous
| |— [Some other .NET demo projects]
|-Win32

|—MyDacDemo [Win32 version of the main MyDAC demo project]
|—ThirdParty
| |— [A collection of demo projects on integration with third-party components]
|—TechnologySpecific
| |— Embedded [Win32 version of the Embedded MySQL server using demo]
| |— SecureBridge [A component and a demo for integration with the SecureBridge
library]
|—Miscellaneous
 |— [Some other Win32 demo projects on design technologies]

In Delphi 5, 6, 7, C++Builder 5, 6, , and FreePascal .NET is not supported, and the root directories is
omitted. For these IDEs you will see the following structure.
Demos

|—MyDacDemo [The main MyDAC demo project]
|—TechnologySpecific
| |— Embedded [Win32 version of the Embedded MySQL server using demo]
| |— SecureBridge [A component and a demo for integration with the SecureBridge
library]
|—ThirdParty
| |— [A collection of demo projects on integration with third-party components]
|—Miscellaneous
 |— [Some other demo projects on design technologies]

MyDacDemo is the main demo project that shows off all the MyDAC functionality. The other directories
contain a number of supplementary demo projects that describe special use cases. A list of all the
samples in the MyDAC demo project and a description for the supplementary projects is provided in the
following section.
Note: This documentation describes ALL the MyDAC demo projects. The actual demo projects you will
have installed on your computer depends on your MyDAC version, MyDAC edition, and the IDE version
you are using. The integration demos may require installation of third-party components to compile and
work properly.

Instructions for using the MyDAC demo projects

To explore a MyDAC demo project,
1. Launch your IDE.

19Data Access Components for MySQL

2. In your IDE, choose File | Open Project from the menu bar.
3. Find the directory you installed MyDAC to and open the Demos folder.
4. Browse through the demo project folders located here and open the project file of the demo you

would like to use.
5. Compile and launch the demo. If it exists, consult the ReadMe.txt file for more details.

The included sample applications are fully functional. To use the demos, you have to first set up a
connection to MySQL. You can do so by clicking on the "Connect" button.
Many demos may also use some database objects. If so, they will have two object manipulation buttons,
"Create" and "Drop". If your demo requires additional objects, click "Create" to create the necessary
database objects. When you are done with a demo, click "Drop" to remove all the objects used for the
demo from your database.
Note: The MyDAC demo directory includes two sample SQL scripts for creating and dropping all the test
schema objects used in the MyDAC demos. You can modify and execute this script manually, if you
would like. This will not change the behavior of the demos.
You can find a complete walkthrough for the main MyDAC demo project in the Getting Started topic. The
other MyDAC demo projects include a ReadMe.txt file with individual building and launching instructions.

Demo project descriptions

MyDacDemo

MyDacDemo is one large project which includes three collections of demos.
Working with components

A collection of samples that show how to work with the basic MyDAC components.
General demos

A collection of samples that show off the MyDAC technology and demonstrate some ways to work
with data.

MySQL-specific demos
A collection of samples that demonstrate how to incorporate MySQL features in database
applications.

MyDacDemo can be opened from %MyDac%\Demos\MyDacDemo\MyDacDemo.dpr (.bdsproj). The
following table describes all demos contained in this project.

Working with Components

Name Description

Command Uses TMyCommand to execute SQL statements. Demonstrates how to execute
commands in a separate thread, and how to break long-duration query
execution.

ConnectDialog Demonstrates how to customize the MyDAC connect dialog. Changes the
standard MyDAC connect dialog to two custom connect dialogs. The first
customized sample dialog is inherited from the TForm class, and the second
one is inherited from the default MyDAC connect dialog class.

CRDBGrid Demonstrates how to work with the TCRDBGrid component. Shows off the
main TCRDBGrid features, like filtering, searching, stretching, using compound
headers, and more.

Loader Uses the TMyLoader component to quickly load data into a server table.
TMyLoader loads data by grouping several data rows into a single INSERT
statement and executing this statement. This way is much faster then execuing
one INSERT statement per row. This demo also compares the two TMyLoader
data loading handlers: GetColumnData and PutData.

Query Demonstrates working with TMyQuery, which is one of the most useful MyDAC
components. Includes many TMyQuery usage scenarios. Demonstrates how to
edit data and export it to XML files.
Note: This is a very good introductory demo. We recommend starting here
when first becoming familiar with MyDAC.

StoredProc Uses TMyStoredProc to access an editable recordset from an MySQL stored
procedure in the client application.

Table Demonstrates how to use TMyTable to work with data from a single table on
the server without writing any SQL queries manually. Performs server-side
data sorting and filtering and retrieves results for browsing and editing.

UpdateSQL Demonstrates using the TMyUpdateSQL component to customize update
commands. Lets you optionally use TMyCommand and TMyQuery objects for
carrying out insert, delete, query, and update commands.

Data Access Components for MySQL20

VirtualTable Demonstrates working with the TVirtualTable component. This sample shows
how to fill virtual dataset with data from other datasets, filter data by a given
criteria, locate specified records, perform file operations, and change data and
table structure.

General Demos

Name Description

CachedUpdates Demonstrates how to perform the most important tasks of working with data
in CachedUpdates mode, including highlighting uncommitted changes,
managing transactions, and committing changes in a batch.

FilterAndIndex Demonstrates MyDAC's local storage functionality. This sample shows how to
perform local filtering, sorting and locating by multiple fields, including by
calculated and lookup fields.

MasterDetail Uses MyDAC functionality to work with master/detail relationships. This sample
shows how to use local master/detail functionality. Demonstrates different
kinds of master/detail linking, including linking by SQL, by simple fields, and by
calculated fields.

Pictures Uses MyDAC functionality to work with BLOB fields and graphics. The sample
demonstrates how to retrieve binary data from MySQL database and display it
on visual components. The sample also shows how to load and save pictures to
files and to the database.

Text Uses MyDAC functionality to work with text. The sample demonstrates how to
retrieve text data from MySQL database and display it on visual components.
The sample also shows how to load and save text to files and to the database.

Transactions Demonstrates the recommended approach for managing transactions with the
TMyConnection component. The TMyConnection interface provides a wrapper
for MySQL server commands like START TRANSACTION, COMMIT, ROLLBACK.

MySQL-specific Demos

Name Description

Lock Demonstrates two kinds of row-level locking (immediate locking and delayed
locking) with the InnoDB storage engine. This functionality is based on the
following MySQL commands: SELECT ... FOR UPDATE and SELECT ... LOCK IN
SHARE MODE.

Supplementary Demo Projects

MyDAC also includes a number of additional demo projects that describe some special use cases, show
how to use MyDAC in different IDEs and give examples of how to integrate it with third-party
components. These supplementary MyDAC demo projects are sorted into subfolders in the %MyDac%
\Demos\ directory.

Location Name Description

dotNet/ [folder appears only for IDEs with support for .NET]

Miscellaneo
us

AspNet

Uses MyDataAdapter to create a simple ASP .NET
application. This demo shows how to create an ASP.
NET application that lets you connect to a database and
execute queries. Application displays query results in a
DataGrid and sends user changes back to the database.

WinForms

Shows how to use MyDAC to create a WinForms
application. This demo project creates a simple
WinForms application and fills a data grid from an
MyDataAdapter data source.

MyDacDem
o

MyDacDe
mo

[.NET version of the main MyDAC demo project - see
above]

Technology
Specific

Embedded

Demonstrates working with Embedded MySQL server
by using the TMyEmbConnection component. This
demo creates a database structure, if it does not
already exist, opens a table from this database. Also
this demo shows how to process the log messages of
the Embedded server.

Win32/
[folder appears only for IDEs with support for .NET. For
all other IDEs contents appear in root]

21Data Access Components for MySQL

ThirdParty

FastRepor
t

Demonstrates how MyDAC can be used with FastReport
components. This project consists of two parts. The
first part is several packages that integrate MyDAC
components into the FastReport editor. The second part
is a demo application that lets you design and preview
reports with MyDAC technology in the FastReport
editor.

InfoPowe
r

Uses InfoPower components to display recordsets
retrieved with MyDAC. This demo project displays an
InfoPower grid component and fills it with the result of
an MyDAC query. Shows how to link MyDAC data
sources to InfoPower components.

IntraWeb

A collection of sample projects that show how to use
MyDAC components as data sources for IntraWeb
applications. Contains IntraWeb samples for setting up
a connection, querying a database and modifying data
and working with CachedUpdates and MasterDetail
relationships.

QuickRep
ort

Lets you launch and view a QuickReport application
based on MyDAC. This demo project lets you modify
the application in design-time.

ReportBui
lder

Uses MyDAC data sources to create a ReportBuilder
report that takes data from MySQL database. Shows
how to set up a ReportBuilder document in design-time
and how to integrate MyDAC components into the
Report Builder editor to perform document design in
run-time.

Technology
Specific

Embedded

Demonstrates working with Embedded MySQL server
by using the TMyEmbConnection component. This
demo creates a database structure, if it does not
already exist, opens a table from this database. Also
this demo shows how to process the log messages of
the Embedded server.

SecureBri
dge

The demo project demonstrates how to integrate the
SecureBridge components with MyDAC to ensure
secure connection to MySQL server through an SSH
tunnel and SSL.
This demo consists of three parts. The first part is a
package that contains TMySSHIOHandler and
TMySSLIOHandler component. These components
provide integration with the SecureBridge library. The
second part is two sample projects that demonstrate
how to connect to MySQL server through an SSH
server and through SSL, connect to the SSH server
with SecureBridge by password or by public key,
generate reliable random numbers, enable local port
forwarding.
For more information see the Readme.html file in the
demo directory.

http://devart.com/sbridge
http://devart.com/sbridge

Data Access Components for MySQL22

Miscellaneo
us

CBuilder

A general demo project about how to create MyDAC-
based applications with C++Builder. Lets you execute
SQL scripts and work with result sets in a grid. This is
one of the two MyDAC demos for C++Builder.

Dll

Demonstrates creating and loading DLLs for MyDAC-
based projects. This demo project consists of two parts
- an My_Dll project that creates a DLL of a form that
sends a query to the server and displays its results,
and an My_Exe project that can be executed to display
a form for loading and running this DLL. Allows you to
build a dll for one MyDAC-based project and load and
test it from a separate application.

FailOver

Demonstrates the recommended approach to working
with unstable networks. This sample lets you perform
transactions and updates in several different modes,
simulate a sudden session termination, and view what
happens to your data state when connections to the
server are unexpectedly lost. Shows off
CachedUpdates, LocalMasterDetail, FetchAll, Pooling,
and different Failover modes.

Midas

Demonstrates using MIDAS technology with MyDAC.
This project consists of two parts: a MIDAS server that
processes requests to the database and a thin MIDAS
client that displays an interactive grid. This demo
shows how to build thin clients that display interactive
components and delegate all database interaction to a
server application for processing.

VirtualTab
leCB

Demonstrates working with the TVirtualTable
component. This sample shows how to fill virtual
dataset with data from other datasets, filter data by a
given criteria, locate specified records, perform file
operations, and change data and table structure. This is
one of the two demo projects for C++Builder

MyDacDe
mo

MyDacDe
mo

[Win32 version of the main MyDAC demo project - see
above]

©

 1997-2012 Devart. All Rights Reserved.

23Data Access Components for MySQL

7 Component List

This topic presents a brief description of the components included in the Data Access Components for
MySQL library. Click on the name of each component for more information. These components are added
to the MySQL Access page of the Component palette except for TCRBatchMove and TVirtualTable
components. TCRBatchMove and TVirtualTable components are added to the Data Access page of the
Component palette. Basic MyDAC components are included in all MyDAC editions. MyDAC Professional
and Developer Edition components are not included in MyDAC Standard Edition.

Basic MyDAC components

TMyConnection Lets you set up and control connections to MySQL database server.

TMyQuery
Uses SQL statements to retrieve data from MySQL table or tables and
supply it to one or more data-aware components through a
TDataSource component. Provides flexible data update functionality.

TMyCommand
Executes SQL statements and stored procedures, which do not return
rowsets.

TMyTable
Lets you retrieve and update data in a single table without writing SQL
statements.

TMyStoredProc Executes stored procedures and functions.

TMyUpdateSQL Lets you tune update operations for a DataSet component.

TMyDataSource
Provides an interface between MyDAC dataset components and data-
aware controls on a form.

TMyScript Executes sequences of SQL statements.

TMySQLMonitor
Interface for monitoring dynamic SQL execution in MyDAC-based
applications.

TMyConnectDialog
Used to build custom prompts for username, password and server
name.

TVirtualTable
Dataset that stores data in memory. This component is placed on the
Data Access page of the Component palette, not on the MySQL Access
page.

MyDataAdapter
.NET component, uses TDataSet as data source for retrieving and
saving data to System.Data.DataSet.

MyDAC Professional and Developer Edition components

TMyEncryptor Represents data encryption and decryption in client application.

TMyLoader Provides quick loading data to MySQL database.

TMyDump
Serves to store a database or its parts as a script and also to restore
database from received script.

TMyBackup Serves for backup copying specified tables on the server.

TMyServerControl Serves to control the server and execution of standard service tasks.

TMyEmbConnectio
n

Is used to establish connection to Embedded MySQL server.

Data Access Components for MySQL24

TMyBuilder Serves to mange SQL Builder for MySQL Add-in.

TMyMetaData Retrieves metadata on specified SQL object.

TCRBatchMove
Transfers data between all types of TDataSets descendants. This
component is placed on the Data Access page of the Component
palette, not on the MySQL Access page.

See Also
 Hierarchy chart

© 1997-2012 Devart. All Rights Reserved.

25Data Access Components for MySQL

8 Hierarchy Chart

Many MyDAC classes are inherited from standard VCL/CLX classes. The inheritance hierarchy chart for
MyDAC is shown below. The MyDAC classes are represented by hyperlinks that point to their description
in this documentation. A description of the standard classes can be found in the documentation of your
IDE.

TObject

|—TPersistent
|—TComponent

|—TCustomConnection
| |—TCustomDAConnection
| |—TCustomMyConnection
| |—TMyConnection
| |—TMyEmbConnection
|—TDataSet
| |—TMemDataSet
| |—TCustomDADataSet
| | |—TCustomMyDataSet
| | |—TMyQuery
| | |—TCustomMyTable
| | | |—TMyTable
| | |—TCustomMyStoredProc
| | | |—TMyStoredProc
| | |—TMyServerControl
| |—TDAMetaData
| | |—TMyMetaData
| |—TVirtualTable
|—TDataSource
| |—TCRDataSource
| |—TMyDataSource
|—DADataAdapter
| |—MyDataAdapter
|—TCRBatchMove
|—TCustomConnectDialog
| |—TMyConnectDialog
|—TCustomDASQL
| |—TMyCommand
|—TCustomDASQLMonitor
| |—TMySQLMonitor
|—TDADump
| |—TMyDump
|—TDALoader
| |—TMyLoader
|—TDAScript
| |—TMyScript
|—TMyBackup
|—TMyBuilder
|—TMyIOHandler
|—TCREncryptor
| |—TMyEncryptor

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL26

9 Requirements

Requirements for using MyDAC in Direct mode

If you use MyDAC to connect to MySQL in Direct mode, you do not need to have MySQL client library on
your machine or deploy it with your MyDAC-based application.

Requirements for using MyDAC in Client mode

If you use MyDAC to connect to MySQL in Client mode, you need to have access to the MySQL client
library. In particular, you will need to make sure that the MySQL client library is installed on the
machines your MyDAC-based application is deployed to. MySQL client library is libmysql.dll file for
Windows, or libmysqlclient.so (libmysqlclient.so.X) for Linux. Please refer to descriptions of LoadLibrary()
and dlopen() functions accordingly for detailed information about MySQL client library file location. You
may need to deploy the MySQL client library with your application or require that users have it installed.

Requirements for using Embedded MySQL server

If you are working with Embedded server, you should have access to Embedded MySQL server library
(libmysqld.dll). For more information visit Using Embedded server.

© 1997-2012 Devart. All Rights Reserved.

27Data Access Components for MySQL

10 Compatibility

MySQL Compatibility

MyDAC supports the following database servers:
 MySQL servers: 6.0, 5.5, 5.1, 5.0, 4.1, 4.0, and 3.23
 MySQL Embedded servers: 6.0, 5.5, 5.1, 4.1, and 4.0

IDE Compatibility

MyDAC is compatible with the following IDEs:
 Embarcadero RAD Studio XE3
 Embarcadero Delphi XE3 for Win32
 Embarcadero Delphi XE3 for Win64
 Embarcadero Delphi XE3 for OSX32
 Embarcadero C++Builder XE3 for Win32
 Embarcadero C++Builder XE3 for OSX32

 Embarcadero RAD Studio XE2 (Requires Update 4 Hotfix 1)
 Embarcadero Delphi XE2 for Win32, Win64, and OSX32
 Embarcadero Delphi XE2 for Win64
 Embarcadero Delphi XE2 for OSX32
 Embarcadero C++Builder XE2 for Win32 and OSX32
 Embarcadero C++Builder XE2 for OSX32

 Embarcadero RAD Studio XE
 Embarcadero Delphi XE
 Embarcadero C++Builder XE

 Embarcadero RAD Studio 2010
 Embarcadero Delphi 2010
 Embarcadero C++Builder 2010

 CodeGear RAD Studio 2009 (Requires Update 3)
 CodeGear Delphi 2009
 CodeGear C++Builder 2009

 CodeGear RAD Studio 2007
 CodeGear Delphi 2007 for Win32
 CodeGear Delphi 2007 for .NET
 CodeGear C++Builder 2007

 Borland Developer Studio 2006
 Borland Delphi 2006 for Win32
 Borland Delphi 2006 for .NET
 Borland C++Builder 2006

 Turbo Delphi Professional
 Turbo Delphi for .NET Professional
 Turbo C++ Professional
 Borland Delphi 2005
 Borland Delphi 7
 Borland Delphi 6 (Requires Update Pack 2 – Delphi 6 Build 6.240)
 Borland Delphi 5
 Borland C++Builder 6 (Requires Update Pack 4 – C++Builder 6 Build 10.166)
 Borland C++Builder 5
 Lazarus 0.9.30.4 and Free Pascal 2.6.0 for Windows, Linux, Mac OS X, FreeBSD for 32-bit and 64-

bit platforms

Only Architect, Enterprise, and Professional IDE editions are supported. For Delphi XE/XE2/XE3, C+
+Builder XE/XE2/XE3 MyDAC additionally supports Starter Edition.
Lazarus and Free Pascal are supported only in Trial Edition and in Professional and Developer editions
with source code.

Supported Target Platforms
 Windows, 32-bit and 64-bit
 Mac OS X
 iOS (only in Delphi XE2 in Poffesional and Developer edition with source code)

http://edn.embarcadero.com/article/42282
http://www.embarcadero.com/products/delphi/
http://www.embarcadero.com/products/cbuilder-xe2/
http://cc.embarcadero.com/item/26921
http://edn.embarcadero.com/article/29791
http://edn.embarcadero.com/article/29793
http://www.lazarus.freepascal.org/
http://www.freepascal.org/

Data Access Components for MySQL28

 Linux, 32-bit and 64-bit (only in Lazarus and Free Pascal)
 FreeBSD (only in Lazarus and Free Pascal)

Note that support for 64-bit Windows was introduced in Delphi XE2, and is not available in C++Builder
and older versions of Delphi. Support for Mac OS X was introduced in Delphi XE2 and C++Builder XE2,
and is not available in older versions of Delphi and C++Builder.

Devart Data Access Components Compatibility

All DAC products are compatible with each other.
But, to install several DAC products to the same IDE, it is necessary to make sure that all DAC products
have the same common engine (BPL files) version. The latest versions of DAC products or versions with
the same release date always have the same version of the common engine and can be installed to the
same IDE.

dbForge Fusion for MySQL Compatibility

The current version of MyDAC is compatible with dbForge Fusion 4.xx for RAD Studio 2007 - XE2

© 1997-2012 Devart. All Rights Reserved.

29Data Access Components for MySQL

11 Installation

This topic contains the environment changes made by the MyDAC installer. If you are having problems
with using MyDAC or compiling MyDAC-based products, check this list to make sure your system is
properly configured.
Compiled versions of MyDAC are installed automatically by the MyDAC Installer for all supported IDEs
except for Kylix and Lazarus. Versions of MyDAC with Source Code must be installed manually.
Installation of MyDAC from sources is described in the supplied ReadMeSrc.txt file.

Before installing MyDAC ...

Two versions of MyDAC cannot be installed in parallel for the same IDE, and, since the Devart Data
Access Components products have some shared bpl files, newer versions of MyDAC may be incompatible
with older versions of ODAC, IBDAC, and SDAC.
So before installing a new version of MyDAC, uninstall any previous version of MyDAC you may have,
and check if your new install is compatible with other Devart Data Access Components products you
have installed. For more information please see Using several products in one IDE. If you run into
problems or have any compatibility questions, please email mydac@devart.com
Note: You can avoid performing MyDAC uninstallation manually when upgrading to a new version by
directing the MyDAC installation program to overwrite previous versions. To do this, execute the
installation program from the command line with a /force parameter (Start | Run and type mydacXX.

exe /force, specifying the full path to the appropriate version of the installation program).

Installed packages

The MyDAC package libraries are divided into Win32 project files and .NET project files.
Note: %MyDAC% denotes the path to your MyDAC installation directory.

Delphi/C++Builder Win32 project packages

Name Description Location

dacXX.bpl DAC run-time package Windows\System32

dcldacXX.bpl DAC design-time package Delphi\Bin

dacvclXX.bpl* DAC VCL support package Delphi\Bin

mydacXX.bpl MyDAC run-time package Windows\System32

dclmydacXX.bpl MyDAC design-time package Delphi\Bin

dclmysqlmonXX.bpl TMySQLMonitor component Delphi\Bin

mydacvclXX.bpl* VCL support package Delphi\Bin

crcontrolsXX.bpl TCRDBGrid component Delphi\Bin

* Not included in Delphi 5 and C++Builder 5. In these IDEs this functionality is distributed among the
other packages.

Delphi for .NET project packages

Name Description Location

Devart.Dac.dll DAC run-time package Global Assembly Cache

Devart.Dac.Design.dll DAC design-time package %MyDAC%\Bin

Devart.Dac.AdoNet.dll Data provider core package Delphi\Bin

Devart.MyDac.dll
MyDAC Delphi for .NET run-
time package

Global Assembly Cache

Devart.MyDac.Design.dll MyDAC design-time package %MyDAC%\Bin

Devart.Vcl.dll TCRDBGrid component Global Assembly Cache

Devart.MyDac.AdoNet.
dll

Data provider for MySQL
package

Global Assembly Cache

Additional packages for using MyDAC managers and wizards

Name Description Location

mailto:mydac@devart.com

Data Access Components for MySQL30

datasetmanagerXX.bpl DataSet Manager package Delphi\Bin

mymigwizardXX.dll MyDAC BDE Migration wizard %MyDAC%\Bin

Additional .NET packages for using MyDAC managers and wizards

Name Description Location

Devart.Dac.DsManager.
dll

DataSet Manager Assembly Global Assembly Cache

Devart.MyDac.
MigWizard.dll*

MyDAC BDE Migration wizard
Assembly

Global Assembly Cache

* Included in Borland Delphi 8 only

Environment Changes

To compile MyDAC-based applications, your environment must be configured to have access to the
MyDAC libraries. Environment changes are IDE-dependent.
For all instructions, replace %MyDAC% with the path to your MyDAC installation directory

Delphi
 %MyDAC%\Lib should be included in the Library Path accessible from Tools | Enviroment options |

Library.

The MyDAC Installer performs Delphi environment changes automatically for compiled versions of
MyDAC.

Delphi for .NET
 Devart.Dac and Devart.MyDac should be included in the Namespace prefixes.

 %MyDAC%\Lib should be included in the Library Path accessible from Tools | Options | Library - NET.

 %MyDAC%\Bin should be included in the Library Path accessible from Tools | Options | Library - NET.

 %MyDAC%\Bin should be included in the Component | Installed .NET components | Assembly Search

Path.

The MyDAC Installer performs Delphi for .NET environment changes automatically for compiled versions
of MyDAC.

C++Builder

C++Builder 5, 6:
 $(BCB)\MyDAC\Lib should be included in the Library Path of the Default Project Options accessible

from Project | Options | Directories/Conditionals.

 $(BCB)\MyDAC\Include should be included in the Include Path of the Default Project Options

accessible from Project | Options | Directories/Conditionals.

C++Builder 2006, 2007:
 $(BCB)\MyDAC\Lib should be included in the Library search path of the Default Project Options

accessible from Project | Default Options | C++Builder | Linker | Paths and Defines.
 $(BCB)\MyDAC\Include should be included in the Include search path of the Default Project Options

accessible from Project | Default Options | C++Builder | C++ Compiler | Paths and Defines.

The MyDAC Installer performs C++Builder environment changes automatically for compiled versions of
MyDAC.

Kylix

Kylix the only IDE which you will have to configure manually to use both compiled MyDAC libraries and
versions of MyDAC with Source Code. Complete the following steps to configure your Kylix environment.
Replace %MyDAC% with the path to your MyDAC installation directory.

1. Make MyDAC packages reachable for Kylix. Add the directory where MyDAC packages are installed
to LD_LIBRARY_PATH

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:%MyDAC%
Alternatively, you can copy all the MyDAC packages (*.so) to any directory reachable by Kylix,
such as kylix/bin.

2. Install MyDAC in Kylix. Select Component | Install Packages from the Kylix menu. Press Add button
and select bpldclmydacX.so.X.XX package. On pressing OK, the MyDAC components will be
available in the MySQL Access group.

3. Add %MyDAC%/lib directory to the Search Path of your project.

Lazarus

The MyDAC installation program only copies MyDAC files. You need to install MyDAC packages to Lazarus

31Data Access Components for MySQL

IDE manually. Open %MyDAC%\Source\Lazarus1\dclmydac.lpk file in Lazarus and press the Install
button. After that Lazarus IDE will be rebuilded with MyDAC packages.
Do not press the the Compile button for the package. Compiling will fail because there are no MyDAC
sources.
To check that your environment has been properly configured, try to compile one of the demo projects
included with MyDAC. The MyDAC demo projects are located in %MyDAC%/Demos.

Installation of Additional Components and Add-ins

dbForge Fusion for MySQL

dbForge Fusion for MySQL is a powerful database development and administration tool for MySQL.
dbForge Fusion for MySQL is available as an add-in for Delphi and C++Builder 2009, CodeGear RAD
Studio 2007, or as a standalone application. For more information, visit the dbForge Fusion for MySQL
page online.

MyBuilder

MyBuilder is an easy to use and versatile MyDAC design-time extension to manipulate data and database
objects of MySQL. With MyBuilder Add-in you can build, execute, verify and optimize your SQL
statements. For more information, visit the MyBuilder page online.

DBMonitor

DBMonitor is a an easy-to-use tool to provide visual monitoring of your database applications. It is
provided as an alternative to Borland SQL Monitor which is also supported by MyDAC. DBMonitor is
intended to hamper application being monitored as little as possible. For more information, visit the
DBMonitor page online.

© 1997-2012 Devart. All Rights Reserved.

http://www.devart.com/dbforge/mysql/fusion/overview.html
http://www.devart.com/dbforge/mysql/fusion/overview.html
http://www.devart.com/mybuilder/
http://devart.com/dbmonitor/

Data Access Components for MySQL32

12 Deployment

MyDAC applications can be built and deployed with or without run-time libraries. Using run-time libraries
is managed with the "Build with runtime packages" check box in the Project Options dialog box.

Deploying Win32 applications built without run-time packages

You do not need to deploy any files with MyDAC-based applications built without run-time packages,
provided you are using a registered version of MyDAC.
You can check if your application does not require run-time packages by making sure the "Build with
runtime packages" check box is not selected in the Project Options dialog box.

Trial Limitation Warning

If you are evaluating deploying Win32 applications with MyDAC Trial Edition, you will need to deploy the
following BPL files and their dependencies (required IDE BPL files) with your application, even if it is built
without run-time packages:

dacXX.bpl always

mydacXX.bpl always

Deploying Win32 applications built with run-time packages

You can set your application to be built with run-time packages by selecting the "Build with runtime
packages" check box in the Project Options dialog box before compiling your application.
In this case, you will also need to deploy the following BPL files with your Win32 application:

dacXX.bpl always

mydacXX.bpl always

dacvclXX.bpl if your application uses the MyDacVcl unit

mydacvclXX.bpl if your application uses the MyDacVcl unit

crcontrolsXX.bpl if your application uses the CRDBGrid component

Deploying .NET applications

By default you should deploy the following assemblies with your MyDAC .NET application:

Devart.Dac.dll always

Devart.MyDac.dll always

Devart.Dac.
AdoNet.dll

If your application uses MyDataAdapter component

Devart.MyDac.
AdoNet.dll

If your application uses MyDataAdapter component

If you remove the names of these assemblies from the References list of your project, these files will not
be required on the target computer.

© 1997-2012 Devart. All Rights Reserved.

33Data Access Components for MySQL

13 Licensing and Subscriptions

Data Access Components for MySQL are licensed, not sold. Please read the end-user license agreement
(EULA) carefully before using the product. You can find the EULA in the License.rtf file in the MyDAC
installation folder.

Licensing

There are three types of full licenses for MyDAC: Single Licenses, Team Licenses, and Site Licenses.
Single Licenses must be purchased for each developer working on a project that uses MyDAC.
Purchasing a Team License automatically gives four developers a Single License.
Purchasing a Site License automatically gives all developers in a company a Single License.
For evaluation purposes only, you may also use MyDAC Trial Edition under a temporary Evaluation
License, which allows you to test MyDAC Trial Edition for a period of 60 days, after which you must
either remove all files associated with MyDAC or purchase a full license.
Licenses can be purchased for the following editions of MyDAC: MyDAC Standard Edition, MyDAC
Professional Edition, and MyDAC Professional Edition with Source Code, MyDAC Developer Edition, and
MyDAC Developer Edition with Source Code. An edition comparison chart can be found here.
To purchase a license for MyDAC, please visit www.devart.com/mydac/ordering.html.
If you have any questions regarding licensing, please contact sales@devart.com.

Editions

Full licenses can be purchased for the following editions of MyDAC: MyDAC Standard Edition, MyDAC
Professional Edition, and MyDAC Professional Edition with Source Code, MyDAC Developer Edition, and
MyDAC Developer Edition with Source Code.
Users can evaluate MyDAC with MyDAC Trial Edition under Evaluation License.
A comparison chart can be found here.

Subscriptions

The MyDAC Subscription program is an annual maintenance and support service for MyDAC users.
Users with a valid MyDAC Subscription get the following benefits:
 Product support through the MyDAC Priority Support program
 Access to new versions of MyDAC when they are released
 Access to all MyDAC updates and bug fixes
 Notification of new product versions

If you have any questions regarding licensing or subscriptions not covered with Help, please contact
sales@devart.com.

Trial Limitations

MyDAC Evaluation License lets you try MyDAC Trial Edition for a period of 60 days.
There are no functionality limitations in MyDAC Trial Edition during the trial period for most supported
IDEs, except the following:
 MyDAC Trial Edition for Kylix has an additional nag screen trial limitation.
 .NET applications and applications written in C++Builder require the corresponding IDE to be

launched on the client workstation if they use MyDAC Trial Edition
 If you are deploying a project built with MyDAC Trial Edition, you will need to include the MyDAC

library files in your application deployment package. For more information, consult the Deployment
topic.

© 1997-2012 Devart. All Rights Reserved.

mailto:sales@devart.com
mailto:sales@devart.com

Data Access Components for MySQL34

14 Getting Support

This page lists several ways you can find help with using MyDAC and describes the MyDAC Priority
Support program.

Support Options

There are a number of resources for finding help on installing and using MyDAC.
 You can find out more about MyDAC installation or licensing by consulting the Licensing and FAQ

sections.
 You can get community assistance and technical support on the MyDAC Community Forum.
 You can get advanced technical assistance by MyDAC developers through the MyDAC Priority

Support program.

If you have a question about ordering MyDAC or any other Devart product, please contact sales@devart.
com.

MyDAC Priority Support

MyDAC Priority Support is an advanced product support service for getting expedited individual
assistance with MyDAC-related questions from the MyDAC developers themselves. Priority Support is
carried out over email and has two business days response policy. Priority Support is available for users
with an active MyDAC Subscription.
To get help through the MyDAC Priority Support program, please send an email to mydac@devart.com
describing the problem you are having. Make sure to include the following information in your message:
 The version of Delphi, C++Builder or Kylixyou are using.
 Your MyDAC Registration number.
 Full MyDAC edition name and version number. You can find both of these in the About sheet of

TMyConnection Editor or from the MySQL | About menu.
 Versions of the MySQL server and client you are using.
 A detailed problem description.
 If possible, a small test project that reproduces the problem. Please include definitions for all

database objects and avoid using third-party components.

© 1997-2012 Devart. All Rights Reserved.

http://www.devart.com/forums/
mailto:sales@devart.com
mailto:sales@devart.com
mailto:mydac@devart.com

35Data Access Components for MySQL

15 Frequently Asked Questions

This page contains a list of Frequently Asked Questions for Data Access Components for MySQL.
If you have encounter a question with using MyDAC, please browse through this list first. If this page
does not answer your question, refer to the Getting Support topic in MyDAC help.

Installation and Deployment
1.I am having a problem installing MyDAC or compiling MyDAC-based projects...

You may be having a compatibility issue that shows up in one or more of the following forms:
o Get a "Setup has detected already installed DAC packages which are incompatible with current

version" message during MyDAC installation.

o Get a "Procedure entry point ... not found in ... " message when starting IDE.

o Get a "Unit ... was compiled with a different version of ..." message on compilation.

You can have such problems if you installed incompatible MyDAC, SDAC, ODAC or IBDAC versions.
All these products use common base packages. The easiest way to avoid the problem is to uninstall
all installed DAC products and then download from our site and install the last builds.

2.What software should be installed on a client computer for MyDAC-based applications to
work?
Usually, you do not need any additional files. The only exceptions to this rule are listed below:
o If you are using MySQL Embedded server (if you are using TMyConnection with TMyConnection.

Options.Embedded = True or TMyEmbConnection), you need the server itself (libmysqld.dll) and
the service files for it, for example errmsg.sys.

o If you are connecting in Client mode, (TMyConnection.Options.Direct = False), you need
libmysql.dll.

o If you are using SSL (TMyConnection.Options.Protocol = mpSSL), you need the OpenSSL library
files - ssleay32.dll and libeay32.dll.

3.When I try to install MyDAC packages under Kylix, I get an "Invalid package" error.
Probably you are using Kylix Open Edition. MyDAC does not support this version of Kylix.

4.When I try to connect to the server, I get an error "MySQL client library couldn't be
loaded."
You are using TMyConnection.Options.Direct := False mode and the client library is not available
for your application.
Windows: You should copy client file libmysql.dll to a folder available to the executable unit of your
program. For example, to the folder containing the executable or to the Windows system folder.
For more details, see the description of LoadLibrary and the PATH environment variable.
Linux: You should copy the client file libmysqlclient.so.X to the folder available to the executable
unit of your program. For more details, see the description of the dlopen function and the
LD_LIBRARY_PATH environment variable.

5.Core Lab renaming issue that conserns Delphi for .Net users

o Please remove all CoreLab assamblies references from your project and add corresponding
Devart ones

o Please change all unit references in uses clauses from CoreLab to Devart (you can use standard
renaming tool)

Licensing and Subscriptions
1.Am I entitled to distribute applications written with MyDAC?

If you have purchased a full version of MyDAC, you are entitled to distribute pre-compiled
programs created with its use. You are not entitled to propagate any components inherited from
MyDAC or using MyDAC source code. For more information see the License.rtf file in your MyDAC
installation directory.

2.Can I create components using MyDAC?
You can create your own components that are inherited from MyDAC or that use the MyDAC source
code. You are entitled to sell and distribute compiled application executables that use such
components, but not their source code and not the components themselves.

3.What licensing changes can I expect with MyDAC 5.00?
The basic MyDAC license agreement will remain the same. With MyDAC 5.00, the MyDAC Edition

http://www.crlab.com/mydac/#editionmatrix

Data Access Components for MySQL36

Matrix will be reorganized and a new MyDAC Subscription Program will be introduced.

4.What do the MyDAC 5.00 Edition Levels correspond to?
MyDAC 5.00 will come in six editions: Trial, Standard, Professional, Professional with Sources,
Developer, and Developer with Sources.
When you upgrade to the new version, your edition level will be automatically updated using the
following Edition Correspondence Table.

Edition Correspondence Table for Upgrading to MyDAC 5.00

Old Edition Level New Edition Level

- No Correspondence - MyDAC Standard
Edition

MyDAC Standard
Edition

MyDAC Professional
Edition

MyDAC Professional
Edition

MyDAC Professional
Edition with Sources

- No Correspondence - MyDAC Developer
Edition

- No Correspondence - MyDAC Developer
Edition with Sources

MyDAC Trial Edition MyDAC Trial Edition

The feature list for each edition can be found in the MyDAC documentation and on the MyDAC
website.

5.I have a registered version of MyDAC. Will I need to pay to upgrade to future versions?
After MyDAC 5.00, all upgrades to future versions are free to users with an active MyDAC
Subscription.
Users that have a registration for versions of MyDAC prior to MyDAC 5.00 will have to first upgrade
to MyDAC 5.00 to jump in on the Subscription program.

6.What are the benefits of the MyDAC Subscription Program?
The MyDAC Subscription Program is an annual maintenance and support service for MyDAC
users.
Users with a valid MyDAC Subscription get the following benefits:
o Access to new versions of MyDAC when they are released

o Access to all MyDAC updates and bug fixes

o Product support through the MyDAC Priority Support program

o Notification of new product versions

Priority Support is an advanced product support program which offers you expedited individual
assistance with MyDAC-related questions from the MyDAC developers themselves. Priority Support
is carried out over email and has a two business day response policy.
The MyDAC Subscription Program is available for registered users of MyDAC 5.00 and higher.

7.Can I use my version of MyDAC after my Subscription expires?
Yes, you can. MyDAC version licenses are perpetual.

8.I want a MyDAC Subscription! How can I get one?
An annual MyDAC Subscription is included when ordering or upgrading to any registered (non-
Trial) edition of MyDAC 5.00 or higher.
You can renew your MyDAC Subscription on the MyDAC Ordering Page. For more information,
please contact sales@crlab.com.

9.Does this mean that if I upgrade to MyDAC 5 from MyDAC 4, I'll get an annual MyDAC
Subscription for free?
Yes.

10.How do I upgrade to MyDAC 5.00?
To upgrade to MyDAC 5.00, you can get a Version Update from the MyDAC Ordering Page. For
more information, please contact sales@crlab.com.

Performance
1.How productive is MyDAC?

MyDAC uses a low-level protocol to access the database server. This allows MyDAC to achieve high
performance. From time to time we compare MyDAC with other products, and MyDAC always takes
first place.

2.Why does the Locate function work so slowly the first time I use it?
Locate is performed on the client. So if you had set FetchAll to False when opening your dataset,

http://www.crlab.com/mydac/#editionmatrix
http://www.crlab.com/mydac/#editionmatrix
http://www.crlab.com/mydac/#editionmatrix
http://www.crlab.com/mydac/ordering.html
mailto:sales@crlab.com
http://www.crlab.com/mydac/ordering.html
mailto:sales@crlab.com

37Data Access Components for MySQL

cached only some of the rows on the client, and then invoked Locate, MyDAC will have to fetch all
the remaining rows from the server before performing the operation. On subsequent calls, Locate
should work much faster.
If the Locate method keeps working slowly on subsequent calls or you are working with
FetchAll=True, try the following. Perform local sorting by a field that is used in the Locate method.
Just assign corresponding field name to the IndexFieldNames property.

How To
1.How can I enable syntax highlighting in MyDAC component editors at design time?

Download and install MySQL Developer Tools. In addition to syntax highlighting, MySQL Developer
Tools provides a lot of additional features.
Alternatively, you can download and install the freeware SynEdit component set.

2.How can I quickly convert a project from BDE to MyDAC?
To quickly migrate your project from BDE you can use the BDE Migration Wizard. To start it, open
your project and choose BDE Migration Wizard from the MySQL menu of your IDE.

3.How can I determine which version of MyDAC I am using?
You can determine your MyDAC version number in several ways:
o During installation of MyDAC, consult the MyDAC Installer screen.

o After installation, see the history.html file in your MyDAC installation directiory.

o At design-time, select MySQL | About MyDAC from the main menu of your IDE.

o At run-time, check the value of the MydacVersion and DACVersion constants.

4.How can I stop the cursor from changing to an hour glass during query execution?
Just set the DBAccess.ChangeCursor variable to False anywhere in your program. The cursor will
stop changing after this command is executed.

5.How can I execute a query saved in the SQLInsert, SQLUpdate, SQLDelete, or
SQLRefresh properties of a MyDAC dataset?
The values of these properties are templates for query statements, and they cannot be manually
executed. Usually there is no need to fill these properties because the text of the query is
generated automatically.
In special cases, you can set these properties to perform more complicated processing during a
query. These properties are automatically processed by MyDAC during the execution of the Post,
Delete, or RefreshRecord methods, and are used to construct the query to the server. Their values
can contain parameters with names of fields in the underlying data source, which will be later
replaced by appropriate data values.
For example, you can use the SQLInsert template to insert a row into a query instance as follows.
o Fill the SQLInsert property with the parameterized query template you want to use.

o Call Insert.

o Initialize field values of the row to insert.

o Call Post.

The value of the SQLInsert property will then be used by MyDAC to perform the last step.
Setting these properties is optional and allows you to automatically execute additional SQL
statements, add calls to stored procedures and functions, check input parameters, and/or store
comments during query execution. If these properties are not set, the MyDAC dataset object will
generate the query itself using the appropriate insert, update, delete, or refresh record syntax.

6.How can I get a list of the databases on the server?
Use the TMyConnection.GetDatabaseNames method.

7.How can I get a list of the tables list in a database?
Use the TMyConnection.GetTableNames method.

8.Some questions about the visual part of MyDAC
The following situations usually arise from the same problem:
o I set the Debug property to True but nothing happens!

o While executing a query, the screen cursor does not change to an hour-glass.

o Even if I have LoginPromp set to True, the connect dialog does not appear.

To fix this, you should add the MyDacVcl (for Windows) or MyDacClx (for Linux) unit to the uses
clause of your project.

General Questions
1.I would like to develop an application that works with MySQL Server. Should I use

MyDAC or DbxMda?
DbxMda is our dbExpress driver for MySQL. dbExpress technology serves for providing a more or

http://crlab.com/mysqldevtools/
http://crlab.com/mysqldevtools/features.html
http://synedit.sourceforge.net/
http://www.crlab.com/dbx/

Data Access Components for MySQL38

less uniform way to access different servers (SQL Server, MySQL, Oracle and so on). It is based on
drivers that include server-specific features. Like any universal tool, in many specialized cases
dbExpress providers lose some functionality. For example, the dbExpress design-time is quite poor
and cannot be expanded.
MyDAC is a specialized set of components for MySQL, which has advanced server-specific design-
time and a component interface similar to that of BDE.
We tried to include maximal support of MySQL-specific features in both DbxMda and MyDAC.
However, the nature of dbExpress technology has some insurmountable restrictions. For example,
Unicode fields cannot be passed from a driver to dbExpress.
MyDAC and DbxMda use the same kernel and thus have similar performance. In some cases
dbExpress is slower because data undergoes additional conversion to correspond to dbExpress
standards.
To summarise, if it is important for you to be able to quickly adapt your application to a database
server other than MySQL, it is probably better to use DbxMda. In other cases, especially when
migrating from BDE or ADO, you should use MyDAC.

2.Are the MyDAC connection components thread-safe?
Yes, MyDAC is thread-safe but there is a restriction. The same TMyConnection object cannot be
used in several threads. So if you have a multithreaded application, you should have a
TMyConnection object for each thread that uses MyDAC.

3.Behaviour of my application has changed when I upgraded MyDAC. How can I restore
the old behaviour with the new version?
We always try to keep MyDAC compatible with previous versions, but sometimes we have to
change behaviour of MyDAC in order to enhance its functionality, or avoid bugs. If either of
changes is undesirable for your application, and you want to save the old behaviour, please refer
to the "Compatibility with previous versions" topic in MyDAC help. This topic describes such
changes, and how to revert to the old MyDAC behaviour.

4.When editing a DataSet, I get an exception with the message 'Update failed. Found %d
records.' or 'Refresh failed. Found %d records.'
This error occurs when the database server is unable to determine which record to modify or
delete. In other words, there are either more than one record or no records that suit the UPDATE
criteria. Such situation can happen when you omit the unique field in a SELECT statement
(TCustomDADataSet.SQL) or when another user modifies the table simultaneously. This exception
can be suppressed. Refer to TCustomMyDataSet.Options.StrictUpdate topic in MyDAC help for
more information.

5.I have problems using BIGINT and INT UNSIGNED fields as key fields in master/detail
relationships, and accessing values of such fields through the Field.Value property.
Fields of this type are represented in Delphi by TLargeIntField objects. In some versions of Delphi,
you cannot access these fields through the Value property (for more information see the
SetVarValue protected method of TLargeintField in the DB unit). To avoid this problem, you can
change the field type to INT, which is usually sufficient for key fields. Alternatively, you can avoid
using Value.
For master/detail relationships the problem can be avoided only by changing type of the key field
to INT, as Delphi's master/detail mechanism works through Field.Value.

6.On accessing server I get a 'MySQL server has gone away' or 'Lost connection to MySQL
server during query' error.
First of all, you should find out what causes the problem. The list of most frequent reasons for this
error to occur is below.
o Client side: The value of TMyConnection.ConnectionTimeout or TCustomMyDataSet.

CommandTimeout is too small. To check this hypothesis, try setting TCustomMyDataSet.
CommandTimeout to 0 (infinitive) and TMyConnection.ConnectionTimeout to 300.

o Server side: MySQL server has closed the connection. You can read a detailed description of all
possible reasons for this to happen in the MySQL Reference Manual. Almost always it is because
the value of wait_timeout variable is too small. Try increasing it. If this solution is not possible
(for example, because you don't have enough rights), you should invoke MyConnection.Ping with
an interval less than wait_timeout. Use TTimer in TMyConnection thread to accomplish this task.

o Unstable connection (GPRS etc). In case of unstable connection you can adapt MyDAC to work in
such conditions by changing some of its settings. For more information please see the "Working
in Unstable Networks" article in the MyDAC help documentation.

If the connection is lost, MyDAC tries to reconnect to server. However, your last command will
probably not be executed, and you should repeat it again. MyDAC does not try to reconnect if a
transaction has started or if at least one of statements is prepared.

7.Some problems using TCustomDADataSet.FetchAll=False mode
The following problems may appear when using FetchAll=False mode:

http://dev.mysql.com/doc/mysql/en/gone-away.html

39Data Access Components for MySQL

o I have problems working with temporary tables.

o I have problems working with transactions.

o Sometimes my application hangs on applying changes to the database.

Usage of FetchAll=False mode has many advantages; however, it also has some restrictions since
it requires an additional connection to server for data fetching to be created. The additional
connection is created to prevent the main connection from blocking.
These problems can be avoided by setting the FetchAll property. Please see description of the
FetchAll propery and the CreateConnection option in MyDAC help for more information.
Another alternative that prevents the application from hanging is to switch to the InnoDB storage
engine from MyISAM (FetchAll stays False). An application may hang because MyISAM tables can
get locked in a read/write collision. If you try to update a table that is not fetched out, MySQL
blocks the thread and waits untill the table is completely fetched. For details please refer to the
MySQL Reference Manual, the Locking Issues section.

8.

I get an error when opening a Stored Procedure that returns a result set.

Probably this is a bug of the MySQL Server protocol with prepared stored procedures that return
record sets. It occurs in the following cases:
o After a call to the Prepare method of MyStoredProc, if the latter had already prepared and

opened. The following piece of code demonstrates the problem:

MyStoredProc.Prepare;
MyStoredProc.Open;
MyStoredProc.UnPrepare;
MyStoredProc.Prepare;

o After a call to the MyStoredProc.Execute method, if the stored procedure returns more than one
record set.

© 1997-2012 Devart. All Rights Reserved.

http://dev.mysql.com/doc/mysql/en/locking-issues.html

Data Access Components for MySQL40

16 Using MyDAC

16.1 Updating Data with MyDAC Dataset Components

MyDAC components that are descendants from TCustomDADataSet provide different means for
reflecting local changes to the server.
The first approach is to use automatic generation of update SQL statements. Using this approach you
should provide a SELECT statement, everything else will be made by MyDAC automatically. In case when
a SELECT statement uses multiple tables, you can use UpdatingTable property to specify which table will
be updated. If UpdatingTable is blank, the table, that corresponds to the first field in the dataset, is
used. This approach is the most preferable and is used in most cases.
Another approach is to set update SQL statements using SQLInsert, SQLUpdate and SQLDelete
properties. Set them with SQL statements which will perform corresponding data modifications on behalf
of the original statement whenever insert, update or delete operation is called. This is useful when there
is no possibility to generate correct statement or you need to execute some specific statements. For
example, update operations should be made with stored procedure calls.
You may also assign P:Devart.MyDac.TCustomMyDataSet.UpdateObject property with the
TMyUpdateSQL class instance which holds all updating SQL statements in one place. You can generate all
these SQL statements using MyDAC design time editors. For more careful customization of data update
operations you can use InsertObject, ModifyObject and DeleteObject properties of TMyUpdateSQL
component.

See Also
 TMyQuery
 TMyStoredProc
 TMyTable
 TMyUpdateSQL

© 1997-2012 Devart. All Rights Reserved.

41Data Access Components for MySQL

16.2 Master/Detail Relationships

Master/detail (MD) relationship between two tables is a very widespread one. So it is very important to
provide an easy way for database application developer to work with it. Lets examine how MyDAC
implements this feature.
Suppose we have classic MD relationship between "Department" and "Employee" tables.
"Department" table has field Dept_No. Dept_No is a primary key.
"Employee" table has a primary key EmpNo and foregin key Dept_No that binds "Employee" to
"Department".
It is necessary to display and edit these tables.
MyDAC provides two ways to bind tables. First code example shows how to bind two TCustomMyDataSet
components (TMyQuery or TMyTable) into MD relationship via parameters.

procedure TForm1.Form1Create(Sender: TObject);
var
 Master, Detail: TMyQuery;
 MasterSource: TDataSource;
begin
 // create master dataset
 Master := TMyQuery.Create(Self);
 Master.SQL.Text := 'SELECT * FROM Department';
 // create detail dataset
 Detail := TMyQuery.Create(Self);
 Detail.SQL.Text := 'SELECT * FROM Employee WHERE Dept_No = :Dept_No';
 // connect detail dataset with master via TDataSource component
 MasterSource := TDataSource.Create(Self);
 MasterSource.DataSet := Master;
 Detail.MasterSource := MasterSource;
 // open master dataset and only then detail dataset
 Master.Open;
 Detail.Open;
end;

Pay attention to one thing: parameter name in detail dataset SQL must be equal to the field name in the
master dataset that is used as foreign key for detail table. After opening detail dataset always holds
records with Dept_No field value equal to the one in the current master dataset record.
There is an additional feature: when inserting new records to detail dataset it automatically fills foreign
key fields with values taken from master dataset.
Now suppose that detail table "Department" foregin key field is named DepLink but not Dept_No. In
such case detail dataset described in above code example will not autofill DepLink field with current
"Department".Dept_No value on insert. This issue is solved in second code example.

procedure TForm1.Form1Create(Sender: TObject);
var
 Master, Detail: TMyQuery;
 MasterSource: TDataSource;
begin
 // create master dataset
 Master := TMyQuery.Create(Self);
 Master.SQL.Text := 'SELECT * FROM Department';
 // create detail dataset
 Detail := TMyQuery.Create(Self);
 Detail.SQL.Text := 'SELECT * FROM Employee';
 // setup MD
 Detail.MasterFields := 'Dept_No'; // primary key in Department
 Detail.DetailFields := 'DepLink'; // foreign key in Employee
 // connect detail dataset with master via TDataSource component
 MasterSource := TDataSource.Create(Self);
 MasterSource.DataSet := Master;
 Detail.MasterSource := MasterSource;
 // open master dataset and only then detail dataset
 Master.Open;
 Detail.Open;
end;

Data Access Components for MySQL42

In this code example MD relationship is set up using MasterFields and DetailFields properties. Also note
that there are no WHERE clause in detail dataset SQL.
To defer refreshing of detail dataset while master dataset navigation you can use DetailDelay option.
Such MD relationship can be local and remote, depending on the TCustomDADataSet.Options.
LocalMasterDetail option. If this option is set to True, dataset uses local filtering for establishing master-
detail relationship and does not refer to the server. Otherwise detail dataset performs query each time
when record is selected in master dataset. Using local MD relationship can reduce server calls number
and save server resources. It can be useful for slow connection. CachedUpdates mode can be used for
detail dataset only for local MD relationship. Using local MD relationship is not recommended when detail
table contains too many rows, because in remote MD relationship only records that correspond to the
current record in master dataset are fetched. So, this can decrease network traffic in some cases.

See Also
 TCustomDADataSet.Options
 TMemDataSet.CachedUpdates

© 1997-2012 Devart. All Rights Reserved.

43Data Access Components for MySQL

16.3 Migration from BDE

In MyDAC the interests of BDE application developers were taken into consideration. So starting to use
MyDAC after working with BDE would be easy even for developing complex projects. Moreover, MyDAC
does not have problems like ones with LiveQuery and compatibility of applications developed using
different versions in BDE.
Abandoning BDE gives one more important advantage - positive effect on performance. Instead of
complex BDE-ODBC drivers system it uses the fastest access - directly to MySQL server. Also access to
MySQL Embedded server is supported.
MyDAC provides special Wizard to simplify the conversion of already existing projects. This Wizard
replaces BDE-components in the specified project (dfm-and pas-files) to MyDAC. BDE-components that
will be replaced:
 TDatabase -> TMyConnection
 TQuery -> TMyQuery
 TTable -> TMyTable
 TUpdateSQL -> TMyUpdateSQL

To run the Wizard, select BDE Migration Wizard item in MySQL menu and follow the instructions. BDE
Migration Wizard does not support C++Builder and Kylix IDEs.
Note: The Wizard serves only to simplify routine operations and after the conversion project might be
uncompiled.
Below is the list of properties and methods which cannot be converted automatically. Here you can find
hints for users to simplify manual replacement.

TDatabase
 AliasName - specific BDE property. Not supported by MyDAC
 DatabaseName - has a different meaning in BDE and MyDAC. At MyDAC it means MySQL Server

database. See TMyConnection.Database for details
 Locale - see TMyConnection.Options.CharSet
 KeepConnection - not supported by MyDAC
 Params - see TMyConnection properties
 Session, SessionAlias, SessionName - MyDAC does not need global management of a group of

database connections in an application. So these properties are not supported
 Temporary - has no sense in MyDAC. Additional connections are created but not available for the

user. See TCustomMyDataSet.FetchAll = False for details
 TraceFlags - see TCustomDASQLMonitor.TraceFlags
 TransIsolation - see IsolationLevel
 Execute - use ExecSQL instead of this method
 FlushSchemaCache - not supported by MyDAC
 GetFieldNames - not supported by MyDAC
 IsSQLBased - not supported by MyDAC. For MySQL must be always True
 ApplyUpdates - parameters are not supported. To update only specified DataSets use TMemDataset.

ApplyUpdates. Update is performed within a transaction.

TBDEDataSet
 BlockReadSize - see TCustomDADataSet.FetchRows
 CacheBlobs - MySQL Server does not provide service of suspended BLOB loading
 KeySize - specific BDE property. Not supported by MyDAC.

TDBDataSet
 AutoRefresh - supported through TCustomDADataSet.RefreshOptions
 DBFlags, DBHandle, DBLocate, DBSession, Handle - BDE-specific property. Not supported by MyDAC
 SessionName - not supported by MyDAC
 UpdateMode - not supported by MyDAC. By default, the behaviour corresponds upWhereKeyOnly.

To change this behaviour see TCustomDADataSet.SQLUpdate, TCustomDADataSet.SQLDelete,
TCustomDADataSet.SQLRefresh, and TCustomMyDataSet.Options.CheckRowVersion.

TQuery
 Constrained - specific BDE property. Not supported by MyDAC
 DataSource - see TCustomDADataSet.MasterSource
 Local - specific BDE property. Not supported by MyDAC
 RequestLive - almost all query result sets are updatable. See TMyQuery.UpdatingTable,

TCustomDADataSet.ReadOnly, CanModify, TCustomDADataSet.SQLInsert, TCustomDADataSet.

Data Access Components for MySQL44

SQLUpdate, TCustomDADataSet.SQLDelete.
 Text - specific BDE property. Not supported by MyDAC.

TTable
 DefaultIndex - not used in MyDAC. If you need to sort a table by any field see P:Devart.MyDac.

TCustomMyTable.OrderFields, TMemDataSet.IndexFieldNames
 Exists, CreateTable, AddIndex, DeleteIndex, StoreDefs, Deletetable, TableType - MyDAC does not

allow to create tables by using TTable. If you need to create a table execute 'CREATE TABLE ...'
query or use any special third-party tools.

 IndexDefs - not used in MyDAC, but fills on first call
 IndexFieldNames - a list of fields for local sorting. See TMemDataSet.IndexFieldNames
 IndexFieldCount, IndexFields, IndexFiles, IndexName, GetIndexNames, GetIndexInfo - Not

supported by MyDAC
 KeyExclusive - not supported by MyDAC. Use SELECT ... FROM .. WHERE ... to get requested result
 KeyFieldCount - not supported by MyDAC, as key fields are not used for searching on the client side
 TableLevel - specific BDE property. Not supported by MyDAC
 ApplyRange, CancelRange, EditRangeStart, EditRangeEnd, SetRange - MyDAC does not support

Range
 BatchMove - has no meaning in MySQL. Use INSERT ... INTO ... SELECT syntax to copy records onto

server side
 FindKey, FindNearest, GotoCurrent, GotoKey, GotoNearest, EditKey, SetKey - use TMemDataSet.

Locate and TMemDataSet.LocateEx
 GetDetailLinkFields - use TCustomDADataSet.DetailFields, TCustomDADataSet.MasterFields
 RenameTable - use 'RENAME TABLE ...' script
 ConstraintCallBack, ConstraintsDisabled, DisableConstraints, EnableConstraints - has no meaning in

MySQL
 FlushBuffers - see TMyServerControl.Flush
 Translate - use AnsiToNative and similar functions.

TSession

MyDAC does not need global management of a group of database connections in an application.

TUpdateSQL

A complete analogue to TMyUpdateSQL.

© 1997-2012 Devart. All Rights Reserved.

45Data Access Components for MySQL

16.4 Secure Connections

Session security depends on several factors, including whether the connection to the host is a trusted
connection. If it is not, confidential information can not be transmitted through this connection.
MyDAC supports two different ways to increase connection security. They are SSH and SSL. Both SSH
and SSL can be implemented with SecureBridge components.
Devart SecureBridge is a non visual component library that provides functionality for SSH tunneling and
SSL connections. Usage of SecureBridge is the handiest and fastest way to ensure protected connection
to MySQL server. You can read more about SecureBridge at the SecureBridge home page. The detailed
step-by-step instructions on setting up SecureBridge you will find in the SecureBridge documentation.

1. SSH using SecureBridge

SecureBridge allows you to embed functionality of an SSH client into your application. The following
sequence of steps describes how to protect your connection to MySQL server through an SSH tunnel
with SecureBridge:
 configure your SSH server like described in the server documentation, or use SecureBridge to make

your own SSH server. SecureBridge includes a demo project that implements functionality of an
SSH server;

 place the TScSSHClient component of SecureBridge onto your form;
 setup TScSSHClient (assign host name, SSH server port, user name, password) to connect to the

SSH server and check the connection;
 place the TMySSHIOHandler component onto your form. This component is included into MyDAC as

a demo project;
 place the TMyConnection component onto your form, and link to its IOHandler property the instance

of TMySSHIOHandler added on the previous step;
 setup TMyConnection to connect to MySQL server and check the connection.

Now you have an encrypted connection between MySQL server and your application.

2. SSH using OpenSSH or other third-party SSH tunnel

SSH works by "Port forwarding" principle and serves to encrypt transferred data.
The following is the step-by-step sequence of actions for the easiest case of using OpenSSH for
Windows. The detailed description of each command you can see in the documentation for OpenSSH.

1. Download OpenSSH for Windows from http://www.sourceforge.net/projects/sshwindows/
2. Install SSH server

· Choose a machine that will be used as SSH server. It does not have to be the same machine
that is a MySQL server, but communication channel between SSH server and MySQL server must
be protected

· Using Windows Control Panel create a user and set a password for him. For example, SSHUser
with password SSHPass

· Install Open SSH. It is enough to install only Server components
· Open OpenSSH/bin folder
· Add SSHUser to the list of allowed users:

mkpasswd -l -u SSHUser >> ..\etc\passwd
· Use mkgroup to create a group permissions file

mkgroup -l >> ..\etc\group
· Run OpenSSH service

net start opensshd
3. Install SSH client

· Choose a machine that will be used as SSH client. It does not have to be the same machine
where client application (MySQL client) is running, but communication channel between SSH
client and MySQL client must be protected

· Install Open SSH to SSH client. You may not install server components
· Run SSH client

ssh.exe -L <SSH port>:<MySQL server>:<MySQL server port> <SSHUser>@<SSH
server>
<SSH port> - port number of SSH client that will be redirected to the corresponding
port of MySQL server
<MySQL server> - name or IP address of the machine where MySQL server is installed
<MySQL server port> - number of MySQL server port. As usual, 3306.
<SSHUser> - user name created in p. 2
<SSH server> - name or IP address of the machine where SSH server is installed in p.

http://www.devart.com/sbridge
http://www.sourceforge.net/projects/sshwindows/

Data Access Components for MySQL46

2
For example,

ssh.exe -L 3307:server:3306 SSHUser@192.168.0.116
At the first start you will be suggested to confirm a connection with the specified SSH
server. Enter "yes" for confirmation.
On each start of SSH you must enter a password set in p. 2

4. Configure TMyConnection

MyConnection1.Server := <SSH client>;
MyConnection1.Port := <SSH port>;
If SSH client was installed at the same machine as MySQL client, you can assign 'localhost' to
MyConnection1.Server.

Pay attention that in the specified sequence above check of SSHUser authentication is performed by
Windows. About the methods of higher protection (key authentication etc) see documentation for
OpenSSH.
To get more detailed information on using encrypted connections refer to MySQL Reference Manual.

3. SSL using SecureBridge

SecureBridge also allows you to embed functionality of an SSL client into your application. The following
sequence of steps describes how to protect your connection to MySQL server with SSL using
SecureBridge:
 Place the TMySSLIOHandler component onto the form.
 Select a storage object in the Storage property. More information about storage setup you will find

in the SSL client setup topic of SecureBridge help.
 Specify the server certificate in the CACertName property.
 Specify the client certificate in the CertName property.
 Place the TMyConnection component onto the form and setup it to connect to the MySQL server.
 Assign the TMySSLIOHandler object to the IOHandler property of TMyConnection.
 Connect to MySQL server by setting TMyConnection.Connected to True.

4. SSL

SSL is based on algorithms of asymmetric encryption and digital signature. Consult MySQL Reference
Manual for information on how to enable SSL support for MySQL server and generate certificates.
Note that usage of SSL is more preferable for MySQL connections than SSH because of less required
settings and higher performance.

See Also
 SecureBridge home page
 IOHandler
 SSLOptions

© 1997-2012 Devart. All Rights Reserved.

http://dev.mysql.com/doc/mysql/en/windows-and-ssh.html
http://dev.mysql.com/doc/mysql/en/secure-using-ssl.html
http://dev.mysql.com/doc/mysql/en/connector-j-reference-using-ssl.html
http://www.devart.com/sbridge

47Data Access Components for MySQL

16.5 Network Tunneling

Usually when a client needs to connect to server it is assumed that direct connection can be established.
Nowadays though, due to security reasons or network topology, it is often necessary to use a proxy or
bypass a firewall. This article describes different ways to connect to MySQL server with MyDAC.
 Direct connection
 Connection through HTTP tunnel

o Connection through proxy and HTTP tunnel

 Additional information

Direct connection

Direct connection to server means that server host is accessible from client without extra routing and
forwarding. This is the simplest case. The only network setting you need is the host name and port
number. This is also the fastest and most reliable way of communicating with server. Use it whenever
possible.
The following code illustrates the simplicity:

MyConnection := TMyConnection.Create(self);
MyConnection.Server := 'localhost';
MyConnection.Port := 3306;
MyConnection.Username := 'root';
MyConnection.Password := 'root';
MyConnection.Connect;

Connection through HTTP tunnel

Sometimes client machines are shielded by a firewall that does not allow you to connect to server
directly at the specified port. If the firewall allows HTTP connections, you can use MyDAC together with
HTTP tunneling software to connect to MySQL server.
MyDAC supports HTTP tunneling based on the PHP script.
An example of the web script tunneling usage can be the following: you have a remote website, and
access to its database through the port of the database server is forbidden. Only access through HTTP
port 80 is allowed, and you need to access the database from a remote computer, like when using usual
direct connection.
You need to deploy the tunnel.php script, which is included into the provider package on the web server.
It allows access to the database server to use HTTP tunneling. The script must be available through the
HTTP protocol. You can verify if it is accessible with a web browser. The script can be found in the HTTP
subfolder of the installed provider folder, e. g. %Program Files%\Devart\MyDac for Delphi X\HTTP
\tunnel.php. The only requirement to the server is PHP 5 support.
To connect to the database, you should set TMyConnection parameters for usual direct connection, which
will be established from the web server side, the Options.Protocol property to mpHttp, and set the
following parameters, specific for the HTTP tunneling:

Property
Mandato
ry

Meaning

HttpOptions.Url Yes
Url of the tunneling PHP script. For example, if the script is in the
server root, the url can be the following: http://localhost/tunnel.php.

HttpOptions.
Username,
HttpOptions.
Password

No
Set this properties if the access to the website folder with the script is
available only for registered users authenticated with user name and
password.

Connection through proxy and HTTP tunnel

Consider the previous case with one more complication.
HTTP tunneling server is not directly accessible from client machine. For example, client address is
10.0.0.2, server address is 192.168.0.10, and the MySQL server listens on port 3307. The client and
server reside in different networks, so the client can reach it only through proxy at address 10.0.0.1,
which listens on port 808. In this case in addition to the TMyConnection.HttpOptions options you have to
setup a HttpOptions.ProxyOptions object as follows:

MyConnection := TMyConnection.Create(self);
MyConnection.Server := '192.168.0.10';
MyConnection.Port := 3307;
MyConnection.Username := 'root';

Data Access Components for MySQL48

MyConnection.Password := 'root';
MyConnection.Options.Protocol := mpHttp;
MyConnection.HttpOptions.Url := 'http://server/tunnel.php';
MyConnection.HttpOptions.ProxyOptions.Hostname := '10.0.0.1';
MyConnection.HttpOptions.ProxyOptions.Port := 808;
MyConnection.HttpOptions.ProxyOptions.Username := 'ProxyUser';
MyConnection.HttpOptions.ProxyOptions.Password := 'ProxyPassword';
MyConnection.Connect;

Note that setting parameters of MyConnection.HttpOptions.ProxyOptions automatically enables proxy
server usage.

Additional information

Technically speaking, there is one more way to tunnel network traffic. The Secure Shell forwarding, or
SSH, can be used for forwarding data. However, main purpose of SSH is traffic encryption rather than
avoiding firewalls or network configuration problems. The Secure Connections article describes how to
use SSH protocol in MyDAC.

Keep in mind that traffic tunneling or encryption always increase CPU usage and network load. It is
recommended that you use direct connection whenever possible.

©

 1997-2012 Devart. All Rights Reserved.

49Data Access Components for MySQL

16.6 Embedded Server

Since version 4.0 MySQL server supports Embedded server. Embedded server is an easy to install server
used by applications that do not require multi-user work with MySQL server. For example, Embedded
server can be used for money access machines, automatic cash desks, different electronic facilities and
so on. Please refer to MySQL Reference Manual for more details on features and using of Embedded
server. Also you can find some information about licensing Embedded server in MySQL Reference Manual
. Please refer to Embedded Demo for a sample.

Which version of Embedded server to use

MySQL Embedded Server 4.0 should be recompiled to be used in your application.
MySQL Embedded Sever 5.0 is not included into the binary installation pack. Below is a quotation from
the MySQL Reference Manual:
"The Embedded MySQL server library is NOT part of MySQL 5.0. It is part of previous editions and will be
included in future versions, starting with MySQL 5.1."
That is why we have not tested MyDAC with the MySQL Embedded Sever 5.0.
So, we recommend using MySQL Embedded Server 4.1. As MySQL Embedded Server has some
problems working with the InnoDB storage, we recommend disabling this storage engine. You can do
this by checking the "Disable InnoDB storage engine" option in the TMyEmbConnection editor on the
Params tab. Another way is to add the --skip-innodb parameter to the TMyEmbConnection component
manually.

Installation
 Windows

Copy libmysqld.dll file to the folder available for executable file of the application. Please see a
detailed description of accessible paths at LoadLibrary description
A typical structure of folders for an application using Embedded Server:
Project.exe - executable file of your application
libmysqld.dll - MySQL Embedded server library
share/english/errmsg.sys - file with MySQL Embedded server messages
data/ - data directory (DataDir). See a structure of this folder in MySQL Reference Manual
data/mysql/ - directory with service data of MySQL (user access rights, and so on) data/DataBase/ -
directory with user data. See TCustomMyConnection.DataBase

 Linux

o Copy libmysqld.so.14.0.0 file to /usr/lib folder

o At /usr/lib folder execute the following commands to create links:

ln libmysqld.so.14.0.0 libmysqld.so
ln libmysqld.so.14.0.0 libmysqld.so.14

 Copy files needed for working of Embedded Server. As a rule, it is errormessage file, for example
share/english/errmsg.sys.

 Create a folder for data
 If it is necessary, copy files with data to the data folder

Settings

On the start (first opening a connection), MySQL Embedded Server searches for the setting values in the
next order:
 TMyEmbConnection.Params
 [<Application exe-file name (with extension)>] section of configuration file (my.ini or my.cnf) -

settings specific to particular application.
 [Embedded] section of configuration file - settings specific to Embedded server
 [Server] section of configuration file - common settings for MySQL server and Embedded server.

Usually to set-up Embedded Server it is enough to set basedir and datadir.But sometimes some
additional settings are required, for example to disable usingInnoDB engine (--skip-innodb). The detailed
list of settings you can find at MySQL Reference Manual.
Pay attention that all paths must be set through "/" but not "\".
Note, parameters names are case-sensitive.
If datadir is located in the read-only storage, then you need to set OnLog andOnLogError event handlers
to prevent server from attempts to create log-files in datadir.

Limitations

http://dev.mysql.com/doc/refman/4.1/en/libmysqld.html
http://dev.mysql.com/doc/mysql/en/libmysqld_licensing.html
http://dev.mysql.com/doc/mysql/en/libmysqld.html

Data Access Components for MySQL50

Simultaneous access to the same data from several instances of MySQL server (for example, to MySQL
server and Embedded server) can be a reason of data loss.

See Also
 Embedded Demo
 TMyEmbConnection
 TMyEmbConnection.Params
 TMyConnection.Options.Embedded

© 1997-2012 Devart. All Rights Reserved.

51Data Access Components for MySQL

16.7 National Characters

On transferring data between client and server sides, server must know the encoding format used at the
client. You can set the coding using server means by assigning corresponding parameters at the server
settings (see MySQL Reference Manual for details), or by client methods setting TCustomMyConnection.
Options.Charset or TCustomMyConnection.Options.UseUnicode properties. The first way is less suitable
as it requires meddling in server settings that is not always possible. The second way is more convenient
but it can cause insignificant delay while establishing a connection.
Let us see the specific of using Charset and UseUnicode options. These options are mutually exclusive,
thus on setting UseUnicode property to True a value of Charset will be ignored.
By default, Charset = '', and UseUnicode = False. And the server makes conversions according to its
settings.
If Charset property is enabled, then on establishing a connection "SET NAMES <Charset>" query is
automatically passed to the server to explicitly notify the server about the character set of the client. To
get a list of available charsets, you can execute "SHOW CHARSET" query. Pay attention that on setting
Charset = 'utf8' values of all string fields will be converted to this encoding format that in most cases
can make impossible to use DataAware components.
Setting UseUnicode property to True allows to retrieve string data at the client side in Unicode encoding
format that let you work simultaneously almost with all languages. All TStringField values will be
converted to TWideStringField. This behaviour is suitable, for example, when creating a database of
books in the library, when next to the name of a book you should also store its name in the original
language. Please note that setting this option has some imperfections. Firstly, all string data at the client
side will be converted, and it can cause a delay in working. Secondly, standard Borland Data-aware
controls do not support Unicode (Wide-strings) and you have to use third-party components.

See Also
 TCustomMyConnection.Options

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL52

16.8 Working in an Unstable Network

﻿
The following settings are recommended for working in an unstable network:
TCustomDAConnection.Options.LocalFailover = True
TCustomDAConnection.Options.DisconnectedMode = True
TDataSet.CachedUpdates = True
TCustomDADataSet.FetchAll = True
TCustomDADataSet.Options.LocalMasterDetail = True

These settings minimize the number of requests to the server. Using TCustomDAConnection.Options.
DisconnectedMode allows DataSet to work without an active connection. It minimizes server resource
usage and reduces connection break probability. I. e. in this mode connection automatically closes if it is
not required any more. But every explicit operation must be finished explicitly. That means each explicit
connect must be followed by explicit disconnect. Read Working with Disconnected Mode topic for more
information.
Setting the FetchAll property to True allows to fetch all data after cursor opening and to close
connection. If you are using master/detail relationship, we recommend to set the LocalMasterDetail
option to True.
It is not recommended to prepare queries explicitly. Use the CachedUpdates mode for DataSet data
editing. Use the TCustomDADataSet.Options.UpdateBatchSize property to reduce the number of
requests to the server.
If a connection breaks, a fatal error occurs, and the OnConnectionLost event will be raised if the
following conditions are fulfilled:
 There are no active transactions;
 There are no opened and not fetched datasets;
 There are no explicitly prepared datasets or SQLs.

If the user does not refuse suggested RetryMode parameter value (or does not use the
OnConnectionLost event handler), MyDAC can implicitly perform the following operations:
 Connect;
 DataSet.ApplyUpdates;
 DataSet.Open;

I.e. when the connection breaks, implicit reconnect is performed and the corresponding operation is
reexecuted. We recommend to wrap other operations in transactions and fulfill their reexecuting
yourself.
The using of Pooling in Disconnected Mode allows to speed up most of the operations because of
connecting duration reducing.

See Also

 FailOver demo
 Working with Disconnected Mode
 TCustomDAConnection.Options
 TCustomDAConnection.Pooling

© 1997-2012 Devart. All Rights Reserved.

53Data Access Components for MySQL

16.9 Disconnected Mode

In disconnected mode a connection opens only when it is required. After performing all server calls
connection closes automatically until next server call is required. Datasets remain opened when
connection closes. Disconnected Mode may be useful for saving server resources and operating in an
unstable or expensive network. Drawback of using disconnected mode is that each connection
establishing requires some time for authorization. If connection is often closed and opened it can slow
down application work. We recommend to use pooling to solve this problem. For additional information
see TCustomDAConnection.Pooling.
To enable disconnected mode set TCustomDAConnection.Options.DisconnectedMode to True.
In disconnected mode a connection is opened for executing requests to the server (if it was not opened
already) and is closed automatically if it is not required any more. If the connection was explicitly
opened (the Connect method was called or the Connected property was explicitly set to True), it does
not close until the Disonnect method is called or the Connected property is set to False explicitly.
The following settings are recommended to use for working in disconnected mode:
TDataSet.CachedUpdates = True
TCustomDADataSet.FetchAll = True
TCustomDADataSet.Options.LocalMasterDetail = True

These settings minimize the number of requests to the server.

Disconnected mode features

If you perform a query with the FetchAll option set to True, connection closes when all data is fetched if
it is not used by someone else. If the FetchAll option is set to false, connection does not close until all
data blocks are fetched.
If explicit transaction was started, connection does not close until the transaction is committed or rolled
back.
If the query was prepared explicitly, connection does not close until the query is unprepared or its SQL
text is changed.

See Also

 TCustomDAConnection.Options
 FetchAll
 Devart.MyDac.TMyQuery.LockMode
 TCustomDAConnection.Pooling
 TCustomDAConnection.Connect
 TCustomDAConnection.Disonnect
 Working in unstable network

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL54

16.10 Data Type Mapping

Overview

Data Type Mapping is a flexible and easily customizable gear, which allows mapping between DB types
and Delphi field types.
In this article there are several examples, which can be used when working with all supported DBs. In
order to clearly display the universality of the Data Type Mapping gear, a separate DB will be used for
each example.

Data Type Mapping Rules

In versions where Data Type Mapping was not supported, MyDAC automatically set correspondence
between the DB data types and Delphi field types. In versions with Data Type Mapping support the
correspondence between the DB data types and Delphi field types can be set manually.
Here is the example with the numeric type in the following table of a MySQL database:

CREATE TABLE DECIMAL_TYPES
(
 ID INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,
 VALUE1 DECIMAL(4, 0),
 VALUE2 DECIMAL(10, 0),
 VALUE3 DECIMAL(15, 0),
 VALUE4 DECIMAL(5, 2),
 VALUE5 DECIMAL(10, 4),
 VALUE6 DECIMAL(15, 6)
)

And Data Type Mapping should be used so that:
 the numeric fields with Scale=0 in Delphi would be mapped to one of the field types: TSmallintField,

TIntegerField or TlargeintField, depending on Precision
 to save precision, the numeric fields with Precision>=10 and Scalе<= 4 would be mapped to TBCDField
 and the numeric fields with Scalе>= 5 would be mapped to TFMTBCDField.

The above in the form of a table:

MySQL data type Default Delphi field type Destination Delphi field type

DECIMAL(4,0) ftFloat ftSmallint

DECIMAL(10,0) ftFloat ftInteger

DECIMAL(15,0) ftFloat ftLargeint

DECIMAL(5,2) ftFloat ftFloat

DECIMAL(10,4) ftFloat ftBCD

DECIMAL(15,6) ftFloat ftFMTBCD

To specify that numeric fields with Precision <= 4 and Scale = 0 must be mapped to ftSmallint, such a
rule should be set:

var
 DBType: Word;
 MinPrecision: Integer;
 MaxPrecision: Integer;
 MinScale: Integer;
 MaxScale: Integer;
 FieldType: TFieldType;
begin
 DBType := myDecimal;
 MinPrecision := 0;
 MaxPrecision := 4;
 MinScale := 0;
 MaxScale := 0;
 FieldType := ftSmallint;
 MyConnection.DataTypeMap.AddDBTypeRule(DBType, MinPrecision, MaxPrecision, MinScale, MaxScale, FieldType);
end;

This is an example of the detailed rule setting, and it is made for maximum visualization.Usually, rules

55Data Access Components for MySQL

are set much shorter, e.g. as follows:

// clear existing rules
MyConnection.DataTypeMap.Clear;
// rule for DECIMAL(4,0)
MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 0, 4, 0, 0, ftSmallint);
// rule for DECIMAL(10,0)
MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 5, 10, 0, 0, ftInteger);
// rule for DECIMAL(15,0)
MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 11, rlAny, 0, 0, ftLargeint);
// rule for DECIMAL(5,2)
MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 0, 9, 1, rlAny, ftFloat);
// rule for DECIMAL(10,4)
MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 10, rlAny, 1, 4, ftBCD);
// rule for DECIMAL(15,6)
MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 10, rlAny, 5, rlAny, ftFMTBcd);

Rules order

When setting rules, there can occur a situation when two or more rules that contradict to each other are
set for one type in the database. In this case, only one rule will be applied — the one, which was set
first.

For example, there is a table in an MySQL database:

CREATE TABLE DECIMAL_TYPES
(
 ID INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,
 VALUE1 DECIMAL(5, 2),
 VALUE2 DECIMAL(10, 4),
 VALUE3 DECIMAL(15, 6)
)

TBCDField should be used for NUMBER(10,4), and TFMTBCDField - for NUMBER(15,6) instead of default
fields:

MySQL data type Default Delphi field type Destination field type

DECIMAL(5,2) ftFloat ftFloat

DECIMAL(10,4) ftFloat ftBCD

DECIMAL(15,6) ftFloat ftFMTBCD

If rules are set in the following way:

MyConnection.DataTypeMap.Clear;
MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 0, 9, rlAny, rlAny, ftFloat);
MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 0, rlAny, 0, 4, ftBCD);
MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 0, rlAny, 0, rlAny, ftFMTBCD);

it will lead to the following result:

MySQL data type Delphi field type

DECIMAL(5,2) ftFloat

DECIMAL(10,4) ftBCD

DECIMAL(15,6) ftFMTBCD

But if rules are set in the following way:

MyConnection.DataTypeMap.Clear;
MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 0, rlAny, 0, rlAny, ftFMTBCD);
MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 0, rlAny, 0, 4, ftBCD);
MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 0, 9, rlAny, rlAny, ftFloat);

it will lead to the following result:

MySQL data type Delphi field type

DECIMAL(5,2) ftFMTBCD

DECIMAL(10,4) ftFMTBCD

DECIMAL(15,6) ftFMTBCD

This happens because the rule

Data Access Components for MySQL56

MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 0, rlAny, 0, rlAny, ftFMTBCD);

will be applied for the NUMBER fields, whose Precision is from 0 to infinity, and Scale is from 0 to infinity
too. This condition is met by all NUMBER fields with any Precision and Scale.

When using Data Type Mapping, first matching rule is searched for each type, and it is used for
mapping. In the second example, the first set rule appears to be the first matching rule for all three
types, and therefore the ftFMTBCD type will be used for all fields in Delphi.

If to go back to the first example, the first matching rule for the NUMBER(5,2) type is the first rule, for
NUMBER(10,4) - the second rule, and for NUMBER(15,6) - the third rule. So in the first example, the
expected result was obtained.

So it should be remembered that if rules for Data Type Mapping are set so that two or more rules that
contradict to each other are set for one type in the database, the rules will be applied in the specifed
order.

Defining rules for Connection and Dataset

Data Type Mapping allows setting rules for the whole connection as well as for each DataSet in the
application.

For example, such table is created in SQL Server:

CREATE TABLE PERSON
(
 ID INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,
 FIRSTNAME VARCHAR(20),
 LASTNAME VARCHAR(30),
 GENDER_CODE VARCHAR(1),
 BIRTH_DTTM DATETIME
)

It is exactly known that the birth_dttm field contains birth day, and this field should be ftDate in Delphi,
and not ftDateTime. If such rule is set:

MyConnection.DataTypeMap.Clear;
MyConnection.DataTypeMap.AddDBTypeRule(myDateTime, ftDate);

all DATETIME fields in Delphi will have the ftDate type, that is incorrect. The ftDate type was expected to
be used for the DATETIME type only when working with the person table. In this case, Data Type
Mapping should be set not for the whole connection, but for a particular DataSet:

MyQuery.DataTypeMap.Clear;
MyQuery.DataTypeMap.AddDBTypeRule(myDateTime, ftDate);

Or the opposite case. For example, DATETIME is used in the application only for date storage, and only
one table stores both date and time. In this case, the following rules setting will be correct:

MyConnection.DataTypeMap.Clear;
MyConnection.DataTypeMap.AddDBTypeRule(myDateTime, ftDate);
MyQuery.DataTypeMap.Clear;
MyQuery.DataTypeMap.AddDBTypeRule(myDateTime, ftDateTime);

In this case, in all DataSets for the DATETIME type fields with the ftDate type will be created, and for
MyQuery - with the ftDateTime type.

The point is that the priority of the rules set for the DataSet is higher than the priority of the rules set
for the whole connection. This allows both flexible and convenient setting of Data Type Mapping for the
whole application. There is no need to set the same rules for each DataSet, all the general rules can be
set once for the whole connection. And if a DataSet with an individual Data Type Mapping is necessary,
individual rules can be set for it.

Rules for a particular field

Sometimes there is a need to set a rule not for the whole connection, and not for the whole dataset, but
only for a particular field.

e.g. there is such table in a MySQL database:

CREATE TABLE ITEM
(

57Data Access Components for MySQL

 ID INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,
 NAME CHAR(50),
 GUID CHAR(38)
)

The guid field contains a unique identifier. For convenient work, this identifier is expected to be mapped
to the TGuidField type in Delphi. But there is one problem, if to set the rule like this:

MyQuery.DataTypeMap.Clear;
MyQuery.DataTypeMap.AddDBTypeRule(myChar, ftGuid);

then both name and guid fields will have the ftGuid type in Delphi, that does not correspond to what
was planned. In this case, the only way is to use Data Type Mapping for a particular field:

MyQuery.DataTypeMap.AddFieldNameRule('GUID', ftGuid);

In addition, it is important to remember that setting rules for particular fields has the highest priority. If
to set some rule for a particular field, all other rules in the Connection or DataSet will be ignored for this
field.

Ignoring conversion errors

Data Type Mapping allows mapping various types, and sometimes there can occur the problem with that
the data stored in a DB cannot be converted to the correct data of the Delphi field type specified in rules
of Data Type Mapping or vice-versa. In this case, an error will occur, which will inform that the data
cannot be mapped to the specified type.

For example:

Database value Destination field type Error

'text value' ftInteger
String cannot be converted to

Integer

1000000 ftSmallint Value is out of range

15,1 ftInteger Cannot convert float to integer

But when setting rules for Data Type Mapping, there is a possibility to ignore data conversion errors:

MyConnection.DataTypeMap.AddDBTypeRule(myVarchar, ftInteger, True);

In this case, the correct conversion is impossible. But because of ignoring data conversion errors, Data
Type Mapping tries to return values that can be set to the Delphi fields or DB fields depending on the
direction of conversion.

Database value Destination field type Result Result description

'text value' ftInteger 0
0 will be returned if the

text cannot be converted
to number

1000000 ftSmallint 32767
32767 is the max value
that can be assigned to
the Smallint data type

15,1 ftInteger 15
15,1 was truncated to an

integer value

Therefore ignoring of conversion errors should be used only if the conversion results are expected.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL58

16.11 Data Encryption

MyDAC has built-in algorithms for data encryption and decryption. To enable encryption, you should
attach the TCREncryptor component to the dataset, and specify the encrypted fields. When inserting or
updating data in the table, information will be encrypted on the client side in accordance with the
specified method. Also when reading data from the server, the components decrypt the data in these
fields "on the fly".
For encryption, you should specify the data encryption algorithm (the EncryptionAlgorithm property) and
password (the Password property). On the basis of the specified password, the key is generated, which
encrypts the data. There is also a possibility to set the key directly using the SetKey method.
When storing the encrypted data, in addition to the initial data, you can also store additional
information: the GUID and the hash. (The method is specified in the TCREncryptor.DataHeader
property).
If data is stored without additional information, it is impossible to determine whether the data is
encrypted or not. In this case, only the encrypted data should be stored in the column, otherwise, there
will be confusion because of the inability to distinguish the nature of the data. Also in this way, the
similar source data will be equivalent in the encrypted form, that is not good from the point of view of
the information protection. The advantage of this method is the size of the initial data equal to the size
of the encrypted data.
To avoid these problems, it is recommended to store, along with the data, the appropriate GUID, which
is necessary for specifying that the value in the record is encrypted and it must be decrypted when
reading data. This allows you to avoid confusion and keep in the same column both the encrypted and
decrypted data, which is particularly important when using an existing table. Also, when doing in this
way, a random initializing vector is generated before the data encryption, which is used for encryption.
This allows you to receive different results for the same initial data, which significantly increases
security.
The most preferable way is to store the hash data along with the GUID and encrypted information to
determine the validity of the data and verify its integrity. In this way, if there was an attempt to falsify
the data at any stage of the transmission or data storage, when decrypting the data, there will be a
corresponding error generated. For calculating the hash the SHA1 or MD5 algorithms can be used (the
HashAlgorithm property).
The disadvantage of the latter two methods - additional memory is required for storage of the auxiliary
information.
As the encryption algorithms work with a certain size of the buffer, and when storing the additional
information it is necessary to use additional memory, TCREncryptor supports encryption of string or
binary fields only (ftString, ftWideString, ftBytes, ftVarBytes, ftBlob, ftMemo, ftWideMemo). If encryption
of string fields is used, firstly, the data is encrypted, and then the obtained binary data is converted into
hexadecimal format. In this case, data storage requires two times more space (one byte = 2 characters
in hexadecimal).
Therefore, to have the possibility to encrypt other data types (such as date, number, etc.), it is
necessary to create a field of the binary or BLOB type in the table, and then convert it into the desired
type on the client side with the help of data mapping.
It should be noted that the search and sorting by encrypted fields become impossible on the server side.
Data search for these fields can be performed only on the client after decryption of data using the Locate
and LocateEx methods. Sorting is performed by setting the TMemDataSet.IndexFieldNames property.

Example.
Let's say there is an employee list of an enterprise stored in the table with the following data: full name,
date of employment, salary, and photo. We want all these data to be stored in the encrypted form. Write
a script for creating the table:

CREATE TABLE EMP (
 EMPNO INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,
 ENAME VARBINARY(2000) DEFAULT NULL,
 HIREDATE VARBINARY(200) DEFAULT NULL,
 SAL VARBINARY(200) DEFAULT NULL,
 FOTO BLOB DEFAULT NULL
)

As we can see, the fields for storage of the textual information, date, and floating-point number are
created with the VARBINARY type. This is for the ability to store encrypted information, and in the case
of the text field - to improve performance. Write the code to process this information on the client.

MyQuery.SQL.Text := 'SELECT * FROM EMP';

59Data Access Components for MySQL

MyQuery.Encryption.Encryptor := MyEncryptor;
MyQuery.Encryption.Fields := 'ENAME, HIREDATE, SAL, FOTO';
MyEncryptor.Password := '11111';
MyQuery.DataTypeMap.AddFieldNameRule ('ENAME', ftString);
MyQuery.DataTypeMap.AddFieldNameRule ('HIREDATE', ftDateTime);
MyQuery.DataTypeMap.AddFieldNameRule ('SAL', ftFloat);
MyQuery.Open;

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL60

16.12 Increasing Performance

This topic considers basic stages of working with DataSet and ways to increase performance on each of
these stages.

Connect

If your application performs Connect/Disconnect operations frequently, additional performance can be
gained using pooling mode (TCustomDAConnection.Pooling = True). It reduces connection reopening
time greatly (hundreds times). Such situation usually occurs in web applications.

Execute

If your application executes the same query several times, you can use the TCustomDADataSet.Prepare
method or set the TDADataSetOptions.AutoPrepare property to increase performance. For example, it
can be enabled for Detail dataset in Master/Detail relationship or for update objects in TDAUpdateSQL.
The performance gain achieved this way can be anywhere from several percent to several times,
depending on the situation.
To execute SQL statements a T:Devart.MyDac.TMySQL component is more preferable than TMyQuery. It
can give several additional percents performance gain.
If the TCustomDADataSet.Options.StrictUpdate option is set to False, the RowsAffected property is not
calculated and becomes equal zero. This can improve performance of query executing, so if you need to
execute many data updating statements at once and you don't mind affected rows count, set this option
to False.

Fetch

In some situations you can increase performance a bit by using P:Devart.Dac.TDADataSetOptions.
CompressBlobMode. You can also use TMyConnection.Options.Compress. Setting TMyTable.Options.
UseHandler can give an additional performance under high server load.
You can also tweak your application performance by using the following properties of
TCustomDADataSet descendants:

 FetchRows
 Options.FlatBuffers
 Options.LongStrings
 UniDirectional

See the descriptions of these properties for more details and recommendations.

Navigate

The Locate function works faster when dataset is locally sorted on KeyFields fields. Local dataset sorting
can be set with the IndexFieldNames property. Performance gain can be large if the dataset contains a
large number of rows.
Lookup fields work faster when lookup dataset is locally sorted on lookup Keys.
Setting the TDADataSetOptions.CacheCalcFields property can improve performance when locally sorting
and locating on calculated and lookup fields. It can be also useful when calculated field expressions
contain complicated calculations.
Setting the TDADataSetOptions.LocalMasterDetail option can improve performance greatly by avoiding
server requests on detail refreshes. Setting the TDADataSetOptions.DetailDelay option can be useful for
avoiding detail refreshes when switching master DataSet records frequently.

Update

If your application updates datasets in the CachedUpdates mode, then setting the TCustomDADataSet.
Options.UpdateBatchSize option to more than 1 can improve performance several hundred times more
by reducing the number of requests to the server.
You can also increase the data sending performance a bit (several percents) by using Dataset.
UpdateObject.ModifyObject, Dataset.UpdateObject, etc. Little additional performance improvement can
be reached by setting the AutoPrepare property for these objects.

Insert

If you are about to insert a large number of records into a table, you should use the TDevart.MyDac.

61Data Access Components for MySQL

TMyLoader component instead of Insert/Post methods, or execution of the INSERT commands multiple
times in a cycle. Sometimes usage of TDevart.MyDac.TMyLoader improves performance several times.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL62

16.13 Connection Pooling

Connection pooling enables an application to use a connection from a pool of connections that do not
need to be reestablished for each use. Once a connection has been created and placed in a pool, an
application can reuse that connection without performing the complete connection process.
Using a pooled connection can result in significant performance gains, because applications can save the
overhead involved in making a connection. This can be particularly significant for middle-tier applications
that connect over a network or for applications that connect and disconnect repeatedly, such as Internet
applications.
To use connection pooling set the Pooling property of the TCustomDAConnection component to True.
Also you should set the PoolingOptions of the TCustomDAConnection. These options include MinPoolSize,
MaxPoolSize, Validate, ConnectionLifeTime. Connections belong to the same pool if they have identical
values for the following parameters: MinPoolSize, MaxPoolSize, Validate, ConnectionLifeTime, Server,
Username, Password , Server, T:Devart.Odac.TOraSession, Password, Database, IsolationLevel, Port,
IOHandler, ConnectionTimeout, Compress, Direct, Embedded, Protocol, Charset, UseUnicode,
NumericType . When a connection component disconnects from the database the connection actually
remains active and is placed into the pool. When this or another connection component connects to the
database it takes a connection from the pool. Only when there are no connections in the pool, new
connection is established.
Connections in the pool are validated to make sure that a broken connection will not be returned for the
TCustomDAConnection component when it connects to the database. The pool validates connection when
it is placed to the pool (e. g. when the TCustomDAConnection component disconnects). If connection is
broken it is not placed to the pool. Instead the pool frees this connection. Connections that are held in
the pool are validated every 30 seconds. All broken connections are freed. If you set the PoolingOptions.
Validate to True, a connection also will be validated when the TCustomDAConnection component
connects and takes a connection from the pool. When some network problem occurs all connections to
the database can be broken. Therefore the pool validates all connections before any of them will be used
by a TCustomDAConnection component if a fatal error is detected on one connection.
The pool frees connections that are held in the pool during a long time. If no new connections are placed
to the pool it becomes empty after approximately 4 minutes. This pool behaviour is intended to save
resources when the count of connections in the pool exceeds the count that is needed by application. If
you set the PoolingOptions.MinPoolSize property to a non-zero value, this prevents the pool from freeing
all pooled connections. When connection count in the pool decreases to MinPoolSize value, remaining
connection will not be freed except if they are broken.
The PoolingOptions.MaxPoolSize property limits the count of connections that can be active at the same
time. If maximum count of connections is active and some TCustomDAConnection component tries to
connect, it will have to wait until any of TCustomDAConnection components disconnect. Maximum wait
time is 30 seconds. If active connections' count does not decrease during 30 seconds, the
TCustomDAConnection component will not connect and an exception will be raised.
You can limit the time of connection's existence by setting the PoolingOptions.ConnectionLifeTime
property. When the TCustomDAConnection component disconnects, its internal connection will be freed
instead of placing to the pool if this connection is active during the time longer than the value of the
PoolingOptions.ConnectionLifeTime property. This property is designed to make load balancing work with
the connection pool.
To force freeing of a connection when the TCustomDAConnection component disconnects, the
RemoveFromPool method of TCustomDAConnection can be used. You can also free all connection in the
pool by using the class procedures Clear or AsyncClear of TMyConnectionPoolManager. These procedures
can be useful when you know that all connections will be broken for some reason.
It is recommended to use connection pooling with the DisconnectMode option of the
TCustomDAConnection component set to True. In this case internal connections can be shared between
TCustomDAConnection components. When some operation is performed on the TCustomDAConnection
component (for example, an execution of SQL statement) this component will connect using pooled
connection and after performing operation it will disconnect. When an operation is performed on
another TCustomDAConnection component it can use the same connection from the pool.

See Also

 TCustomDAConnection.Pooling
 TCustomDAConnection.PoolingOptions
 Working with Disconnected Mode

63Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL64

16.14 Macros

Macros help you to change SQL statements dynamically. They allow partial replacement of the query
statement by user-defined text. Macros are identified by their names which are then referred from SQL
statement to replace their occurrences for associated values.
First step is to assign macros with their names and values to a dataset object.
Then modify SQL statement to include macro names into desired insertion points. Prefix each name with
& ("at") sign to let MyDAC discriminate them at parse time. Resolved SQL statement will hold macro
values instead of their names but at the right places of their occurrences. For example, having the
following statement with the TableName macro name:

SELECT * FROM &TableName

You may later assign any actual table name to the macro value property leaving your SQL statement
intact.

Query1.SQL.Text := 'SELECT * FROM &TableName';
Query1.MacroByName('TableName').Value := 'Dept';
Query1.Open;

MyDAC replaces all macro names with their values and sends SQL statement to the server when SQL
execution is requested.
Note that there is a difference between using TMacro AsString and Value properties. If you set macro
with the AsString property, it will be quoted. For example, the following statements will result in the
same result Query1.SQL property value.

Query1.MacroByName('StringMacro').Value := '''A string''';
Query1.MacroByName('StringMacro').AsString := 'A string';

Macros can be especially useful in scripts that perform similar operations on different objects. You can
use macros that will be replaced with an object name. It allows you to have the same script text and to
change only macro values. For example, the following is a script that creates a new user account and
grants required privileges.

Script1.SQL.Add('CREATE USER &Username IDENTIFIED BY &Password;');
Script1.SQL.Add('GRANT &Privileges TO &Username;');

To execute the script for another user you do not have to change the script SQL property, you can just
set required macro values.
You may also consider using macros to construct adaptable conditions in WHERE clauses of your
statements.

See Also

 TMacro
 TCustomDADataSet.MacroByName
 TCustomDADataSet.Macros

© 1997-2012 Devart. All Rights Reserved.

65Data Access Components for MySQL

16.15 Using Several DAC Products in One IDE

UniDAC, ODAC, SDAC, MyDAC, IBDAC, PgDAC, and LiteDAC components use common base packages
(for Win32) and assemblies (for .NET) listed below:
Packages:
 dacXX.bpl
 dacvclXX.bpl
 dcldacXX.bpl

Assemblies:
 Devart.Dac.dll
 Devart.Vcl.dll
 Devart.Dac.Design.dll
 Devart.Dac.AdoNet.dll

Note that product compatibility is provided for the current build only. In other words, if you upgrade one
of the installed products, it may conflict with older builds of other products. In order to continue using
the products simultaneously, you should upgrade all of them at the same time.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL66

16.16 DataSet Manager

DataSet Manager window

The DataSet Manager window displays the datasets in your project. You can use the DataSet Manager
window to create a user interface (consisting of data-bound controls) by dragging items from the
window onto forms in your project. Each item has a drop-down control list where you can select the type
of control to create prior to dragging it onto a form. You can customize the control list with additional
controls, including the controls you have created.

Using the DataSet Manager window, you can:
 Create forms that display data by dragging items from the DataSet Manager window onto forms.

 Customize the list of controls available for each data type in the DataSet Manager window.

 Choose which control should be created when dragging an item onto a form in your Windows

application.

 Create and delete TField objects in the DataSets of your project.

Opening the DataSet Manager window

You can display the DataSet Manager window by clicking DataSet Manager on the Tools menu. You can
also use IDE desktop saving/loading to save DataSet Manager window position and restore it during the
next IDE loads.

Observing project DataSets in the DataSet Manager Window

By default DataSet Manager shows DataSets of currently open forms. It can also extract DataSets from
all forms in the project. To use this, click Extract DataSets from all forms in project button. This settings
is remembered. Note, that using this mode can slow down opening of the large projects with plenty of
forms and DataSets. Opening of such projects can be very slow in Borland Delphi 2005 and Borland
Developer Studio 2006 and can take up to several tens of minutes.
DataSets can be grouped by form or connection. To change DataSet grouping click the Grouping mode
button or click a down. You can also change grouping mode by selecting required mode from the

67Data Access Components for MySQL

DataSet Manager window popup menu.

Creating Data-bound Controls

You can drag an item from the DataSet Manager window onto a form to create a new data-bound
control. Each node in the DataSet Manager window allows you to choose the type of control that will be
created when you drag it onto a form. You must choose between a Grid layout, where all columns or
properties are displayed in a TDataGrid component, or a Details layout, where all columns or properties
are displayed in individual controls.
To use grid layout drag the dataset node on the form. By default TDataSource and TDBGrid components
are created. You can choose the control to be created prior to dragging by selecting an item in the
DataSet Manager window and choosing the control from the item's drop-down control list.

To use Details layout choose Details from the DataSet node drop-down control list in the DataSet
Manager window. Then select required controls in the drop-down control list for each DataSet field.
DataSet fields must be created. After setting required options you can drag the DataSet to the form
from the DataSet wizard. DataSet Manager will create TDataSource component, and a component and a
label for each field.

Data Access Components for MySQL68

Adding custom controls to the DataSet Manager window

To add custom control to the list click the Options button on the DataSet Manager toolbar. A DataSet
Manager - Customize controls dialog will appear. Using this dialog you can set controls for the DataSets
and for the DataSet fields of different types. To do it, click DataSets node or the node of field of required
type in DB objects groups box and use Add and Remove buttons to set required control list. You can also
set default control by selecting it in the list of assigned DB controls and pressing Default button.

69Data Access Components for MySQL

The default configuration can easily be restored by pressing Reset button in the DataSet Manager -
Options dialog.

Working with TField objects

DataSet Manager allows you to create and remove TField objects. DataSet must be active to work with
its fields in the DataSet Manager. You can add fields, based on the database table columns, create new
fields, remove fields, use drag-n-drop to change fields order.
To create a field based on the database table column right-click the Fields node and select Create Field
from the popup menu or press <Insert>. Note that after you add at least one field manually, DataSet
fields corresponding to data fields will not be generated automatically when you drag the DataSet on the
form, and you can not drag such fields on the form. To add all available fields right-click the Fields node
and select Add all fields from the popup menu.
To create new field right-click the Fields node and select New Field from the popup menu or press <Ctrl
+Insert>. The New Field dialog box will appear. Enter required values and press OK button.
To delete fields select these fields in the DataSet Manager window and press <Delete>.
DataSet Manager allows you to change view of the fields displayed in the main window. Open the
Customize controls dialog, and jump to the Options page.

Data Access Components for MySQL70

You can chose what information will be added to names of the Field and Data Field objects in the main
window of DataSet Manager. Below you can see the example.

© 1997-2012 Devart. All Rights Reserved.

71Data Access Components for MySQL

16.17 DBMonitor

To extend monitoring capabilities of MyDAC applications there is an additional tool called DBMonitor. It is
provided as an alternative to Borland SQL Monitor which is also supported by MyDAC.
DBMonitor is an easy-to-use tool to provide visual monitoring of your database applications.
DBMonitor has the following features:
 multiple client processes tracing;
 SQL event filtering (by sender objects);
 SQL parameter and error tracing.

DBMonitor is intended to hamper an application being monitored as little as possible.
To trace your application with DB Monitor you should follow these steps:
 drop TMySQLMonitor component onto the form;
 turn moDBMonitor option on;
 set to True the Debug property for components you want to trace;
 start DBMonitor before running your program.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL72

16.18 Migration Wizard

NOTE:
Migration Wizard is available only for Delphi IDE and is not available for C++Builder.
BDE Migration Wizard allows you to convert your BDE projects to MyDAC. This wizard replaces BDE
components at the specified project (dfm-and pas-files) to MyDAC.
To convert a project, perform the following steps.
 Select BDE Migration Wizard from MySQL menu
 Select Replace BDE components to replace corresponding components with MyDAC and press the

Next button.
 Select the location of the files to search - current open project or disc folder.
 If you have selected Disc folder on the previous step, specify the required folder and specify

whether to process subfolders. Press the Next button.
 Select whether to make backup (it is highly recommended to make a backup), backup location, and

log parameters, and press the Next button. Default backup location is RBackup folder in your
project folder.

 Check your settings and press the Finish button to start the conversion operation.
 The project should be saved before conversion. You will be asked before saving it. Click Yes to

continue project conversion.

After the project conversion it will be reopened.
The Wizard just replaces all standard BDE components. Probably you will need to make some changes
manually to compile your application successfully.
If some problems occur while making changes, you can restore your project from backup file. To do this
perform the following steps.
 Select BDE Migration Wizard from MySQL menu
 Select Restore original files from backup and press the Next button.
 Select the backup file. By default it is RExpert.reu file in RBackup folder of your converted project.

Press the Next button.
 Check your settings and press the Finish button to start the conversion operation.
 Press Yes in the dialog that appeared.

Your project will be restored to its previous state.

See Also

 Migration from BDE

© 1997-2012 Devart. All Rights Reserved.

73Data Access Components for MySQL

16.19 Writing GUI Applications with MyDAC

MyDAC GUI part is standalone. This means that to make GUI elements such as SQL cursors, connect
form, connect dialog etc. available, you should explicitly include MyDacVcl (MyDacClx under Linux) unit
in your application. This feature is needed for writing console applications.

Delphi and C++Builder

By default MyDAC does not require Forms, Controls and other GUI related units. Only TMyConnectDialog
component require the Forms unit.

Kylix

By default MyDAC does not require QT library. Only T[SPCaps]ConnectDialog component includes QT-
dependent code.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL74

16.20 Compatibility with Previous Versions

We always try to keep MyDAC compatible with previous versions, but sometimes we have to change the
behaviour of MyDAC in order to enhance its functionality, or avoid bugs. This topic describes such
changes, and how to revert the old MyDAC behaviour. We strongly recommend not to turn on the old
behaviour of MyDAC. Use options described below only if changes applied to MyDAC crashed your
existent application.
Values of the options described below should be assigned in the initialization section of one of the units
in your project.

DBAccess.BaseSQLOldBehavior:

The BaseSQL property is similar to the SQL property, but it does not store changes made by AddWhere,
DeleteWhere, and SetOrderBy methods. After assigning an SQL text and modifying it by one of these
methods, all subsequent changes of the SQL property will not be reflected in the BaseSQL property. This
behavior was changed in MyDAC 4.00.2.8. To restore old behavior, set the BaseSQLOldBehavior variable
to True.

DBAccess.SQLGeneratorCompatibility:

If the manually assigned RefreshSQL property contains only "WHERE" clause, MyDAC uses the value of
the BaseSQL property to complete the refresh SQL statement. In this situation all modifications applied
to the SELECT query by functions AddWhere, DeleteWhere are not taken into account. This behavior was
changed in MyDAC 5.00.0.4. To restore the old behavior, set the BaseSQLOldBehavior variable to True.

MemDS.SendDataSetChangeEventAfterOpen:

Starting with MyDAC 5.20.0.11, the DataSetChange event is sent after the dataset gets open. It was
necessary to fix a problem with disappeared vertical scrollbar in some types of DB-aware grids. This
problem appears only under Windows XP when visual styles are enabled.
To disable sending this event, change the value of this variable to False.

MemDS.DoNotRaiseExcetionOnUaFail:

Starting with MyDAC 5.20.0.12, if the OnUpdateRecord event handler sets the UpdateAction parameter
to uaFail, an exception is raised. The default value of UpdateAction is uaFail. So, the exception will be
raised when the value of this parameter is left unchanged.
To restore the old behaviour, set DoNotRaiseExcetionOnUaFail to True.

MyClasses.__Strings65535ToMemo:

Control flow functions of MySQL (like IF, CASE) change data type of LONGMEMO and LONGBLOB fields.
It causes wrong description of these fields by MyDAC and truncating their data. To avoid these
problems, MyDAC tries to restore the correct data type. This behaviour was introduced in MyDAC
5.10.0.9. To disable this behaviour, set the __Strings65535ToMemo variable to False.

DBAccess.ParamStringAsAnsiString:

This variable has sense for Delphi 2009 and higher.
Set its value to True to use the AsAnsiString property when setting the parameter value through
TDAParam.AsString. Otherwise the AsWideString property is used. The default value is False.

DBAccess.RefreshParamsOnInsert:

Starting with MyDAC 5.50.0.36, when master/detail relationship is used on inserting a new record into
master table parameters in detail table are not updated. To restore the old behavior, set the
RefreshParamsOnInsert variable to True.

© 1997-2012 Devart. All Rights Reserved.

75Data Access Components for MySQL

16.21 dbForge Fusion for MySQL

This article provides basic information about dbForge Fusion for MySQL (formerly known as MyDeveloper
Tools). The article explains what is dbForge Fusion for MySQL, where to download it, how to install and
start using it. For thorough information on dbForge Fusion for MySQL please refer to its own
documentation.
Introduction
dbForge Fusion for MySQL is a powerful IDE add-in designed to automate and simplify the MySQL
database development process. It integrates into Visual Studio and Delphi, making all database
development and administration tasks available from your favorite IDE. Using dbForge Fusion for
MySQL, you can:
 Create, modify and delete database connections and easily navigate server-specific database

information in tree view
 Create, modify, and drop various database objects
 View and edit table data with an intelligent grid-based editor
 Edit SQL code in a comfortable scripting environment with context-sensitive code completion,

syntax highlighting, outlining, code navigation and code templates
 Debug SQL scripts and stored procedures
 Open and save SQL documents
 Create and execute SQL statements
 Examine the SQL query execution plan
 Visually design queries using Query Builder
 Create and deploy MySQL database projects
 Administrate users, and privileges
 Easily export data, database objects and databases
 Create new components by dragging items from Database Explorer
 Take advantage of the extended integration functionality in MyDAC component designers

Data Access Components for MySQL76

Versions and Compatibility

dbForge Fusion for MySQL is available in two editions.
 dbForge Fusion for Visual Studio, that includes support for Visual Studio .NET 2005 and Visual

Studio 2008
 dbForge Fusion for Delphi, that includes support for Delphi and C++Builder 2009, and CodeGear

RAD Studio 2007

MyDAC 5.55 is compatible with dbForge Fusion for MySQL 3.00. If you are using MyDAC starting with
version 5.00 up to 5.55, you can install MyDeveloper Tools for Delphi 2.00 and higher.

Related Products

Devart also offers a number of other database products, including dbForge Studio, the standalone
version of this MySQL development tool, and OraDeveloper Tools and OraDeveloper Studio, a parallel
product line for Oracle.
You can find a full description of all the Devart database tools on the Devart web site.

Downloading and Installing

dbForge Fusion for MySQL comes in separate installation packages for each supported IDE. If you have
purchased MyDAC Developer Edition, you are entitled to receive one free license for the full version of
dbForge Fusion for MySQL. Please consult your order confirmation email for the instructions on how to
download the installation package for the IDE you are using. Otherwise, you can purchase dbForge

http://www.devart.com/dbforge/mysql/fusion/overview.html
http://www.devart.com/dbforge/mysql/fusion/overview.html
http://www.devart.com/dbforge/mysql/fusion/overview.html
http://devart.com/products-dbtools.html

77Data Access Components for MySQL

Fusion for MySQL on the Devart website or download a free trial copy of the version you need from the
MyDeveloperTools download page.
Before installing dbForge Fusion for MySQL, make sure that no older versions of the software are
installed on the target IDE. Close all IDE instances, launch the downloaded installer, and follow the
instructions of the wizard to install the product. Now upon launching the IDE, the dbForge Fusion for
MySQL logo should appear on the splash screen and a new dbForge Fusion for MySQL toolbar should be
added to the IDE interface.

Basic Usage Instructions

Working with database connections

To start using dbForge Fusion for MySQL, you will need to establish a connection to the database you
want to work with first. After a connection is established, you can open it to retrieve and manipulate the
data provided.
In dbForge Fusion for MySQL database connections are managed in a separate Database Explorer
window. The Database Explorer window displays all available database connections at the top level of its
tree hierarchy.
To add a database connection in the Database Explorer, complete the following steps.

1. On the Database Explorer window toolbar, press the New Connection button or select the
appropriate item from the popup menu.

2. On the "Data Source" tab of the Database Connection Properties dialog box, choose a database
server from the list.

3. On the "Connection" tab of the Database Connection Properties dialog box, provide the main logon
information required to connect to the server.

4. On the "Parameter" tab of the Database Connection Properties dialog box, provide all specific
connection properties you need.

5. Test the connection you've created by clicking the "Test Connection" button.
6. Click OK to establish the database connection.

The Database Connection Properties dialog box will close, and a newly created database connection will
appear at the top level of the tree, allowing you to access your MySQL database.
You can modify an existing database connection by right-clicking on its node in Database Explorer, and
choosing "Modify Connection" from the node popup menu. In the Database Connection Properties dialog
box that will appear make any necessary changes to the connection properties. After you apply these
changes by pressing OK, the database connection will close and reopen with the new parameters.
You can rename database connection using the in-place item editor of the Database Explorer tree view.
You can drop a database connection by choosing "Delete" from its node popup menu.

Displaying server-specific database information in tree view

After a database connection is created and opened, you can explore its database objects by navigating
its hierarchy tree. Database Explorer allows you to view, edit, create and drop database objects for all
connections. To modify or add an item to the database schema, right click on its node to display a popup
menu with the available actions for this node.
If other users are modifying this database simultaneously, you can update the list of database objects
displayed in the Database Explorer and their properties to reflect the latest changes by pressing the
"Refresh" button.

Working with database objects

You can create database objects by using the Database Explorer popup menu or by pressing the "Create
New Database Object" button on the dbForge Fusion for MySQL toolbar.
To modify an object displayed in the Database Explorer tree, double click on its node to invoke its object
editor. In dbForge Fusion for MySQL, objects are represented as tabbed documents that appear in the
main IDE editor space. Object editor documents have several interrelated views, and let you apply or
cancel the changes you make manually.
Object's properties can be also quickly viewed in a separate Properties window by navigating to that
object in the Database Explorer.
To drop a database object, select it and choose "Delete" from popup menu.

Working with database projects

You can use database projects to manage SQL scripts, query files, and database objects easily. Database
projects let you organize related scripts and queries and provide fast access to the selected database
objects. They can be created, compiled, and deployed. Some of the advanced benefits of using database
projects include the possibility of automatic compilation of a collection of source objects, creation of a
whole database from several scripts, and specification of the project deployment order. Projects are an
added feature of dbForge Fusion for MySQL, and project folder and file structure, connection and
database object links, deployment order are stored locally in a file with the .mysqldev extension.

http://www.devart.com/dbforge/mysql/fusion/ordering.html
http://www.devart.com/dbforge/mysql/fusion/download.html

Data Access Components for MySQL78

To create a new project select Tools | Devart Developer Tools | MySQL | New Blank Project.
To open an existing project, select Tools | Devart Developer Tools | Open Project ...
Each project can be associated with one connection. Project deployment is performed through this
connection. To associate a connection with the project, right click on the connection in Database Explorer
and select "Assign to project" from the popup menu.
To deploy a project perform the following steps.

1. Select Tools | Devart Developer Tools | Project | Deployment Order.
2. Specify the files which are to be executed by setting the proper check box. Use the "Select All" and

"Deselect All" buttons, if necessary.
3. Define the order of the files in the list using the "Move Up" and "Move Down" buttons or dragging

the required files. The scripts will be executed in this order.
4. Press "Okay" to apply changes and exit or "Cancel" to exit without applying the changes you have

made.
5. 5.
Select Tools | Devart Developer Tools | Project | Deploy.

Creating and executing SQL statements and scripts with SQL editor

To execute an SQL statement or script, first open a new SQL document by clicking on the "Create New
SQL Editor" button on the toolbar. Type your query or script in it, and click the "Execute SQL" button.
Query results and any error messages will be redirected to the common Output window. You can view
the datasets returned from SELECT queries in the Data tab (select Data from the View menu if this tab is
not yet visible). Note that dbForge Fusion for MySQL allows obtaining multiple result sets from SQL
scripts.

Visually designing queries with the Query Builder

In an SQL document, you can switch to Design view to construct a query using Query Builder. In this
mode you can create SELECT statements visually without using SQL. The Query Builder view is
synchronized with the text view, and if you had a correct SELECT statement in the SQL editor, it is
automatically inserted into the Query Builder. In the Query Builder you can drag and drop tables from
the Database Explorer, use a special tabbed editor to setup JOIN statements as well as WHERE, GROUP
BY, HAVING and ORDER BY clauses.

Opening and saving SQL documents

You can save your SQL document at any time for future use. SQL editor documents are saved with
extension "sql". Query Builder documents have extension "qry". When opened, Query Builder table
controls restore their original position on the data diagram.

Examining the SQL query execution plan

One of the most important factors to worry about when developing SQL queries is query performance.
With dbForge Fusion for MySQL, you can easily evaluate and optimize the performance of a critical query
by inspecting it visually in Plan view. Just paste your query into an SQL document and switch to Plan
view to see even the most complicated statements parsed by MySQL and presented in a tree with
explanations of what every step in the plan does.

Viewing and editing data using grid based editor

The data of a table and view objects can be edited in a grid-based data editor. This data editor is
accessible from object's popup menu or from the Data view. When you open the editor, it is
automatically filled with the data contained in the object. Here you can edit data directly in a grid format.
To insert a new row, press the Ins key. To delete a row, select it and press Del. Changes are stored until
you commit them; to apply the changes made, press Enter, and to cancel all pending changes press
Escape. To refresh data in a table choose "Refresh" from the popup menu.

Creating new components by dragging items from Database Explorer

You automatically create new components that reference existing resources by selecting a connection,
table, view, stored procedure or package object in the Database Explorer and dragging it onto a form
designer. Then the IDE will automatically create a new component that references the selected resource.
Note: Drag-n-drop support is not available for Delphi 2005.

Extended Integration Features with MyDAC Component Editors

dbForge Fusion for MySQL integrates with MyDAC to give you a number of extended design-time
benefits.
 Drag-n-drop support for creating new components from some database objects
 Easy selection of existing connections in TMyConnection component
 Added "Find", "Debug", "Edit SQL", "Query Builder", and "Retrieve Data" verbs to component popup

menus
 Standard SQL editor in all MyDAC components with SQL field properties is replaced with the full-

79Data Access Components for MySQL

featured dbForge Fusion for MySQL SQL editor, complete with code completion, syntax highlighting,
outlining, and other functionality.

Complete Documentation

dbForge Fusion for MySQL comes with comprehensive documentation that describes all aspects of using
the software and contains a number of walkthroughs and reference topics.
There are several ways to open this documentation:
 Use the appropriate shortcut in Start menu, for instance, Start | Programs | Devart dbForge Fusion

| Documentation.
 Use command from the IDE menu: Tools | Devart dbForge Fusion | Help.
 Focus on any dbForge Fusion for MySQL window (for example, on the Database Explorer), and press

F1.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL80

16.22 MyBuilder Add-In

To extend MyDAC design-time capabilities, MyBuilder Add-in is provided. It is an easy to use and
versatile MyDAC design-time extension to manipulate data and database objects of MySQL. With
MyBuilder Add-in you can build, execute, verify and optimize your SQL statements.
MyBuilder Add-in is embedded in IDE and can be called from it's main menu, component editors and
component popup menus.
Sometimes when you install or upgrade MyBuilder Add-in or upgrade MyDAC there is an error message
during MyDAC design-time packages initialization. It says: 'Current version of MyBuilder Add-in is
incompatible with MyDAC X.XX'. To solve this problem go to MyBuilder Add-in directory and view
Requirements section in ReadMe.txt. There you will find the lowest MyDAC version compatible with the
current add-in version. Now if your current MyDAC version number is lower than required by add-in, you
should upgrade MyDAC and if current version is higher, then upgrade MyBuilder Add-in. In more rare
cases you may need to upgrade both products.

See Also
 TMyBuilder

© 1997-2012 Devart. All Rights Reserved.

81Data Access Components for MySQL

16.23 64-bit Development with Embarcadero RAD
Studio XE2

RAD Studio XE2 Overview

RAD Studio XE2 is the major breakthrough in the line of all Delphi versions of this product. It allows
deploying your applications both on Windows and Mac OS platforms. Additionally, it is now possible to
create 64-bit Windows applications to fully benefit from the power of new hardware. Moreover, you can
create visually spectacular applications with the help of the FireMonkey GPU application platform.
Its main features are the following:
 Windows 64-bit platform support;
 Mac OS support;
 FireMonkey application development platform;
 Live data bindings with visual components;
 VCL styles for Windows applications.

For more information about RAD Studio XE2, please refer to World Tour.

Changes in 64-bit Application Development

64-bit platform support implies several important changes that each developer must keep in mind prior
to the development of a new application or the modernization of an old one.
General
RAD Studio XE2 IDE is a 32-bit application. It means that it cannot load 64-bit packages at design-time.
So, all design-time packages in RAD Studio XE2 IDE are 32-bit.
Therefore, if you develop your own components, you should remember that for the purpose of
developing components with the 64-bit platform support, you have to compile run-time packages both
for the 32- and 64-bit platforms, while design-time packages need to be compiled only for the 32-bit
platform. This might be a source of difficulties if your package is simultaneously both a run-time and a
design-time package, as it is more than likely that this package won't be compiled for the 64-bit
platform. In this case, you will have to separate your package into two packages, one of which will be
used as run-time only, and the other as design-time only.
For the same reason, if your design-time packages require that certain DLLs be loaded, you should
remember that design-time packages can be only 32-bit and that is why they can load only 32-bit
versions of these DLLs, while at run-time 64-bit versions of the DLLs will be loaded. Correspondingly, if
there are only 64-bit versions of the DLL on your computer, you won't be able to use all functions at
design-time and, vice versa, if you have only 32-bit versions of the DLLs, your application won't be able
to work at run-time.
Extended type
For this type in a 64-bit applications compiler generates SSE2 instructions instead of FPU, and that
greatly improves performance in applications that use this type a lot (where data accuracy is needed).
For this purpose, the size and precision of Extended type is reduced:

TYPE 32-bit 64-bit

Extended 10 bytes 8 bytes

The following two additional types are introduced to ensure compatibility in the process of developing
32- and 64-bit applications:
Extended80 – whose size in 32-bit application is 10 bytes; however, this type provides the same
precision as its 8-byte equivalent in 64-bit applications.
Extended80Rec – can be used to perform low-level operations on an extended precision floating-point
value. For example, the sign, the exponent, and the mantissa can be changed separately. It enables you
to perform memory-related operations with 10-bit floating-point variables, but not extended-precision
arithmetic operations.
Pointer and Integers
The major difference between 32- and 64-bit platforms is the volume of the used memory and,
correspondingly, the size of the pointer that is used to address large memory volumes.

TYPE 32-bit 64-bit

Pointer 4 bytes 8 bytes

At the same time, the size of the Integer type remains the same for both platforms:

TYPE 32-bit 64-bit

http://www.embarcadero.com/world-tour

Data Access Components for MySQL82

Integer 4 bytes 4 bytes

That is why, the following code will work incorrectly on the 64-bit platform:

Ptr := Pointer(Integer(Ptr) + Offset);

While this code will correctly on the 64-bit platform and incorrectly on the 32-bit platform:

Ptr := Pointer(Int64(Ptr) + Offset);

For this purpose, the following platform-dependent integer type is introduced:

TYPE 32-bit 64-bit

NativeInt 4 bytes 8 bytes

NativeUInt 4 bytes 8 bytes

This type helps ensure that pointers work correctly both for the 32- and 64-bit platforms:

Ptr := Pointer(NativeInt(Ptr) + Offset);

However, you need to be extra-careful when developing applications for several versions of Delphi, in
which case you should remember that in the previous versions of Delphi the NativeInt type had different
sizes:

TYPE
Delphi
Version

Size

NativeInt D5 N/A

NativeInt D6 N/A

NativeInt D7 8 bytes

NativeInt D2005 8 bytes

NativeInt D2006 8 bytes

NativeInt D2007 8 bytes

NativeInt D2009 4 bytes

NativeInt D2010 4 bytes

NativeInt Delphi XE 4 bytes

NativeInt Delphi XE2 4 or 8 bytes

Out parameters
Some WinAPIs have OUT parameters of the SIZE_T type, which is equivalent to NativeInt in Delphi XE2.
The problem is that if you are developing only a 32-bit application, you won't be able to pass Integer to
OUT, while in a 64-bit application, you will not be able to pass Int64; in both cases you will have to pass
NativeInt.
For example:

procedure MyProc(out Value: NativeInt);
begin
 Value := 12345;
end;
var
 Value1: NativeInt;
{$IFDEF WIN32}
 Value2: Integer;
{$ENDIF}
{$IFDEF WIN64}
 Value2: Int64;
{$ENDIF}
begin
 MyProc(Value1); // will be compiled;
 MyProc(Value2); // will not be compiled !!!
end;

Win API
If you pass pointers to SendMessage/PostMessage/TControl.Perform, the wParam and lParam
parameters should be type-casted to the WPARAM/LPARAM type and not to Integer/Longint.
Correct:

SendMessage(hWnd, WM_SETTEXT, 0, LPARAM(@MyCharArray));

Wrong:

83Data Access Components for MySQL

SendMessage(hWnd, WM_SETTEXT, 0, Integer(@MyCharArray));

Replace SetWindowLong/GetWindowLog with SetWindowLongPtr/GetWindowLongPtr for
GWLP_HINSTANCE, GWLP_ID, GWLP_USERDATA, GWLP_HWNDPARENT and GWLP_WNDPROC as they
return pointers and handles. Pointers that are passed to SetWindowLongPtr should be type-casted to
LONG_PTR and not to Integer/Longint.
Correct:

SetWindowLongPtr(hWnd, GWLP_WNDPROC, LONG_PTR(@MyWindowProc));

Wrong:

SetWindowLong(hWnd, GWL_WNDPROC, Longint(@MyWindowProc));

Pointers that are assigned to the TMessage.Result field should use a type-cast to LRESULT instead of
Integer/Longint.
Correct:

Message.Result := LRESULT(Self);

Wrong:

Message.Result := Integer(Self);

All TWM...-records for the windows message handlers must use the correct Windows types for the fields:

Msg: UINT; wParam: WPARAM; lParam: LPARAM; Result: LRESULT)

Assembler
In order to make your application (that uses assembly code) work, you will have to make several
changes to it:

 rewrite your code that mixes Pascal code and assembly code. Mixing them is not supported in 64-bit
applications;

 rewrite assembly code that doesn't consider architecture and processor specifics.
You can use conditional defines to make your application work with different architectures.
You can learn more about Assembly code here: http://docwiki.embarcadero.com/RADStudio/en/
Using_Inline_Assembly_Code You can also look at the following article that will help you to make your
application support the 64-bit platform: http://docwiki.embarcadero.com/RADStudio/en/Converting_32-
bit_Delphi_Applications_to_64-bit_Windows
Exception handling
The biggest difference in exception handling between Delphi 32 and 64-bit is that in Delphi XE2 64-bit
you will gain more performance because of different internal exception mechanism. For 32-bit
applications, the Delphi compiler (dcc32.exe) generates additional code that is executed any way and
that causes performance loss. The 64-bit compiler (dcc64.exe) doesn't generate such code, it generates
metadata and stores it in the PDATA section of an executable file instead.
But in Delphi XE2 64-bit it's impossible to have more than 16 levels of nested exceptions. Having more
than 16 levels of nested exceptions will cause a Run Time error.
Debugging
Debugging of 64-bit applications in RAD Studio XE2 is remote. It is caused by the same reason: RAD
Studio XE2 IDE is a 32 application, but your application is 64-bit. If you are trying to debug your
application and you cannot do it, you should check that the Include remote debug symbols project
option is enabled.
To enable it, perform the following steps:

1. Open Project Options (in the main menu Project->Options).
2. In the Target combobox, select Debug configuration - 64-bit Windows platform. If there is no

such option in the combobox, right click "Target Platforms" in Project Manager and select Add
platform. After adding the 64-bit Windows platform, the Debug configuration - 64-bit
Windows platform option will be available in the Target combobox.

3. Select Linking in the left part of the Project Options form.
4. enable the Include remote debug symbols option.

After that, you can run and debug your 64-bit application.
To enable remote debugging, perform the following steps:

1. Install Platform Assistant Server (PAServer) on a remote computer. You can find PAServer in the
%RAD_Studio_XE2_Install_Directory%\PAServer directory. The setup_paserver.exe file is an
installation file for Windows, and the setup_paserver.zip file is an istallation file for MacOS.

2. Run the PAServer.exe file on a remote computer and set the password that will be used to connect
to this computer.

3. On a local computer with RAD Studio XE2 installed, right-click the target platform that you want to
debug in Project Manager and select Assign Remote Profile. Click the Add button in the
displayed window, input your profile name, click the Next button, input the name of a remote

http://docwiki.embarcadero.com/RADStudio/en/Using_Inline_Assembly_Code
http://docwiki.embarcadero.com/RADStudio/en/Using_Inline_Assembly_Code
http://docwiki.embarcadero.com/RADStudio/en/Converting_32-bit_Delphi_Applications_to_64-bit_Windows
http://docwiki.embarcadero.com/RADStudio/en/Converting_32-bit_Delphi_Applications_to_64-bit_Windows

Data Access Components for MySQL84

computer and the password to it (that you assigned when you started PAServer on a remote
computer).

After that, you can test the connection by clicking the Test Connection button. If your connection
failed, check that your firewalls on both remote and local computers do not block your connection, and
try to establish a connection once more. If your connection succeeded, click the Next button and then
the Finish button. Select your newly created profile and click OK.
After performing these steps you will be able to debug your application on a remote computer. You
application will be executed on a remote computer, but you will be able to debug it on your local
computer with RAD Studio XE2.
For more information about working with Platform Assistant Server, please refer to http://docwiki.
embarcadero.com/RADStudio/en/
Installing_and_Running_the_Platform_Assistant_on_the_Target_Platform

© 1997-2012 Devart. All Rights Reserved.

http://docwiki.embarcadero.com/RADStudio/en/Installing_and_Running_the_Platform_Assistant_on_the_Target_Platform
http://docwiki.embarcadero.com/RADStudio/en/Installing_and_Running_the_Platform_Assistant_on_the_Target_Platform
http://docwiki.embarcadero.com/RADStudio/en/Installing_and_Running_the_Platform_Assistant_on_the_Target_Platform

85Data Access Components for MySQL

16.24 Database Specific Aspects of 64-bit Development

MySQL Connectivity Aspects

Client mode:
If you are developing a 64-bit application, you have to be aware of specifics of working with client
libraries at design-time and run-time. To connect to a MySQL database at design-time, you must have its
32-bit client library. You have to place it to the C:\Windows\SysWOW64 directory. This requirement
flows out from the fact that RAD Studio XE2 is a 32-bit application and it cannot load 64-bit libraries at
design-time. To work with a MySQL database in run-time (64-bit application), you must have the 64-bit
client library placed to the C:\Windows\System32 directory.
DIRECT mode:
Since there is no need to install client library for the DIRECT mode, the specifics of developing
applications that use MyDAC as data access components, depends exclusively on peculiarities of each
target platform.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL86

17 Reference

This page shortly describes units that exist in MyDAC.

Units

Unit Name Description

CRAccess This unit contains base classes for
accessing databases.

CRBatchMove This unit contains implementation of
the TCRBatchMove component.

CRDataTypeMap This unit contains base classes for
Data Type Mapping

CREncryption This unit contains base classes for
data encryption.

CRVio This unit contains classes, used for
establishing HTTP connections.

DADump This unit contains the base class for
the TMyDump component.

DALoader This unit contains the base class for
the TMyLoader component.

DAScript This unit contains the base class for
the TMyScript component.

DASQLMonitor This unit contains the base class for
the TMySQLMonitor component.

DBAccess This unit contains base classes for
most of the components.

Devart.Dac.DataAdapter This unit contains implementation of
the DADataAdapter class.

Devart.MyDac.DataAdapter This unit contains implementation of
the MyDataAdapter class.

MemData This unit contains classes for storing
data in memory.

MemDS This unit contains implementation of
the TMemDataSet class.

MemUtils This unit contains auxiliary
procedures and functions used in
the DAC code.

MyAccess This unit contains implementation of
most public classes of MyDAC.

MyBackup This unit contains implementation of
the TMyBackup component.

MyBuilderClient This unit contains implementation of
the TMyBuilder class.

MyClasses This unit contains implementation of
the EMyError class.

MyConnectionPool This unit contains the
TMyConnectionPoolManager class
for managing connection pool.

MyDacVcl This unit contains the visual
constituent of MyDAC.

MyDump This unit contains implementation of
the TMyDump component.

MyEmbConnection This unit contains implementation of
the TMyEmbConnection component.

87Data Access Components for MySQL

MyLoader This unit contains implementation of
the TMyLoader component.

MyScript This unit contains implementation of
the TMyScript component.

MyServerControl This unit contains implementation of
the TMyServerControl component.

MySqlApi This unit contains implementation of
the class.

MySQLMonitor This unit contains implementation of
the TMySQLMonitor component.

MySqlVio This unit contains implementation of
the TCRIOHandler class.

VirtualTable This unit contains implementation of
the TVirtualTable component.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL88

17.1 CRAccess

This unit contains base classes for accessing databases.

Classes

Name Description

TCRCursor A base class for classes that work
with database cursors.

Types

Name Description

TBeforeFetchProc This type is used for the
TCustomDADataSet.BeforeFetch
event.

Enumerations

Name Description

TCRIsolationLevel Specifies how to handle
transactions containing database
modifications.

TCRTransactionAction Specifies the transaction behaviour
when it is destroyed while being
active, or when one of its
connections is closed with the active
transaction.

© 1997-2012 Devart. All Rights Reserved.

89Data Access Components for MySQL

17.1.1 Classes

Classes in the CRAccess unit.

Classes

Name Description

TCRCursor A base class for classes that work
with database cursors.

© 1997-2012 Devart. All Rights Reserved.

17.1.1.1 CRAccess.TCRCursor Class

A base class for classes that work with database cursors.
For a list of all members of this type, see TCRCursor members.

Unit

CRAccess

Syntax

TCRCursor = class(TSharedObject);

Remarks

TCRCursor is a base class for classes that work with database cursors.

Inheritance Hierarchy

TObject
 TSharedObject
 TCRCursor

© 1997-2012 Devart. All Rights Reserved.

TCRCursor class overview.

Properties

Name Description

RefCount (inherited from TSharedObject) Used to return the count of
reference to a TSharedObject
object.

Methods

Name Description

AddRef (inherited from TSharedObject) Increments the reference count for
the number of references
dependent on the TSharedObject
object.

Release (inherited from TSharedObject) Decrements the reference count.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL90

17.1.2 Types

Types in the CRAccess unit.

Types

Name Description

TBeforeFetchProc This type is used for the
TCustomDADataSet.BeforeFetch
event.

© 1997-2012 Devart. All Rights Reserved.

17.1.2.1 CRAccess.TBeforeFetchProc Procedure Reference

This type is used for the TCustomDADataSet.BeforeFetch event.

Unit

CRAccess

Syntax

TBeforeFetchProc = procedure (var Cancel: boolean) of object;
Parameters

Cancel
True, if the current fetch operation should be aborted.

© 1997-2012 Devart. All Rights Reserved.

91Data Access Components for MySQL

17.1.3 Enumerations

Enumerations in the CRAccess unit.

Enumerations

Name Description

TCRIsolationLevel Specifies how to handle
transactions containing database
modifications.

TCRTransactionAction Specifies the transaction behaviour
when it is destroyed while being
active, or when one of its
connections is closed with the active
transaction.

© 1997-2012 Devart. All Rights Reserved.

17.1.3.1 CRAccess.TCRIsolationLevel Enumeration

Specifies how to handle transactions containing database modifications.

Unit

CRAccess

Syntax

TCRIsolationLevel = (ilReadCommitted);

Values

Value Meaning

ilReadCommitted The default transaction behavior. If the transaction contains DML that
requires row locks held by another transaction, then the DML statement
waits until the row locks are released.

© 1997-2012 Devart. All Rights Reserved.

17.1.3.2 CRAccess.TCRTransactionAction Enumeration

Specifies the transaction behaviour when it is destroyed while being active, or when one of its
connections is closed with the active transaction.

Unit

CRAccess

Syntax

TCRTransactionAction = (taCommit, taRollback);

Values

Value Meaning

taCommit Transaction is committed.

taRollback Transaction is rolled back.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL92

17.2 CRBatchMove

This unit contains implementation of the TCRBatchMove component.

Classes

Name Description

TCRBatchMove Transfers records between datasets.

Types

Name Description

TCRBatchMoveProgressEvent This type is used for the
TCRBatchMove.
OnBatchMoveProgress event.

Enumerations

Name Description

TCRBatchMode Used to set the type of the batch
operation that will be executed after
calling the TCRBatchMove.Execute
method.

TCRFieldMappingMode Used to specify the way fields of the
destination and source datasets will
be mapped to each other if the
TCRBatchMove.Mappings list is
empty.

© 1997-2012 Devart. All Rights Reserved.

93Data Access Components for MySQL

17.2.1 Classes

Classes in the CRBatchMove unit.

Classes

Name Description

TCRBatchMove Transfers records between datasets.

© 1997-2012 Devart. All Rights Reserved.

17.2.1.1 CRBatchMove.TCRBatchMove Class

Transfers records between datasets.
For a list of all members of this type, see TCRBatchMove members.

Unit

CRBatchMove

Syntax

TCRBatchMove = class(TComponent);

Remarks

The TCRBatchMove component transfers records between datasets. Use it to copy dataset records to
another dataset or to delete datasets records that match records in another dataset. The TCRBatchMove.
Mode property determines the desired operation type, the TCRBatchMove.Source and TCRBatchMove.
Destination properties indicate corresponding datasets.
Note: A TCRBatchMove component is added to the Data Access page of the component palette, not to
the MySQL Access page.

Inheritance Hierarchy

TObject
 TCRBatchMove

© 1997-2012 Devart. All Rights Reserved.

TCRBatchMove class overview.

Properties

Name Description

AbortOnKeyViol Used to specify whether the batch
operation should be terminated
immediately after key or integrity
violation.

AbortOnProblem Used to specify whether the batch
operation should be terminated
immediately when it is necessary to
truncate data to make it fit the
specified Destination.

ChangedCount Used to get the number of records
changed in the destination dataset.

CommitCount Used to set the number of records
to be batch moved before commit
occurs.

Destination Used to specify the destination
dataset for the batch operation.

FieldMappingMode Used to specify the way fields of
destination and source datasets will
be mapped to each other if the
TCRBatchMove.Mappings list is
empty.

Data Access Components for MySQL94

KeyViolCount Used to get the number of records
that could not be moved to or from
the destination dataset because of
integrity or key violations.

Mappings Used to set field matching between
source and destination datasets for
the batch operation.

Mode Used to set the type of the batch
operation that will be executed after
calling the TCRBatchMove.Execute
method.

MovedCount Used to get the number of records
that were read from the source
dataset during the batch operation.

ProblemCount Used to get the number of records
that could not be added to the
destination dataset because of the
field type mismatch.

RecordCount Used to indicate the maximum
number of records in the source
dataset that will be applied to the
destination dataset.

Source Used to specify the source dataset
for the batch operation.

Methods

Name Description

Execute Performs the batch operation.

Events

Name Description

OnBatchMoveProgress Occurs when providing feedback to
the user about the batch operation
in progress is needed.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TCRBatchMove class.
For a complete list of the TCRBatchMove class members, see the TCRBatchMove Members topic.

Public

Name Description

ChangedCount Used to get the number of records
changed in the destination dataset.

KeyViolCount Used to get the number of records
that could not be moved to or from
the destination dataset because of
integrity or key violations.

MovedCount Used to get the number of records
that were read from the source
dataset during the batch operation.

ProblemCount Used to get the number of records
that could not be added to the
destination dataset because of the
field type mismatch.

Published

Name Description

95Data Access Components for MySQL

AbortOnKeyViol Used to specify whether the batch
operation should be terminated
immediately after key or integrity
violation.

AbortOnProblem Used to specify whether the batch
operation should be terminated
immediately when it is necessary to
truncate data to make it fit the
specified Destination.

CommitCount Used to set the number of records
to be batch moved before commit
occurs.

Destination Used to specify the destination
dataset for the batch operation.

FieldMappingMode Used to specify the way fields of
destination and source datasets will
be mapped to each other if the
TCRBatchMove.Mappings list is
empty.

Mappings Used to set field matching between
source and destination datasets for
the batch operation.

Mode Used to set the type of the batch
operation that will be executed after
calling the TCRBatchMove.Execute
method.

RecordCount Used to indicate the maximum
number of records in the source
dataset that will be applied to the
destination dataset.

Source Used to specify the source dataset
for the batch operation.

See Also
 TCRBatchMove Class
 TCRBatchMove Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify whether the batch operation should be terminated immediately after key or integrity
violation.

Class

TCRBatchMove

Syntax

property AbortOnKeyViol: boolean default True;

Remarks

Use the AbortOnKeyViol property to specify whether the batch operation is terminated immediately after
key or integrity violation.

© 1997-2012 Devart. All Rights Reserved.

Used to specify whether the batch operation should be terminated immediately when it is necessary to
truncate data to make it fit the specified Destination.

Class

TCRBatchMove

Syntax

Data Access Components for MySQL96

property AbortOnProblem: boolean default True;

Remarks

Use the AbortOnProblem property to specify whether the batch operation is terminated immediately
when it is necessary to truncate data to make it fit the specified Destination.

© 1997-2012 Devart. All Rights Reserved.

Used to get the number of records changed in the destination dataset.

Class

TCRBatchMove

Syntax

property ChangedCount: Longint;

Remarks

Use the ChangedCount property to get the number of records changed in the destination dataset. It
shows the number of records that were updated in the bmUpdate or bmAppendUpdate mode or were
deleted in the bmDelete mode.

© 1997-2012 Devart. All Rights Reserved.

Used to set the number of records to be batch moved before commit occurs.

Class

TCRBatchMove

Syntax

property CommitCount: integer default 0;

Remarks

Use the CommitCount property to set the number of records to be batch moved before the commit
occurs. If it is set to 0, the operation will be chunked to the number of records to fit 32 Kb.

© 1997-2012 Devart. All Rights Reserved.

Used to specify the destination dataset for the batch operation.

Class

TCRBatchMove

Syntax

property Destination: TDataSet;

Remarks

Specifies the destination dataset for the batch operation.

© 1997-2012 Devart. All Rights Reserved.

Used to specify the way fields of destination and source datasets will be mapped to each other if the
Mappings list is empty.

Class

TCRBatchMove

Syntax

property FieldMappingMode: TCRFieldMappingMode default
mmFieldIndex;

97Data Access Components for MySQL

Remarks

Specifies in what way fields of destination and source datasets will be mapped to each other if the
Mappings list is empty.

© 1997-2012 Devart. All Rights Reserved.

Used to get the number of records that could not be moved to or from the destination dataset because
of integrity or key violations.

Class

TCRBatchMove

Syntax

property KeyViolCount: Longint;

Remarks

Use the KeyViolCount property to get the number of records that could not be replaced, added, deleted
from the destination dataset because of integrity or key violations.
If AbortOnKeyViol is True, then KeyViolCount will never exceed one, because the operation aborts when
the integrity or key violation occurs.

See Also

 AbortOnKeyViol

© 1997-2012 Devart. All Rights Reserved.

Used to set field matching between source and destination datasets for the batch operation.

Class

TCRBatchMove

Syntax

property Mappings: _TStrings;

Remarks

Use the Mappings property to set field matching between the source and destination datasets for the
batch operation. By default fields matching is based on their position in the datasets. To map the column
ColName in the source dataset to the column with the same name in the destination dataset, use:
ColName

Example

To map a column named SourceColName in the source dataset to the column named DestColName in
the destination dataset, use:

DestColName=SourceColName

© 1997-2012 Devart. All Rights Reserved.

Used to set the type of the batch operation that will be executed after calling the Execute method.

Class

TCRBatchMove

Syntax

property Mode: TCRBatchMode default bmAppend;

Data Access Components for MySQL98

Remarks

Use the Mode property to set the type of the batch operation that will be executed after calling the
Execute method.

© 1997-2012 Devart. All Rights Reserved.

Used to get the number of records that were read from the source dataset during the batch operation.

Class

TCRBatchMove

Syntax

property MovedCount: Longint;

Remarks

Use the MovedCount property to get the number of records that were read from the source dataset
during the batch operation. This number includes records that caused key or integrity violations or were
trimmed.

© 1997-2012 Devart. All Rights Reserved.

Used to get the number of records that could not be added to the destination dataset because of the
field type mismatch.

Class

TCRBatchMove

Syntax

property ProblemCount: Longint;

Remarks

Use the ProblemCount property to get the number of records that could not be added to the destination
dataset because of the field type mismatch.
If AbortOnProblem is True, then ProblemCount will never exceed one, because the operation aborts
when the problem occurs.

See Also

 AbortOnProblem

© 1997-2012 Devart. All Rights Reserved.

Used to indicate the maximum number of records in the source dataset that will be applied to the
destination dataset.

Class

TCRBatchMove

Syntax

property RecordCount: Longint default 0;

Remarks

Determines the maximum number of records in the source dataset, that will be applied to the destination
dataset. If it is set to 0, all records in the source dataset will be applied to the destination dataset,
starting from the first record. If RecordCount is greater than 0, up to the RecordCount records are
applied to the destination dataset, starting from the current record in the source dataset. If RecordCount
exceeds the number of records left in the source dataset, batch operation terminates after reaching last
record.

99Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Used to specify the source dataset for the batch operation.

Class

TCRBatchMove

Syntax

property Source: TDataSet;

Remarks

Specifies the source dataset for the batch operation.

© 1997-2012 Devart. All Rights Reserved.

Methods of the TCRBatchMove class.
For a complete list of the TCRBatchMove class members, see the TCRBatchMove Members topic.

Public

Name Description

Execute Performs the batch operation.

See Also
 TCRBatchMove Class
 TCRBatchMove Class Members

© 1997-2012 Devart. All Rights Reserved.

Performs the batch operation.

Class

TCRBatchMove

Syntax

procedure Execute;

Remarks

Call the Execute method to perform the batch operation.

© 1997-2012 Devart. All Rights Reserved.

Events of the TCRBatchMove class.
For a complete list of the TCRBatchMove class members, see the TCRBatchMove Members topic.

Published

Name Description

OnBatchMoveProgress Occurs when providing feedback to
the user about the batch operation
in progress is needed.

See Also
 TCRBatchMove Class
 TCRBatchMove Class Members

© 1997-2012 Devart. All Rights Reserved.

Occurs when providing feedback to the user about the batch operation in progress is needed.

Class

TCRBatchMove

Data Access Components for MySQL100

Syntax

property OnBatchMoveProgress: TCRBatchMoveProgressEvent;

Remarks

Write the OnBatchMoveProgress event handler to provide feedback to the user about the batch operation
progress.

© 1997-2012 Devart. All Rights Reserved.

101Data Access Components for MySQL

17.2.2 Types

Types in the CRBatchMove unit.

Types

Name Description

TCRBatchMoveProgressEvent This type is used for the
TCRBatchMove.
OnBatchMoveProgress event.

© 1997-2012 Devart. All Rights Reserved.

17.2.2.1 CRBatchMove.TCRBatchMoveProgressEvent Procedure Reference

This type is used for the TCRBatchMove.OnBatchMoveProgress event.

Unit

CRBatchMove

Syntax

TCRBatchMoveProgressEvent = procedure (Sender: TObject; Percent:
integer) of object;
Parameters

Sender
An object that raised the event.

Percent
Percentage of the batch operation progress.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL102

17.2.3 Enumerations

Enumerations in the CRBatchMove unit.

Enumerations

Name Description

TCRBatchMode Used to set the type of the batch
operation that will be executed after
calling the TCRBatchMove.Execute
method.

TCRFieldMappingMode Used to specify the way fields of the
destination and source datasets will
be mapped to each other if the
TCRBatchMove.Mappings list is
empty.

© 1997-2012 Devart. All Rights Reserved.

17.2.3.1 CRBatchMove.TCRBatchMode Enumeration

Used to set the type of the batch operation that will be executed after calling the TCRBatchMove.Execute
method.

Unit

CRBatchMove

Syntax

TCRBatchMode = (bmAppend, bmUpdate, bmAppendUpdate, bmDelete);

Values

Value Meaning

bmAppend Appends the records from the source dataset to the destination dataset.
The default mode.

bmAppendUpdate Replaces records in the destination dataset with the matching records
from the source dataset. If there is no matching record in the destination
dataset, the record will be appended to it.

bmDelete Deletes records from the destination dataset if there are matching records
in the source dataset.

bmUpdate Replaces records in the destination dataset with the matching records
from the source dataset.

© 1997-2012 Devart. All Rights Reserved.

17.2.3.2 CRBatchMove.TCRFieldMappingMode Enumeration

Used to specify the way fields of the destination and source datasets will be mapped to each other if the
TCRBatchMove.Mappings list is empty.

Unit

CRBatchMove

Syntax

TCRFieldMappingMode = (mmFieldIndex, mmFieldName);

Values

Value Meaning

mmFieldIndex Specifies that the fields of the destination dataset will be mapped to the
fields of the source dataset by field index.

mmFieldName Mapping is performed by field names.

© 1997-2012 Devart. All Rights Reserved.

103Data Access Components for MySQL

17.3 CRDataTypeMap

This unit contains base classes for Data Type Mapping

Classes

Name Description

EDataMappingError Occurs when unable to map data to
a specified type.

EDataTypeMappingError Base class for errors occuring at
data mapping

EInvalidDBTypeMapping Occurs when DB field type is set
incorrectly or when attempting to
set Length or Scale for a type that
doesn't have such properties.

EInvalidFieldTypeMapping Occurs when Delphi field type is set
incorrectly or when attempting to
set Length or Scale for a type that
doesn't have such properties.

EUnsupportedDataTypeMapping Occurs when attempting to register
or perform unsupported data type
mapping.

TMapRule Setting rule for data type mapping

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL104

17.3.1 Classes

Classes in the CRDataTypeMap unit.

Classes

Name Description

EDataMappingError Occurs when unable to map data to
a specified type.

EDataTypeMappingError Base class for errors occuring at
data mapping

EInvalidDBTypeMapping Occurs when DB field type is set
incorrectly or when attempting to
set Length or Scale for a type that
doesn't have such properties.

EInvalidFieldTypeMapping Occurs when Delphi field type is set
incorrectly or when attempting to
set Length or Scale for a type that
doesn't have such properties.

EUnsupportedDataTypeMapping Occurs when attempting to register
or perform unsupported data type
mapping.

TMapRule Setting rule for data type mapping

© 1997-2012 Devart. All Rights Reserved.

17.3.1.1 CRDataTypeMap.EDataMappingError Class

Occurs when unable to map data to a specified type.
For a list of all members of this type, see EDataMappingError members.

Unit

CRDataTypeMap

Syntax

EDataMappingError = class(EDataTypeMappingError);

Remarks

EDataMappingError occurs when unable to map data to a specified type. Use EDataMappingError in an
exception handling block.

Inheritance Hierarchy

TObject
 EDataTypeMappingError
 EDataMappingError

© 1997-2012 Devart. All Rights Reserved.

EDataMappingError class overview.

© 1997-2012 Devart. All Rights Reserved.

17.3.1.2 CRDataTypeMap.EDataTypeMappingError Class

Base class for errors occuring at data mapping
For a list of all members of this type, see EDataTypeMappingError members.

Unit

CRDataTypeMap

Syntax

EDataTypeMappingError = class(Exception);

105Data Access Components for MySQL

Remarks

Base class for errors occuring at data mapping

Inheritance Hierarchy

TObject
 EDataTypeMappingError

© 1997-2012 Devart. All Rights Reserved.

EDataTypeMappingError class overview.

© 1997-2012 Devart. All Rights Reserved.

17.3.1.3 CRDataTypeMap.EInvalidDBTypeMapping Class

Occurs when DB field type is set incorrectly or when attempting to set Length or Scale for a type that
doesn't have such properties.
For a list of all members of this type, see EInvalidDBTypeMapping members.

Unit

CRDataTypeMap

Syntax

EInvalidDBTypeMapping = class(EDataTypeMappingError);

Remarks

EInvalidDBTypeMapping occurs when DB field type is set incorrectly or when attempting to set Length or
Scale for a type that doesn't have such properties. Use EInvalidDBTypeMapping in an exception handling
block.

Inheritance Hierarchy

TObject
 EDataTypeMappingError
 EInvalidDBTypeMapping

© 1997-2012 Devart. All Rights Reserved.

EInvalidDBTypeMapping class overview.

© 1997-2012 Devart. All Rights Reserved.

17.3.1.4 CRDataTypeMap.EInvalidFieldTypeMapping Class

Occurs when Delphi field type is set incorrectly or when attempting to set Length or Scale for a type that
doesn't have such properties.
For a list of all members of this type, see EInvalidFieldTypeMapping members.

Unit

CRDataTypeMap

Syntax

EInvalidFieldTypeMapping = class(EDataTypeMappingError);

Remarks

EInvalidFieldTypeMapping occurs when Delphi field type is set incorrectly or when attempting to set
Length or Scale for a type that doesn't have such properties. Use EInvalidFieldTypeMapping in an
exception handling block.

Inheritance Hierarchy

TObject
 EDataTypeMappingError
 EInvalidFieldTypeMapping

Data Access Components for MySQL106

© 1997-2012 Devart. All Rights Reserved.

EInvalidFieldTypeMapping class overview.

© 1997-2012 Devart. All Rights Reserved.

17.3.1.5 CRDataTypeMap.EUnsupportedDataTypeMapping Class

Occurs when attempting to register or perform unsupported data type mapping.
For a list of all members of this type, see EUnsupportedDataTypeMapping members.

Unit

CRDataTypeMap

Syntax

EUnsupportedDataTypeMapping = class(EDataTypeMappingError);

Remarks

EUnsupportedDataTypeMapping occurs when attempting to register or perform unsupported data type
mapping. Use EUnsupportedDataTypeMapping in an exception handling block.

Inheritance Hierarchy

TObject
 EDataTypeMappingError
 EUnsupportedDataTypeMapping

© 1997-2012 Devart. All Rights Reserved.

EUnsupportedDataTypeMapping class overview.

© 1997-2012 Devart. All Rights Reserved.

17.3.1.6 CRDataTypeMap.TMapRule Class

Setting rule for data type mapping
For a list of all members of this type, see TMapRule members.

Unit

CRDataTypeMap

Syntax

TMapRule = class(TCollectionItem);

Inheritance Hierarchy

TObject
 TMapRule

© 1997-2012 Devart. All Rights Reserved.

TMapRule class overview.

Properties

Name Description

DBLengthMax Maximum DB field size

DBLengthMin Minimum DB field size

DBScaleMax Maximum DB field scale

DBScaleMin Minimal DB field scale

DBType DB type

FieldLength Delphi field length

FieldName field name in DataSet

107Data Access Components for MySQL

FieldScale Delphi field scale

IgnoreErrors Ignore data conversion errors.
Default value is False.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMapRule class.
For a complete list of the TMapRule class members, see the TMapRule Members topic.

Public

Name Description

DBLengthMax Maximum DB field size

DBLengthMin Minimum DB field size

DBScaleMax Maximum DB field scale

DBScaleMin Minimal DB field scale

DBType DB type

FieldLength Delphi field length

FieldName field name in DataSet

FieldScale Delphi field scale

IgnoreErrors Ignore data conversion errors.
Default value is False.

See Also
 TMapRule Class
 TMapRule Class Members

© 1997-2012 Devart. All Rights Reserved.

Maximum DB field size

Class

TMapRule

Syntax

property DBLengthMax: Integer;

© 1997-2012 Devart. All Rights Reserved.

Minimum DB field size

Class

TMapRule

Syntax

property DBLengthMin: Integer;

© 1997-2012 Devart. All Rights Reserved.

Maximum DB field scale

Class

TMapRule

Syntax

property DBScaleMax: Integer;

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL108

Minimal DB field scale

Class

TMapRule

Syntax

property DBScaleMin: Integer;

© 1997-2012 Devart. All Rights Reserved.

DB type

Class

TMapRule

Syntax

property DBType: Word;

© 1997-2012 Devart. All Rights Reserved.

Delphi field length

Class

TMapRule

Syntax

property FieldLength: Integer;

© 1997-2012 Devart. All Rights Reserved.

field name in DataSet

Class

TMapRule

Syntax

property FieldName: string;

© 1997-2012 Devart. All Rights Reserved.

Delphi field scale

Class

TMapRule

Syntax

property FieldScale: Integer;

© 1997-2012 Devart. All Rights Reserved.

Ignore data conversion errors. Default value is False.

Class

TMapRule

Syntax

property IgnoreErrors: Boolean;

109Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL110

17.4 CREncryption

This unit contains base classes for data encryption.

Classes

Name Description

TCREncryptor The class that performs data
encryption and decryption in a
client application using various
encryption algorithms.

Enumerations

Name Description

TCREncDataHeader Specifies whether the additional
information is stored with the
encrypted data.

TCREncryptionAlgorithm Specifies the algorithm of data
encryption.

TCRHashAlgorithm Specifies the algorithm of
generating hash data.

TCRInvalidHashAction Specifies the action to perform on
data fetching when hash data is
invalid.

© 1997-2012 Devart. All Rights Reserved.

111Data Access Components for MySQL

17.4.1 Classes

Classes in the CREncryption unit.

Classes

Name Description

TCREncryptor The class that performs data
encryption and decryption in a
client application using various
encryption algorithms.

© 1997-2012 Devart. All Rights Reserved.

17.4.1.1 CREncryption.TCREncryptor Class

The class that performs data encryption and decryption in a client application using various encryption
algorithms.
For a list of all members of this type, see TCREncryptor members.

Unit

CREncryption

Syntax

TCREncryptor = class(TComponent);

Inheritance Hierarchy

TObject
 TCREncryptor

© 1997-2012 Devart. All Rights Reserved.

TCREncryptor class overview.

Properties

Name Description

DataHeader Specifies whether the additional
information is stored with the
encrypted data.

EncryptionAlgorithm Specifies the algorithm of data
encryption.

HashAlgorithm Specifies the algorithm of
generating hash data.

InvalidHashAction Specifies the action to perform on
data fetching when hash data is
invalid.

Password Used to set a password that is used
to generate a key for encryption.

Methods

Name Description

SetKey Sets a key, using which data is
encrypted.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TCREncryptor class.
For a complete list of the TCREncryptor class members, see the TCREncryptor Members topic.

Published

Name Description

Data Access Components for MySQL112

DataHeader Specifies whether the additional
information is stored with the
encrypted data.

EncryptionAlgorithm Specifies the algorithm of data
encryption.

HashAlgorithm Specifies the algorithm of
generating hash data.

InvalidHashAction Specifies the action to perform on
data fetching when hash data is
invalid.

Password Used to set a password that is used
to generate a key for encryption.

See Also
 TCREncryptor Class
 TCREncryptor Class Members

© 1997-2012 Devart. All Rights Reserved.

Specifies whether the additional information is stored with the encrypted data.

Class

TCREncryptor

Syntax

property DataHeader: TCREncDataHeader default ehTagAndHash;

Remarks

Use DataHeader to specify whether the additional information is stored with the encrypted data. Default
value is ehTagAndHash.

© 1997-2012 Devart. All Rights Reserved.

Specifies the algorithm of data encryption.

Class

TCREncryptor

Syntax

property EncryptionAlgorithm: TCREncryptionAlgorithm default
eaBlowfish;

Remarks

Use EncryptionAlgorithm to specify the algorithm of data encryption. Default value is eaBlowfish.

© 1997-2012 Devart. All Rights Reserved.

Specifies the algorithm of generating hash data.

Class

TCREncryptor

Syntax

property HashAlgorithm: TCRHashAlgorithm default haSHA1;

Remarks

Use HashAlgorithm to specify the algorithm of generating hash data. This property is used only if hash is
stored with the encrypted data (the DataHeader property is set to ehTagAndHash). Default value is
haSHA1.

113Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Specifies the action to perform on data fetching when hash data is invalid.

Class

TCREncryptor

Syntax

property InvalidHashAction: TCRInvalidHashAction default ihFail;

Remarks

Use InvalidHashAction to specify the action to perform on data fetching when hash data is invalid. This
property is used only if hash is stored with the encrypted data (the DataHeader property is set to
ehTagAndHash). Default value is ihFail.
If the DataHeader property is set to ehTagAndHash, then on data fetching from a server the hash check
is performed for each record. After data decryption its hash is calculated and compared with the hash
stored in the field. If these values don't coincide, it means that the stored data is incorrect, and
depending on the value of the InvalidHashAction property one of the following actions is performed:
ihFail - the EInvalidHash exception is raised and further data reading from the server is interrupted.
ihSkipData - the value of the field for this record is set to Null. No exception is raised.
ihIgnoreError - in spite of the fact that the data is not valid, the value is set in the field. No exception is
raised.

© 1997-2012 Devart. All Rights Reserved.

Used to set a password that is used to generate a key for encryption.

Class

TCREncryptor

Syntax

property Password: string;

Remarks

Use Password to set a password that is used to generate a key for encryption.
Note: Calling of the SetKey method clears the Password property.

© 1997-2012 Devart. All Rights Reserved.

Methods of the TCREncryptor class.
For a complete list of the TCREncryptor class members, see the TCREncryptor Members topic.

Public

Name Description

SetKey Sets a key, using which data is
encrypted.

See Also
 TCREncryptor Class
 TCREncryptor Class Members

© 1997-2012 Devart. All Rights Reserved.

Sets a key, using which data is encrypted.

Class

TCREncryptor

Syntax

procedure SetKey(const Key; Count: Integer); overload;procedure

Data Access Components for MySQL114

SetKey(const Key: TBytes; Offset: Integer; Count: Integer);
overload;
Parameters

Key
Holds bytes that represent a key.

Offset
Offset in bytes to the position, where the key begins.

Count
Number of bytes to use from Key.

Remarks

Use SetKey to set a key, using which data is encrypted.
Note: Calling of the SetKey method clears the Password property.

© 1997-2012 Devart. All Rights Reserved.

115Data Access Components for MySQL

17.4.2 Enumerations

Enumerations in the CREncryption unit.

Enumerations

Name Description

TCREncDataHeader Specifies whether the additional
information is stored with the
encrypted data.

TCREncryptionAlgorithm Specifies the algorithm of data
encryption.

TCRHashAlgorithm Specifies the algorithm of
generating hash data.

TCRInvalidHashAction Specifies the action to perform on
data fetching when hash data is
invalid.

© 1997-2012 Devart. All Rights Reserved.

17.4.2.1 CREncryption.TCREncDataHeader Enumeration

Specifies whether the additional information is stored with the encrypted data.

Unit

CREncryption

Syntax

TCREncDataHeader = (ehTagAndHash, ehTag, ehNone);

Values

Value Meaning

ehNone No additional information is stored.

ehTag GUID and the random initialization vector are stored with the encrypted
data.

ehTagAndHash Hash, GUID, and the random initialization vector are stored with the
encrypted data.

© 1997-2012 Devart. All Rights Reserved.

17.4.2.2 CREncryption.TCREncryptionAlgorithm Enumeration

Specifies the algorithm of data encryption.

Unit

CREncryption

Syntax

TCREncryptionAlgorithm = (eaTripleDES, eaBlowfish, eaAES128,
eaAES192, eaAES256, eaCast128, eaRC4);

Values

Value Meaning

eaAES128 The AES encryption algorithm with key size of 128 bits is used.

eaAES192 The AES encryption algorithm with key size of 192 bits is used.

eaAES256 The AES encryption algorithm with key size of 256 bits is used.

eaBlowfish The Blowfish encryption algorithm is used.

eaCast128 The CAST-128 encryption algorithm with key size of 128 bits is used.

eaRC4 The RC4 encryption algorithm is used.

eaTripleDES The Triple DES encryption algorithm is used.

Data Access Components for MySQL116

© 1997-2012 Devart. All Rights Reserved.

17.4.2.3 CREncryption.TCRHashAlgorithm Enumeration

Specifies the algorithm of generating hash data.

Unit

CREncryption

Syntax

TCRHashAlgorithm = (haSHA1, haMD5);

Values

Value Meaning

haMD5 The MD5 hash algorithm is used.

haSHA1 The SHA-1 hash algorithm is used.

© 1997-2012 Devart. All Rights Reserved.

17.4.2.4 CREncryption.TCRInvalidHashAction Enumeration

Specifies the action to perform on data fetching when hash data is invalid.

Unit

CREncryption

Syntax

TCRInvalidHashAction = (ihFail, ihSkipData, ihIgnoreError);

Values

Value Meaning

ihFail The EInvalidHash exception is raised and further data reading from the
server is interrupted.

ihIgnoreError In spite of the fact that the data is not valid, the value is set in the field.
No exception is raised.

ihSkipData The value of the field for this record is set to Null. No exception is raised.

© 1997-2012 Devart. All Rights Reserved.

117Data Access Components for MySQL

17.5 CRVio

This unit contains classes, used for establishing HTTP connections.

Classes

Name Description

THttpOptions The class contains settings for HTTP
connection.

TProxyOptions This class is used when connecting
through proxy server to establish
an HTTP connection.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL118

17.5.1 Classes

Classes in the CRVio unit.

Classes

Name Description

THttpOptions The class contains settings for HTTP
connection.

TProxyOptions This class is used when connecting
through proxy server to establish
an HTTP connection.

© 1997-2012 Devart. All Rights Reserved.

17.5.1.1 CRVio.THttpOptions Class

The class contains settings for HTTP connection.
For a list of all members of this type, see THttpOptions members.

Unit

CRVio

Syntax

THttpOptions = class(TPersistent);

Remarks

The THttpOptions class contains settings for HTTP connection.
For more information on HTTP tunneling refer to the Network Tunneling article.

Inheritance Hierarchy

TObject
 THttpOptions

See Also

 Network Tunneling

© 1997-2012 Devart. All Rights Reserved.

THttpOptions class overview.

Properties

Name Description

Password Holds the password for HTTP
authorization.

ProxyOptions Holds a TProxyOptions object that
contains settings for proxy
connection.

Url Holds the url of the tunneling PHP
script.

Username Holds the user name for HTTP
authorization.

© 1997-2012 Devart. All Rights Reserved.

Properties of the THttpOptions class.
For a complete list of the THttpOptions class members, see the THttpOptions Members topic.

Published

119Data Access Components for MySQL

Name Description

Password Holds the password for HTTP
authorization.

ProxyOptions Holds a TProxyOptions object that
contains settings for proxy
connection.

Url Holds the url of the tunneling PHP
script.

Username Holds the user name for HTTP
authorization.

See Also
 THttpOptions Class
 THttpOptions Class Members

© 1997-2012 Devart. All Rights Reserved.

Holds the password for HTTP authorization.

Class

THttpOptions

Syntax

property Password: string;

Remarks

The Password property holds the password for HTTP authorization.

© 1997-2012 Devart. All Rights Reserved.

Holds a TProxyOptions object that contains settings for proxy connection.

Class

THttpOptions

Syntax

property ProxyOptions: TProxyOptions;

Remarks

The ProxyOptions property holds a TProxyOptions object that contains settings for proxy connection.
If it is necessary to connect to server in another network, sometimes the client can reach it only through
proxy. In this case in addition to connection string you have to setup ProxyOptions.

© 1997-2012 Devart. All Rights Reserved.

Holds the url of the tunneling PHP script.

Class

THttpOptions

Syntax

property Url: string;

Remarks

The Url property holds the url of the tunneling PHP script. For example, if the script is in the server root,
the url can be the following: http://server/tunnel.php.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL120

Holds the user name for HTTP authorization.

Class

THttpOptions

Syntax

property Username: string;

Remarks

The Username property holds the user name for HTTP authorization.

© 1997-2012 Devart. All Rights Reserved.

17.5.1.2 CRVio.TProxyOptions Class

This class is used when connecting through proxy server to establish an HTTP connection.
For a list of all members of this type, see TProxyOptions members.

Unit

CRVio

Syntax

TProxyOptions = class(TPersistent);

Remarks

The TProxyOptions class is used when connecting through proxy server to establish an HTTP connection.

Inheritance Hierarchy

TObject
 TProxyOptions

© 1997-2012 Devart. All Rights Reserved.

TProxyOptions class overview.

Properties

Name Description

Hostname Holds the host name or IP address
to connect to proxy server.

Password Holds the password for the proxy
server account.

Port Used to specify the port number for
TCP/IP connection with proxy
server.

Username Holds the proxy server account
name.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TProxyOptions class.
For a complete list of the TProxyOptions class members, see the TProxyOptions Members topic.

Published

Name Description

Hostname Holds the host name or IP address
to connect to proxy server.

Password Holds the password for the proxy
server account.

Port Used to specify the port number for
TCP/IP connection with proxy
server.

121Data Access Components for MySQL

Username Holds the proxy server account
name.

See Also
 TProxyOptions Class
 TProxyOptions Class Members

© 1997-2012 Devart. All Rights Reserved.

Holds the host name or IP address to connect to proxy server.

Class

TProxyOptions

Syntax

property Hostname: string;

Remarks

The Hostname property holds the host name or IP address to connect to proxy server.

© 1997-2012 Devart. All Rights Reserved.

Holds the password for the proxy server account.

Class

TProxyOptions

Syntax

property Password: string;

Remarks

The Password property holds the password for the proxy server account.

© 1997-2012 Devart. All Rights Reserved.

Used to specify the port number for TCP/IP connection with proxy server.

Class

TProxyOptions

Syntax

property Port: integer default 0;

Remarks

Use the Port property to specify the port number for TCP/IP connection with proxy server.

© 1997-2012 Devart. All Rights Reserved.

Holds the proxy server account name.

Class

TProxyOptions

Syntax

property Username: string;

Remarks

The Username property holds the proxy server account name.

Data Access Components for MySQL122

© 1997-2012 Devart. All Rights Reserved.

123Data Access Components for MySQL

17.6 DADump

This unit contains the base class for the TMyDump component.

Classes

Name Description

TDADump A base class that defines
functionality for descendant classes
that dump database objects to a
script.

TDADumpOptions This class allows setting up the
behaviour of the TDADump class.

Types

Name Description

TDABackupProgressEvent This type is used for the TDADump.
OnBackupProgress event.

TDARestoreProgressEvent This type is used for the TDADump.
OnRestoreProgress event.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL124

17.6.1 Classes

Classes in the DADump unit.

Classes

Name Description

TDADump A base class that defines
functionality for descendant classes
that dump database objects to a
script.

TDADumpOptions This class allows setting up the
behaviour of the TDADump class.

© 1997-2012 Devart. All Rights Reserved.

17.6.1.1 DADump.TDADump Class

A base class that defines functionality for descendant classes that dump database objects to a script.
For a list of all members of this type, see TDADump members.

Unit

DADump

Syntax

TDADump = class(TComponent);

Remarks

TDADump is a base class that defines functionality for descendant classes that dump database objects to
a script. Applications never use TDADump objects directly. Instead they use descendants of TDADump.
Use TDADump descedants to dump database objects, such as tables, stored procedures, and functions
for backup or for transferring the data to another SQL server. The dump contains SQL statements to
create the table or other database objects and/or populate the table.

Inheritance Hierarchy

TObject
 TDADump

© 1997-2012 Devart. All Rights Reserved.

TDADump class overview.

Properties

Name Description

Connection Used to specify a connection object
that will be used to connect to a
data store.

Debug Used to display executing
statement, all its parameters'
values, and the type of parameters.

Options Used to specify the behaviour of a
TDADump component.

SQL Used to set or get the dump script.

TableNames Used to set the names of the tables
to dump.

Methods

Name Description

Backup Dumps database objects to the
TDADump.SQL property.

125Data Access Components for MySQL

BackupQuery Dumps the results of a particular
query.

BackupToFile Dumps database objects to the
specified file.

BackupToStream Dumps database objects to the
stream.

Restore Executes a script contained in the
SQL property.

RestoreFromFile Executes a script from a file.

RestoreFromStream Executes a script received from the
stream.

Events

Name Description

OnBackupProgress Occurs to indicate the TDADump.
Backup, M:Devart.Dac.TDADump.
BackupToFile(System.String) or M:
Devart.Dac.TDADump.
BackupToStream(Borland.Vcl.
TStream) method execution
progress.

OnError Occurs when MySQL raises some
error on TDADump.Restore.

OnRestoreProgress Occurs to indicate the TDADump.
Restore, TDADump.RestoreFromFile
, or TDADump.RestoreFromStream
method execution progress.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDADump class.
For a complete list of the TDADump class members, see the TDADump Members topic.

Public

Name Description

Connection Used to specify a connection object
that will be used to connect to a
data store.

Options Used to specify the behaviour of a
TDADump component.

Published

Name Description

Debug Used to display executing
statement, all its parameters'
values, and the type of parameters.

SQL Used to set or get the dump script.

TableNames Used to set the names of the tables
to dump.

See Also
 TDADump Class
 TDADump Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify a connection object that will be used to connect to a data store.

Class

TDADump

Data Access Components for MySQL126

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify a connection object that will be used to connect to a data store.
Set at design-time by selecting from the list of provided TCustomDAConnection or its descendant class
objects.
At runtime, link an instance of a TCustomDAConnection descendant to the Connection property.

See Also

 TCustomDAConnection

© 1997-2012 Devart. All Rights Reserved.

Used to display executing statement, all its parameters' values, and the type of parameters.

Class

TDADump

Syntax

property Debug: boolean default False;

Remarks

Used to display executing statement, all its parameters' values, and the type of parameters.

See Also

 TCustomDADataSet.Debug
 TCustomDASQL.Debug

© 1997-2012 Devart. All Rights Reserved.

Used to specify the behaviour of a TDADump component.

Class

TDADump

Syntax

property Options: TDADumpOptions;

Remarks

Use the Options property to specify the behaviour of a TDADump component.
Descriptions of all options are in the table below.

Option Name Description

AddDrop Used to add drop statements to a script before
creating statements.

GenerateHeader Used to add a comment header to a script.

QuoteNames Used for TDADump to quote all database object
names in generated SQL statements.

©

 1997-2012 Devart. All Rights Reserved.

127Data Access Components for MySQL

Used to set or get the dump script.

Class

TDADump

Syntax

property SQL: _TStrings;

Remarks

Use the SQL property to get or set the dump script. The SQL property stores script that is executed by
the Restore method. This property will store the result of Backup and BackupQuery. At design time the
SQL property can be edited by invoking the String List editor in Object Inspector.

See Also

 Restore
 Backup
 BackupQuery

© 1997-2012 Devart. All Rights Reserved.

Used to set the names of the tables to dump.

Class

TDADump

Syntax

property TableNames: string;

Remarks

Use the TableNames property to set the names of the tables to dump. Table names must be separated
with commas. If it is empty, the Backup method will dump all available tables.

See Also

 Backup

© 1997-2012 Devart. All Rights Reserved.

Methods of the TDADump class.
For a complete list of the TDADump class members, see the TDADump Members topic.

Public

Name Description

Backup Dumps database objects to the
TDADump.SQL property.

BackupQuery Dumps the results of a particular
query.

BackupToFile Dumps database objects to the
specified file.

BackupToStream Dumps database objects to the
stream.

Restore Executes a script contained in the
SQL property.

RestoreFromFile Executes a script from a file.

RestoreFromStream Executes a script received from the
stream.

Data Access Components for MySQL128

See Also
 TDADump Class
 TDADump Class Members

© 1997-2012 Devart. All Rights Reserved.

Dumps database objects to the SQL property.

Class

TDADump

Syntax

procedure Backup;

Remarks

Call the Backup method to dump database objects. The result script will be stored in the SQL property.

See Also

 SQL
 Restore
 BackupToFile
 BackupToStream
 BackupQuery

© 1997-2012 Devart. All Rights Reserved.

Dumps the results of a particular query.

Class

TDADump

Syntax

procedure BackupQuery(const Query: string);
Parameters

Query
Holds a query used for data selection.

Remarks

Call the BackupQuery method to dump the results of a particular query. Query must be a valid select
statement. If this query selects data from several tables, only data of the first table in the from list will
be dumped.

See Also

 Restore
 Backup
 BackupToFile
 BackupToStream

© 1997-2012 Devart. All Rights Reserved.

Dumps database objects to the specified file.

Class

TDADump

Syntax

129Data Access Components for MySQL

procedure BackupToFile(const FileName: string; const Query: string
= '');
Parameters

FileName
Holds the file name to dump database objects to.

Query
Your query to receive the data for dumping.

Remarks

Call the BackupToFile method to dump database objects to the specified file.

See Also

 RestoreFromStream
 Backup
 BackupToStream

© 1997-2012 Devart. All Rights Reserved.

Dumps database objects to the stream.

Class

TDADump

Syntax

procedure BackupToStream(Stream: TStream; const Query: string = ''
);
Parameters

Stream
Holds the stream to dump database objects to.

Query
Your query to receive the data for dumping.

Remarks

Call the BackupToStream method to dump database objects to the stream.

See Also

 RestoreFromStream
 Backup
 BackupToFile

© 1997-2012 Devart. All Rights Reserved.

Executes a script contained in the SQL property.

Class

TDADump

Syntax

procedure Restore;

Remarks

Call the Restore method to execute a script contained in the SQL property.

Data Access Components for MySQL130

See Also

 RestoreFromFile
 RestoreFromStream
 Backup
 SQL

© 1997-2012 Devart. All Rights Reserved.

Executes a script from a file.

Class

TDADump

Syntax

procedure RestoreFromFile(const FileName: string);
Parameters

FileName
Holds the file name to execute a script from.

Remarks

Call the RestoreFromFile method to execute a script from the specified file.

See Also

 Restore
 RestoreFromStream
 BackupToFile

© 1997-2012 Devart. All Rights Reserved.

Executes a script received from the stream.

Class

TDADump

Syntax

procedure RestoreFromStream(Stream: TStream);
Parameters

Stream
Holds a stream to receive a script to be executed.

Remarks

Call the RestoreFromStream method to execute a script received from the stream.

See Also

 Restore
 RestoreFromFile
 BackupToStream

© 1997-2012 Devart. All Rights Reserved.

Events of the TDADump class.
For a complete list of the TDADump class members, see the TDADump Members topic.

Published

131Data Access Components for MySQL

Name Description

OnBackupProgress Occurs to indicate the TDADump.
Backup, M:Devart.Dac.TDADump.
BackupToFile(System.String) or M:
Devart.Dac.TDADump.
BackupToStream(Borland.Vcl.
TStream) method execution
progress.

OnError Occurs when MySQL raises some
error on TDADump.Restore.

OnRestoreProgress Occurs to indicate the TDADump.
Restore, TDADump.RestoreFromFile
, or TDADump.RestoreFromStream
method execution progress.

See Also
 TDADump Class
 TDADump Class Members

© 1997-2012 Devart. All Rights Reserved.

Occurs to indicate the Backup, M:Devart.Dac.TDADump.BackupToFile(System.String) or M:Devart.Dac.
TDADump.BackupToStream(Borland.Vcl.TStream) method execution progress.

Class

TDADump

Syntax

property OnBackupProgress: TDABackupProgressEvent;

Remarks

The OnBackupProgress event occurs several times during the dumping process of the Backup, M:Devart.
Dac.TDADump.BackupToFile(System.String), or M:Devart.Dac.TDADump.BackupToStream(Borland.Vcl.
TStream) method execution and indicates its progress. ObjectName parameter indicates the name of the
currently dumping database object. ObjectNum shows the number of the current database object in the
backup queue starting from zero. ObjectCount shows the quantity of database objects to dump. Percent
parameter shows the current percentage of the current table data dumped, not the current percentage
of the entire dump process.

See Also

 Backup
 BackupToFile
 BackupToStream

© 1997-2012 Devart. All Rights Reserved.

Occurs when MySQL raises some error on Restore.

Class

TDADump

Syntax

property OnError: TOnErrorEvent;

Remarks

The OnError event occurs when MySQL raises some error on Restore.
Action indicates the action to take when the OnError handler exits. On entry into the handler, Action is
always set to eaException.
Note: You should add the DAScript module to the 'uses' list to use the OnError event handler.

Data Access Components for MySQL132

© 1997-2012 Devart. All Rights Reserved.

Occurs to indicate the Restore, RestoreFromFile, or RestoreFromStream method execution progress.

Class

TDADump

Syntax

property OnRestoreProgress: TDARestoreProgressEvent;

Remarks

The OnRestoreProgress event occurs several times during the dumping process of the Restore,
RestoreFromFile, or RestoreFromStream method execution and indicates its progress. The Percent
parameter of the OnRestoreProgress event handler indicates the percentage of the whole restore script
execution.

See Also

 Restore
 RestoreFromFile
 RestoreFromStream

© 1997-2012 Devart. All Rights Reserved.

17.6.1.2 DADump.TDADumpOptions Class

This class allows setting up the behaviour of the TDADump class.
For a list of all members of this type, see TDADumpOptions members.

Unit

DADump

Syntax

TDADumpOptions = class(TPersistent);

Inheritance Hierarchy

TObject
 TDADumpOptions

© 1997-2012 Devart. All Rights Reserved.

TDADumpOptions class overview.

Properties

Name Description

AddDrop Used to add drop statements to a
script before creating statements.

GenerateHeader Used to add a comment header to a
script.

QuoteNames Used for TDADump to quote all
database object names in generated
SQL statements.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDADumpOptions class.
For a complete list of the TDADumpOptions class members, see the TDADumpOptions Members topic.

Published

Name Description

133Data Access Components for MySQL

AddDrop Used to add drop statements to a
script before creating statements.

GenerateHeader Used to add a comment header to a
script.

QuoteNames Used for TDADump to quote all
database object names in generated
SQL statements.

See Also
 TDADumpOptions Class
 TDADumpOptions Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to add drop statements to a script before creating statements.

Class

TDADumpOptions

Syntax

property AddDrop: boolean default True;

Remarks

Use the AddDrop property to add drop statements to a script before creating statements.

© 1997-2012 Devart. All Rights Reserved.

Used to add a comment header to a script.

Class

TDADumpOptions

Syntax

property GenerateHeader: boolean default True;

Remarks

Use the GenerateHeader property to add a comment header to a script. It contains script generation
date, DAC version, and some other information.

© 1997-2012 Devart. All Rights Reserved.

Used for TDADump to quote all database object names in generated SQL statements.

Class

TDADumpOptions

Syntax

property QuoteNames: boolean default False;

Remarks

If the QuoteNames property is True, TDADump quotes all database object names in generated SQL
statements.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL134

17.6.2 Types

Types in the DADump unit.

Types

Name Description

TDABackupProgressEvent This type is used for the TDADump.
OnBackupProgress event.

TDARestoreProgressEvent This type is used for the TDADump.
OnRestoreProgress event.

© 1997-2012 Devart. All Rights Reserved.

17.6.2.1 DADump.TDABackupProgressEvent Procedure Reference

This type is used for the TDADump.OnBackupProgress event.

Unit

DADump

Syntax

TDABackupProgressEvent = procedure (Sender: TObject; ObjectName:
string; ObjectNum: integer; ObjectCount: integer; Percent:
integer) of object;
Parameters

Sender
An object that raised the event.

ObjectName
The name of the currently dumping database object.

ObjectNum
The number of the current database object in the backup queue starting from zero.

ObjectCount
The quantity of database objects to dump.

Percent
The current percentage of the current table data dumped.

© 1997-2012 Devart. All Rights Reserved.

17.6.2.2 DADump.TDARestoreProgressEvent Procedure Reference

This type is used for the TDADump.OnRestoreProgress event.

Unit

DADump

Syntax

TDARestoreProgressEvent = procedure (Sender: TObject; Percent:
integer) of object;
Parameters

Sender
An object that raised the event.

Percent
The percentage of the whole restore script execution.

© 1997-2012 Devart. All Rights Reserved.

135Data Access Components for MySQL

17.7 DALoader

This unit contains the base class for the TMyLoader component.

Classes

Name Description

TDAColumn Represents the attributes for
column loading.

TDAColumns Holds a collection of TDAColumn
objects.

TDALoader This class allows loading external
data into database.

Types

Name Description

TDAPutDataEvent This type is used for the
TDALoader.OnPutData event.

TGetColumnDataEvent This type is used for the
TDALoader.OnGetColumnData
event.

TLoaderProgressEvent This type is used for the
TDALoader.OnProgress event.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL136

17.7.1 Classes

Classes in the DALoader unit.

Classes

Name Description

TDAColumn Represents the attributes for
column loading.

TDAColumns Holds a collection of TDAColumn
objects.

TDALoader This class allows loading external
data into database.

© 1997-2012 Devart. All Rights Reserved.

17.7.1.1 DALoader.TDAColumn Class

Represents the attributes for column loading.
For a list of all members of this type, see TDAColumn members.

Unit

DALoader

Syntax

TDAColumn = class(TCollectionItem);

Remarks

Each TDALoader uses TDAColumns to maintain a collection of TDAColumn objects. TDAColumn object
represents the attributes for column loading. Every TDAColumn object corresponds to one of the table
fields with the same name as its TDAColumn.Name property.
To create columns at design-time use the column editor of the TDALoader component.

Inheritance Hierarchy

TObject
 TDAColumn

See Also

 TDALoader
 TDAColumns

© 1997-2012 Devart. All Rights Reserved.

TDAColumn class overview.

Properties

Name Description

FieldType Used to specify the types of values
that will be loaded.

Name Used to specify the field name of
loading table.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDAColumn class.
For a complete list of the TDAColumn class members, see the TDAColumn Members topic.

Published

Name Description

137Data Access Components for MySQL

FieldType Used to specify the types of values
that will be loaded.

Name Used to specify the field name of
loading table.

See Also
 TDAColumn Class
 TDAColumn Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify the types of values that will be loaded.

Class

TDAColumn

Syntax

property FieldType: TFieldType default ftString;

Remarks

Use the FieldType property to specify the types of values that will be loaded. Field types for columns
may not match data types for the corresponding fields in the database table. TDALoader will cast data
values to the types of their fields.

© 1997-2012 Devart. All Rights Reserved.

Used to specify the field name of loading table.

Class

TDAColumn

Syntax

property Name: string;

Remarks

Each TDAColumn corresponds to one field of the loading table. Use the Name property to specify the
name of this field.

See Also

 FieldType

© 1997-2012 Devart. All Rights Reserved.

17.7.1.2 DALoader.TDAColumns Class

Holds a collection of TDAColumn objects.
For a list of all members of this type, see TDAColumns members.

Unit

DALoader

Syntax

TDAColumns = class(TOwnedCollection);

Remarks

Each TDAColumns holds a collection of TDAColumn objects. TDAColumns maintains an index of the
columns in its Items array. The Count property contains the number of columns in the collection. At
design-time, use the Columns editor to add, remove, or modify columns.

Inheritance Hierarchy

Data Access Components for MySQL138

TObject
 TDAColumns

See Also

 TDALoader
 TDAColumn

© 1997-2012 Devart. All Rights Reserved.

TDAColumns class overview.

Properties

Name Description

Items Used to access individual columns.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDAColumns class.
For a complete list of the TDAColumns class members, see the TDAColumns Members topic.

Public

Name Description

Items Used to access individual columns.

See Also
 TDAColumns Class
 TDAColumns Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to access individual columns.

Class

TDAColumns

Syntax

property Items[Index: integer]: TDAColumn; default;
Parameters

Index
Holds the Index of TDAColumn to refer to.

Remarks

Use the Items property to access individual columns. The value of the Index parameter corresponds to
the Index property of TDAColumn.

See Also

 TDAColumn

© 1997-2012 Devart. All Rights Reserved.

17.7.1.3 DALoader.TDALoader Class

This class allows loading external data into database.
For a list of all members of this type, see TDALoader members.

Unit

DALoader

139Data Access Components for MySQL

Syntax

TDALoader = class(TComponent);

Remarks

TDALoader allows loading external data into database. To specify the name of loading table set the
TDALoader.TableName property. Use the TDALoader.Columns property to access individual columns.
Write the TDALoader.OnGetColumnData or TDALoader.OnPutData event handlers to read external data
and pass it to the database. Call the TDALoader.Load method to start loading data.

Inheritance Hierarchy

TObject
 TDALoader

See Also

 TMyLoader

© 1997-2012 Devart. All Rights Reserved.

TDALoader class overview.

Properties

Name Description

Columns Used to add a TDAColumn object
for each field that will be loaded.

Connection Used to specify
TCustomDAConnection in which
TDALoader will be executed.

TableName Used to specify the name of the
table to which data will be loaded.

Methods

Name Description

CreateColumns Creates TDAColumn objects for all
fields of the table with the same
name as TDALoader.TableName.

Load Starts loading data.

LoadFromDataSet Loads data from the specified
dataset.

PutColumnData Overloaded. Puts the value of
individual columns.

Events

Name Description

OnGetColumnData Occurs when it is needed to put
column values.

OnProgress Occurs if handling data loading
progress of the TDALoader.
LoadFromDataSet method is
needed.

OnPutData Occurs when putting loading data
by rows is needed.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDALoader class.
For a complete list of the TDALoader class members, see the TDALoader Members topic.

Public

Data Access Components for MySQL140

Name Description

Columns Used to add a TDAColumn object
for each field that will be loaded.

Connection Used to specify
TCustomDAConnection in which
TDALoader will be executed.

TableName Used to specify the name of the
table to which data will be loaded.

See Also
 TDALoader Class
 TDALoader Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to add a TDAColumn object for each field that will be loaded.

Class

TDALoader

Syntax

property Columns: TDAColumns stored IsColumnsStored;

Remarks

Use the Columns property to add a TDAColumn object for each field that will be loaded.

See Also

 TDAColumns

© 1997-2012 Devart. All Rights Reserved.

Used to specify TCustomDAConnection in which TDALoader will be executed.

Class

TDALoader

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify TCustomDAConnection in which TDALoader will be executed. If
Connection is not connected, the Load method calls TCustomDAConnection.Connect.

See Also

 TCustomDAConnection

© 1997-2012 Devart. All Rights Reserved.

Used to specify the name of the table to which data will be loaded.

Class

TDALoader

Syntax

property TableName: string;

141Data Access Components for MySQL

Remarks

Set the TableName property to specify the name of the table to which data will be loaded. Add
TDAColumn objects to Columns for the fields that are needed to be loaded.

See Also

 TDAColumn
 M:Devart.Dac.TCustomDAConnection.GetTableNames(Borland.Vcl.TStrings,System.Boolean)

© 1997-2012 Devart. All Rights Reserved.

Methods of the TDALoader class.
For a complete list of the TDALoader class members, see the TDALoader Members topic.

Public

Name Description

CreateColumns Creates TDAColumn objects for all
fields of the table with the same
name as TDALoader.TableName.

Load Starts loading data.

LoadFromDataSet Loads data from the specified
dataset.

PutColumnData Overloaded. Puts the value of
individual columns.

See Also
 TDALoader Class
 TDALoader Class Members

© 1997-2012 Devart. All Rights Reserved.

Creates TDAColumn objects for all fields of the table with the same name as TableName.

Class

TDALoader

Syntax

procedure CreateColumns;

Remarks

Call the CreateColumns method to create TDAColumn objects for all fields of the table with the same
name as TableName. If columns were created before, they will be recreated. You can call CreateColumns
from the component popup menu at design-time. After you can customize column loading by setting
properties of TDAColumn objects.

See Also

 TDAColumn
 TableName

© 1997-2012 Devart. All Rights Reserved.

Starts loading data.

Class

TDALoader

Syntax

Data Access Components for MySQL142

procedure Load; virtual;

Remarks

Call the Load method to start loading data. At first it is necessary to create columns and write one of
the OnPutData or OnGetColumnData event handlers.

See Also

 OnGetColumnData
 OnPutData

© 1997-2012 Devart. All Rights Reserved.

Loads data from the specified dataset.

Class

TDALoader

Syntax

procedure LoadFromDataSet(DataSet: TDataSet);
Parameters

DataSet
Holds the dataset to load data from.

Remarks

Call the LoadFromDataSet method to load data from the specified dataset. There is no need to create
columns and write event handlers for OnPutData and OnGetColumnData before calling this method.

© 1997-2012 Devart. All Rights Reserved.

Puts the value of individual columns.

Class

TDALoader

Overload List

Name Description

PutColumnData(Col: integer; Row: integer;
const Value: variant)

Puts the value of individual columns by the
column index.

PutColumnData(const ColName: string; Row:
integer; const Value: variant)

Puts the value of individual columns by the
column name.

© 1997-2012 Devart. All Rights Reserved.

Puts the value of individual columns by the column index.

Class

TDALoader

Syntax

procedure PutColumnData(Col: integer; Row: integer; const Value:
variant); overload; virtual
Parameters

Col
Holds the index of a loading column. The first column has index 0.

Row

143Data Access Components for MySQL

Holds the number of loading row. Row starts from 1.

Value
Holds the column value.

Remarks

Call the PutColumnData method to put the value of individual columns. The Col parameter indicates the
index of loading column. The first column has index 0. The Row parameter indicates the number of the
loading row. Row starts from 1.
This overloaded method works faster because it searches the right index by its index, not by the index
name.
The value of a column should be assigned to the Value parameter.

See Also

 TDALoader.OnPutData

© 1997-2012 Devart. All Rights Reserved.

Puts the value of individual columns by the column name.

Class

TDALoader

Syntax

procedure PutColumnData(const ColName: string; Row: integer; const
Value: variant); overload
Parameters

ColName
Hods the name of a loading column.

Row
Holds the number of loading row. Row starts from 1.

Value
Holds the column value.

© 1997-2012 Devart. All Rights Reserved.

Events of the TDALoader class.
For a complete list of the TDALoader class members, see the TDALoader Members topic.

Public

Name Description

OnGetColumnData Occurs when it is needed to put
column values.

OnProgress Occurs if handling data loading
progress of the TDALoader.
LoadFromDataSet method is
needed.

OnPutData Occurs when putting loading data
by rows is needed.

See Also
 TDALoader Class
 TDALoader Class Members

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL144

Occurs when it is needed to put column values.

Class

TDALoader

Syntax

property OnGetColumnData: TGetColumnDataEvent;

Remarks

Write the OnGetColumnData event handler to put column values. TDALoader calls the OnGetColumnData
event handler for each column in the loop. Column points to a TDAColumn object that corresponds to the
current loading column. Use its Name or Index property to identify what column is loading. The Row
parameter indicates the current loading record. TDALoader increments the Row parameter when all the
columns of the current record are loaded. The first row is 1. Set EOF to True to stop data loading. Fill the
Value parameter by column values. To start loading call the Load method.
Another way to load data is using the OnPutData event.

Example

This handler loads 1000 rows.

procedure TfmMain.GetColumnData(Sender: TObject;
 Column: TDAColumn; Row: Integer; var Value: Variant;
 var EOF: Boolean);
begin
 if Row <= 1000 then begin
 case Column.Index of
 0: Value := Row;
 1: Value := Random(100);
 2: Value := Random*100;
 3: Value := 'abc01234567890123456789';
 4: Value := Date;
 else
 Value := Null;
 end;
 end
 else
 EOF := True;
end;

See Also


OnPutData

 Load

© 1997-2012 Devart. All Rights Reserved.

Occurs if handling data loading progress of the LoadFromDataSet method is needed.

Class

TDALoader

Syntax

property OnProgress: TLoaderProgressEvent;

Remarks

145Data Access Components for MySQL

Add a handler to this event if you want to handle data loading progress of the LoadFromDataSet
method.

See Also

 LoadFromDataSet

© 1997-2012 Devart. All Rights Reserved.

Occurs when putting loading data by rows is needed.

Class

TDALoader

Syntax

property OnPutData: TDAPutDataEvent;

Remarks

Write the OnPutData event handler to put loading data by rows.
Note that rows should be loaded from the first in the ascending order.TMyLoader will flush data to
MySQL when it is needed (see TMyLoader.RowsPerQuery).
To start loading, call the Load method.

Example

This handler loads 1000 rows.

procedure TfmMain.PutData(Sender: TDALoader);
var
 Count: Integer;
 i: Integer;
begin
 Count := StrToInt(edRows.Text);
 for i := 1 to Count dobegin
 Sender.PutColumnData(0, i, 1);
 Sender.PutColumnData(1, i, Random(100));
 Sender.PutColumnData(2, i, Random*100);
 Sender.PutColumnData(3, i, 'abc01234567890123456789');
 Sender.PutColumnData(4, i, Date);
 end;
end;

See Also


TDALoader.PutColumnData

 Load

 OnGetColumnData

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL146

17.7.2 Types

Types in the DALoader unit.

Types

Name Description

TDAPutDataEvent This type is used for the
TDALoader.OnPutData event.

TGetColumnDataEvent This type is used for the
TDALoader.OnGetColumnData
event.

TLoaderProgressEvent This type is used for the
TDALoader.OnProgress event.

© 1997-2012 Devart. All Rights Reserved.

17.7.2.1 DALoader.TDAPutDataEvent Procedure Reference

This type is used for the TDALoader.OnPutData event.

Unit

DALoader

Syntax

TDAPutDataEvent = procedure (Sender: TDALoader) of object;
Parameters

Sender
An object that raised the event.

© 1997-2012 Devart. All Rights Reserved.

17.7.2.2 DALoader.TGetColumnDataEvent Procedure Reference

This type is used for the TDALoader.OnGetColumnData event.

Unit

DALoader

Syntax

TGetColumnDataEvent = procedure (Sender: TObject; Column:
TDAColumn; Row: integer; var Value: variant; var IsEOF:
boolean) of object;
Parameters

Sender
An object that raised the event.

Column
Points to TDAColumn object that corresponds to the current loading column.

Row
Indicates the current loading record.

Value
Holds column values.

IsEOF
True, if data loading needs to be stopped.

© 1997-2012 Devart. All Rights Reserved.

147Data Access Components for MySQL

17.7.2.3 DALoader.TLoaderProgressEvent Procedure Reference

This type is used for the TDALoader.OnProgress event.

Unit

DALoader

Syntax

TLoaderProgressEvent = procedure (Sender: TObject; Percent:
integer) of object;
Parameters

Sender
An object that raised the event.

Percent
Percentage of the load operation progress.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL148

17.8 DAScript

This unit contains the base class for the TMyScript component.

Classes

Name Description

TDAScript Makes it possible to execute several
SQL statements one by one.

TDAStatement This class has attributes and
methods for controlling single SQL
statement of a script.

TDAStatements Holds a collection of TDAStatement
objects.

Types

Name Description

TAfterStatementExecuteEvent This type is used for the TDAScript.
AfterExecute event.

TBeforeStatementExecuteEvent This type is used for the TDAScript.
BeforeExecute event.

TOnErrorEvent This type is used for the TDAScript.
OnError event.

Enumerations

Name Description

TErrorAction Indicates the action to take when
the OnError handler exits.

© 1997-2012 Devart. All Rights Reserved.

149Data Access Components for MySQL

17.8.1 Classes

Classes in the DAScript unit.

Classes

Name Description

TDAScript Makes it possible to execute several
SQL statements one by one.

TDAStatement This class has attributes and
methods for controlling single SQL
statement of a script.

TDAStatements Holds a collection of TDAStatement
objects.

© 1997-2012 Devart. All Rights Reserved.

17.8.1.1 DAScript.TDAScript Class

Makes it possible to execute several SQL statements one by one.
For a list of all members of this type, see TDAScript members.

Unit

DAScript

Syntax

TDAScript = class(TComponent);

Remarks

Often it is necessary to execute several SQL statements one by one. This can be performed using a lot of
components such as TCustomDASQL descendants. Usually it isn't the best solution. With only one
TDAScript descedant component you can execute several SQL statements as one. This sequence of
statements is called script. To separate single statements use semicolon (;) or slash (/) and for
statements that can contain semicolon, only slash. Note that slash must be the first character in line.
Errors that occur during execution can be processed in the TDAScript.OnError event handler. By default,
on error TDAScript shows exception and continues execution.

Inheritance Hierarchy

TObject
 TDAScript

See Also

 TCustomDASQL

© 1997-2012 Devart. All Rights Reserved.

TDAScript class overview.

Properties

Name Description

Connection Used to specify the connection in
which the script will be executed.

DataSet Refers to a dataset that holds the
result set of query execution.

Debug Used to display the script execution
and all its parameter values.

Delimiter Used to set the delimiter string that
separates script statements.

EndLine Used to get the current statement
last line number in a script.

Data Access Components for MySQL150

EndOffset Used to get the offset in the last
line of the current statement.

EndPos Used to get the end position of the
current statement.

Macros Used to change SQL script text in
design- or run-time easily.

SQL Used to get or set script text.

StartLine Used to get the current statement
start line number in a script.

StartOffset Used to get the offset in the first
line of the current statement.

StartPos Used to get the start position of the
current statement in a script.

Statements Contains a list of statements
obtained from the SQL property.

Methods

Name Description

BreakExec Stops script execution.

ErrorOffset Used to get the offset of the
statement if the Execute method
raised an exception.

Execute Executes a script.

ExecuteFile Executes SQL statements contained
in a file.

ExecuteNext Executes the next statement in the
script and then stops.

ExecuteStream Executes SQL statements contained
in a stream object.

FindMacro Indicates whether a specified macro
exists in a dataset.

MacroByName Finds a Macro with the name passed
in Name.

Events

Name Description

AfterExecute Occurs after a SQL script execution.

BeforeExecute Occurs when taking a specific action
before executing the current SQL
statement is needed.

OnError Occurs when MySQL raises an error.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDAScript class.
For a complete list of the TDAScript class members, see the TDAScript Members topic.

Public

Name Description

Connection Used to specify the connection in
which the script will be executed.

DataSet Refers to a dataset that holds the
result set of query execution.

EndLine Used to get the current statement
last line number in a script.

EndOffset Used to get the offset in the last
line of the current statement.

151Data Access Components for MySQL

EndPos Used to get the end position of the
current statement.

StartLine Used to get the current statement
start line number in a script.

StartOffset Used to get the offset in the first
line of the current statement.

StartPos Used to get the start position of the
current statement in a script.

Statements Contains a list of statements
obtained from the SQL property.

Published

Name Description

Debug Used to display the script execution
and all its parameter values.

Delimiter Used to set the delimiter string that
separates script statements.

Macros Used to change SQL script text in
design- or run-time easily.

SQL Used to get or set script text.

See Also
 TDAScript Class
 TDAScript Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify the connection in which the script will be executed.

Class

TDAScript

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify the connection in which the script will be executed. If Connection
is not connected, the Execute method calls the Connect method of Connection.
Set at design-time by selecting from the list of provided TCustomDAConnection objects.
At run-time, set the Connection property to reference an existing TCustomDAConnection object.

See Also

 TCustomDAConnection

© 1997-2012 Devart. All Rights Reserved.

Refers to a dataset that holds the result set of query execution.

Class

TDAScript

Syntax

property DataSet: TCustomDADataSet;

Remarks

Set the DataSet property to retrieve the results of the SELECT statements execution inside a script.

Data Access Components for MySQL152

See Also

 ExecuteNext
 Execute

© 1997-2012 Devart. All Rights Reserved.

Used to display the script execution and all its parameter values.

Class

TDAScript

Syntax

property Debug: boolean default False;

Remarks

Set the Debug property to True to display the script execution and all its parameter values. Also displays
the type of parameters.

© 1997-2012 Devart. All Rights Reserved.

Used to set the delimiter string that separates script statements.

Class

TDAScript

Syntax

property Delimiter: string stored IsDelimiterStored;

Remarks

Use the Delimiter property to set the delimiter string that separates script statements. By default it is
semicolon (;). You can use slash (/) to separate statements that can contain semicolon if the Delimiter
property's default value is semicolon. Note that slash must be the first character in line.

© 1997-2012 Devart. All Rights Reserved.

Used to get the current statement last line number in a script.

Class

TDAScript

Syntax

property EndLine: Int64;

Remarks

Use the EndLine property to get the current statement last line number in a script.

© 1997-2012 Devart. All Rights Reserved.

Used to get the offset in the last line of the current statement.

Class

TDAScript

Syntax

property EndOffset: Int64;

Remarks

Use the EndOffset property to get the offset in the last line of the current statement.

153Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Used to get the end position of the current statement.

Class

TDAScript

Syntax

property EndPos: Int64;

Remarks

Use the EndPos property to get the end position of the current statement (the position of the last
character in the statement) in a script.

© 1997-2012 Devart. All Rights Reserved.

Used to change SQL script text in design- or run-time easily.

Class

TDAScript

Syntax

property Macros: TMacros stored False;

Remarks

With the help of macros you can easily change SQL script text in design- or run-time. Macros extend
abilities of parameters and allow changing conditions in the WHERE clause or sort order in the ORDER BY
clause. You just insert &MacroName in a SQL query text and change value of macro by the Macro
property editor in design-time or the MacroByName function in run-time. In time of opening query macro
is replaced by its value.

See Also

 TMacro
 MacroByName

© 1997-2012 Devart. All Rights Reserved.

Used to get or set script text.

Class

TDAScript

Syntax

property SQL: _TStrings;

Remarks

Use the SQL property to get or set script text.

© 1997-2012 Devart. All Rights Reserved.

Used to get the current statement start line number in a script.

Class

TDAScript

Syntax

property StartLine: Int64;

Data Access Components for MySQL154

Remarks

Use the StartLine property to get the current statement start line number in a script.

© 1997-2012 Devart. All Rights Reserved.

Used to get the offset in the first line of the current statement.

Class

TDAScript

Syntax

property StartOffset: Int64;

Remarks

Use the StartOffset property to get the offset in the first line of the current statement.

© 1997-2012 Devart. All Rights Reserved.

Used to get the start position of the current statement in a script.

Class

TDAScript

Syntax

property StartPos: Int64;

Remarks

Use the StartPos property to get the start position of the current statement (the position of the first
statement character) in a script.

© 1997-2012 Devart. All Rights Reserved.

Contains a list of statements obtained from the SQL property.

Class

TDAScript

Syntax

property Statements: TDAStatements;

Remarks

Contains a list of statements that are obtained from the SQL property. Use the Access Statements
property to view SQL statement, set parameters or execute the specified statement. Statements is a
zero-based array of statement records. Index specifies the array element to access.
For example, consider the following script:
CREATE TABLE A (FIELD1 INTEGER);
INSERT INTO A VALUES(1);
INSERT INTO A VALUES(2);
INSERT INTO A VALUES(3);
CREATE TABLE B (FIELD1 INTEGER);
INSERT INTO B VALUES(1);
INSERT INTO B VALUES(2);
INSERT INTO B VALUES(3);
Note: The list of statements is created and filled when the value of Statements property is requested.
That's why the first access to the Statements property can take a long time.

Example

You can use the Statements property in the following way:

155Data Access Components for MySQL

procedure TForm1.Button1Click(Sender: TObject);
var
 i: integer;
begin
 with Script do
 begin
 for i := 0 to Statements.Count - 1 do
 if Copy(Statements[i].SQL, 1, 6) <> 'CREATE' then
 Statements[i].Execute;
 end;
end;

See Also


TDAStatements

© 1997-2012 Devart. All Rights Reserved.

Methods of the TDAScript class.
For a complete list of the TDAScript class members, see the TDAScript Members topic.

Public

Name Description

BreakExec Stops script execution.

ErrorOffset Used to get the offset of the
statement if the Execute method
raised an exception.

Execute Executes a script.

ExecuteFile Executes SQL statements contained
in a file.

ExecuteNext Executes the next statement in the
script and then stops.

ExecuteStream Executes SQL statements contained
in a stream object.

FindMacro Indicates whether a specified macro
exists in a dataset.

MacroByName Finds a Macro with the name passed
in Name.

See Also
 TDAScript Class
 TDAScript Class Members

© 1997-2012 Devart. All Rights Reserved.

Stops script execution.

Class

TDAScript

Syntax

procedure BreakExec; virtual;

Remarks

Call the BreakExec method to stop script execution.

Data Access Components for MySQL156

© 1997-2012 Devart. All Rights Reserved.

Used to get the offset of the statement if the Execute method raised an exception.

Class

TDAScript

Syntax

function ErrorOffset: Int64;
Return Value

offset of an error.

Remarks

Call the ErrorOffset method to get the offset of the statement if the Execute method raised an exception.

See Also

 OnError

© 1997-2012 Devart. All Rights Reserved.

Executes a script.

Class

TDAScript

Syntax

procedure Execute; virtual;

Remarks

Call the Execute method to execute a script. If MySQL raises an error, the OnError event occurs.

See Also

 ExecuteNext
 OnError
 ErrorOffset

© 1997-2012 Devart. All Rights Reserved.

Executes SQL statements contained in a file.

Class

TDAScript

Syntax

procedure ExecuteFile(const FileName: string);
Parameters

FileName
Holds the file name.

Remarks

Call the ExecuteFile method to execute SQL statements contained in a file. Script doesn't load full
content into memory. Reading and execution is performed by blocks of 64k size. Therefore, it is optimal
to use it for big files.

157Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Executes the next statement in the script and then stops.

Class

TDAScript

Syntax

function ExecuteNext: boolean; virtual;
Return Value

True, if there are any statements left in the script, False otherwise.

Remarks

Use the ExecuteNext method to execute the next statement in the script statement and stop. If MySQL
raises an error, the OnError event occurs.

See Also

 Execute
 OnError
 ErrorOffset

© 1997-2012 Devart. All Rights Reserved.

Executes SQL statements contained in a stream object.

Class

TDAScript

Syntax

procedure ExecuteStream(Stream: TStream);
Parameters

Stream
Holds the stream object from which the statements will be executed.

Remarks

Call the ExecuteStream method to execute SQL statements contained in a stream object. Reading from
the stream and execution is performed by blocks of 64k size.

© 1997-2012 Devart. All Rights Reserved.

Indicates whether a specified macro exists in a dataset.

Class

TDAScript

Syntax

function FindMacro(Name: string): TMacro;
Parameters

Name
Holds the name of the macro to search for.

Return Value

a TMacro object, if a macro with matching name was found, otherwise returns nil.

Remarks

Call the FindMacro method to determine if a specified macro exists. If FindMacro finds a macro with a

Data Access Components for MySQL158

matching name, it returns a TMacro object for the specified Name. Otherwise it returns nil.

See Also

 TMacro
 Macros
 MacroByName

© 1997-2012 Devart. All Rights Reserved.

Finds a Macro with the name passed in Name.

Class

TDAScript

Syntax

function MacroByName(Name: string): TMacro;
Parameters

Name
Holds the name of the Macro to search for.

Return Value

the Macro, if a match was found.

Remarks

Call the MacroByName method to find a Macro with the name passed in Name. If a match was found,
MacroByName returns the Macro. Otherwise, an exception is raised. Use this method rather than a direct
reference to the Items property to avoid depending on the order of the entries.
To locate a parameter by name without raising an exception if the parameter is not found, use the
FindMacro method.
To assign the value of macro use the TMacro.Value property.

See Also

 TMacro
 Macros
 FindMacro

© 1997-2012 Devart. All Rights Reserved.

Events of the TDAScript class.
For a complete list of the TDAScript class members, see the TDAScript Members topic.

Published

Name Description

AfterExecute Occurs after a SQL script execution.

BeforeExecute Occurs when taking a specific action
before executing the current SQL
statement is needed.

OnError Occurs when MySQL raises an error.

See Also
 TDAScript Class
 TDAScript Class Members

© 1997-2012 Devart. All Rights Reserved.

159Data Access Components for MySQL

Occurs after a SQL script execution.

Class

TDAScript

Syntax

property AfterExecute: TAfterStatementExecuteEvent;

Remarks

Occurs after a SQL script has been executed.

See Also

 Execute

© 1997-2012 Devart. All Rights Reserved.

Occurs when taking a specific action before executing the current SQL statement is needed.

Class

TDAScript

Syntax

property BeforeExecute: TBeforeStatementExecuteEvent;

Remarks

Write the BeforeExecute event handler to take specific action before executing the current SQL
statement. SQL holds text of the current SQL statement. Write SQL to change the statement that will be
executed. Set Omit to True to skip statement execution.

© 1997-2012 Devart. All Rights Reserved.

Occurs when MySQL raises an error.

Class

TDAScript

Syntax

property OnError: TOnErrorEvent;

Remarks

Occurs when MySQL raises an error.
Action indicates the action to take when the OnError handler exits. On entry into the handler, Action is
always set to eaFail.

See Also

 ErrorOffset

© 1997-2012 Devart. All Rights Reserved.

17.8.1.2 DAScript.TDAStatement Class

This class has attributes and methods for controlling single SQL statement of a script.
For a list of all members of this type, see TDAStatement members.

Unit

DAScript

Syntax

Data Access Components for MySQL160

TDAStatement = class(TCollectionItem);

Remarks

TDAScript contains SQL statements, represented as TDAStatement objects. The TDAStatement class has
attributes and methods for controlling single SQL statement of a script.

Inheritance Hierarchy

TObject
 TDAStatement

See Also

 TDAScript
 TDAStatements

© 1997-2012 Devart. All Rights Reserved.

TDAStatement class overview.

Properties

Name Description

EndLine Used to determine the number of
the last statement line in a script.

EndOffset Used to get the offset in the last
line of the statement.

EndPos Used to get the end position of the
statement in a script.

Omit Used to avoid execution of a
statement.

Params Contains parasmeters for an SQL
statement.

Script Used to determine the TDAScript
object the SQL Statement belongs
to.

SQL Used to get or set the text of an
SQL statement.

StartLine Used to determine the number of
the first statement line in a script.

StartOffset Used to get the offset in the first
line of a statement.

StartPos Used to get the start position of the
statement in a script.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDAStatement class.
For a complete list of the TDAStatement class members, see the TDAStatement Members topic.

Public

Name Description

EndLine Used to determine the number of
the last statement line in a script.

EndOffset Used to get the offset in the last
line of the statement.

EndPos Used to get the end position of the
statement in a script.

Omit Used to avoid execution of a
statement.

161Data Access Components for MySQL

Params Contains parasmeters for an SQL
statement.

Script Used to determine the TDAScript
object the SQL Statement belongs
to.

SQL Used to get or set the text of an
SQL statement.

StartLine Used to determine the number of
the first statement line in a script.

StartOffset Used to get the offset in the first
line of a statement.

StartPos Used to get the start position of the
statement in a script.

See Also
 TDAStatement Class
 TDAStatement Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to determine the number of the last statement line in a script.

Class

TDAStatement

Syntax

property EndLine: integer;

Remarks

Use the EndLine property to determine the number of the last statement line in a script.

© 1997-2012 Devart. All Rights Reserved.

Used to get the offset in the last line of the statement.

Class

TDAStatement

Syntax

property EndOffset: integer;

Remarks

Use the EndOffset property to get the offset in the last line of the statement.

© 1997-2012 Devart. All Rights Reserved.

Used to get the end position of the statement in a script.

Class

TDAStatement

Syntax

property EndPos: integer;

Remarks

Use the EndPos property to get the end position of the statement (the position of the last character in
the statement) in a script.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL162

Used to avoid execution of a statement.

Class

TDAStatement

Syntax

property Omit: boolean;

Remarks

Set the Omit property to True to avoid execution of a statement.

© 1997-2012 Devart. All Rights Reserved.

Contains parasmeters for an SQL statement.

Class

TDAStatement

Syntax

property Params: TDAParams;

Remarks

Contains parameters for an SQL statement.
Access Params at runtime to view and set parameter names, values, and data types dynamically.
Params is a zero-based array of parameter records. Index specifies the array element to access.

See Also

 TDAParam

© 1997-2012 Devart. All Rights Reserved.

Used to determine the TDAScript object the SQL Statement belongs to.

Class

TDAStatement

Syntax

property Script: TDAScript;

Remarks

Use the Script property to determine the TDAScript object the SQL Statement belongs to.

© 1997-2012 Devart. All Rights Reserved.

Used to get or set the text of an SQL statement.

Class

TDAStatement

Syntax

property SQL: string;

Remarks

Use the SQL property to get or set the text of an SQL statement.

© 1997-2012 Devart. All Rights Reserved.

163Data Access Components for MySQL

Used to determine the number of the first statement line in a script.

Class

TDAStatement

Syntax

property StartLine: integer;

Remarks

Use the StartLine property to determine the number of the first statement line in a script.

© 1997-2012 Devart. All Rights Reserved.

Used to get the offset in the first line of a statement.

Class

TDAStatement

Syntax

property StartOffset: integer;

Remarks

Use the StartOffset property to get the offset in the first line of a statement.

© 1997-2012 Devart. All Rights Reserved.

Used to get the start position of the statement in a script.

Class

TDAStatement

Syntax

property StartPos: integer;

Remarks

Use the StartPos property to get the start position of the statement (the position of the first statement
character) in a script.

© 1997-2012 Devart. All Rights Reserved.

17.8.1.3 DAScript.TDAStatements Class

Holds a collection of TDAStatement objects.
For a list of all members of this type, see TDAStatements members.

Unit

DAScript

Syntax

TDAStatements = class(TCollection);

Remarks

Each TDAStatements holds a collection of TDAStatement objects. TDAStatements maintains an index of
the statements in its Items array. The Count property contains the number of statements in the
collection. Use TDAStatements class to manipulate script SQL statements.

Inheritance Hierarchy

TObject
 TDAStatements

Data Access Components for MySQL164

See Also

 TDAScript
 TDAStatement

© 1997-2012 Devart. All Rights Reserved.

TDAStatements class overview.

Properties

Name Description

Items Used to access separate script
statements.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDAStatements class.
For a complete list of the TDAStatements class members, see the TDAStatements Members topic.

Public

Name Description

Items Used to access separate script
statements.

See Also
 TDAStatements Class
 TDAStatements Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to access separate script statements.

Class

TDAStatements

Syntax

property Items[Index: Integer]: TDAStatement; default;
Parameters

Index
Holds the index value.

Remarks

Use the Items property to access individual script statements. The value of the Index parameter
corresponds to the Index property of TDAStatement.

See Also

 TDAStatement

© 1997-2012 Devart. All Rights Reserved.

165Data Access Components for MySQL

17.8.2 Types

Types in the DAScript unit.

Types

Name Description

TAfterStatementExecuteEvent This type is used for the TDAScript.
AfterExecute event.

TBeforeStatementExecuteEvent This type is used for the TDAScript.
BeforeExecute event.

TOnErrorEvent This type is used for the TDAScript.
OnError event.

© 1997-2012 Devart. All Rights Reserved.

17.8.2.1 DAScript.TAfterStatementExecuteEvent Procedure Reference

This type is used for the TDAScript.AfterExecute event.

Unit

DAScript

Syntax

TAfterStatementExecuteEvent = procedure (Sender: TObject; SQL:
string) of object;
Parameters

Sender
An object that raised the event.

SQL
Holds the passed SQL statement.

© 1997-2012 Devart. All Rights Reserved.

17.8.2.2 DAScript.TBeforeStatementExecuteEvent Procedure Reference

This type is used for the TDAScript.BeforeExecute event.

Unit

DAScript

Syntax

TBeforeStatementExecuteEvent = procedure (Sender: TObject; var
SQL: string; var Omit: boolean) of object;
Parameters

Sender
An object that raised the event.

SQL
Holds the passed SQL statement.

Omit
True, if the statement execution should be skipped.

© 1997-2012 Devart. All Rights Reserved.

17.8.2.3 DAScript.TOnErrorEvent Procedure Reference

This type is used for the TDAScript.OnError event.

Unit

DAScript

Data Access Components for MySQL166

Syntax

TOnErrorEvent = procedure (Sender: TObject; E: Exception; SQL:
string; var Action: TErrorAction) of object;
Parameters

Sender
An object that raised the event.

E
The error code.

SQL
Holds the passed SQL statement.

Action
The action to take when the OnError handler exits.

© 1997-2012 Devart. All Rights Reserved.

167Data Access Components for MySQL

17.8.3 Enumerations

Enumerations in the DAScript unit.

Enumerations

Name Description

TErrorAction Indicates the action to take when
the OnError handler exits.

© 1997-2012 Devart. All Rights Reserved.

17.8.3.1 DAScript.TErrorAction Enumeration

Indicates the action to take when the OnError handler exits.

Unit

DAScript

Syntax

TErrorAction = (eaAbort, eaFail, eaException, eaContinue);

Values

Value Meaning

eaAbort Abort execution without displaying an error message.

eaContinue Continue execution.

eaException In Delphi 6 and higher exception is handled by the Application.
HandleException method.

eaFail Abort execution and display an error message.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL168

17.9 DASQLMonitor

This unit contains the base class for the TMySQLMonitor component.

Classes

Name Description

TCustomDASQLMonitor A base class that introduces
properties and methods to monitor
dynamic SQL execution in database
applications interactively.

TDBMonitorOptions This class holds options for
dbMonitor.

Types

Name Description

TDATraceFlags Represents the set of TDATraceFlag
.

TMonitorOptions Represents the set of
TMonitorOption.

TOnSQLEvent This type is used for the
TCustomDASQLMonitor.OnSQL
event.

Enumerations

Name Description

TDATraceFlag Use TraceFlags to specify which
database operations the monitor
should track in an application at
runtime.

TMonitorOption Used to define where information
from SQLMonitor will be dispalyed.

© 1997-2012 Devart. All Rights Reserved.

169Data Access Components for MySQL

17.9.1 Classes

Classes in the DASQLMonitor unit.

Classes

Name Description

TCustomDASQLMonitor A base class that introduces
properties and methods to monitor
dynamic SQL execution in database
applications interactively.

TDBMonitorOptions This class holds options for
dbMonitor.

© 1997-2012 Devart. All Rights Reserved.

17.9.1.1 DASQLMonitor.TCustomDASQLMonitor Class

A base class that introduces properties and methods to monitor dynamic SQL execution in database
applications interactively.
For a list of all members of this type, see TCustomDASQLMonitor members.

Unit

DASQLMonitor

Syntax

TCustomDASQLMonitor = class(TComponent);

Remarks

TCustomDASQLMonitor is a base class that introduces properties and methods to monitor dynamic SQL
execution in database applications interactively. TCustomDASQLMonitor provides two ways of displaying
debug information. It monitors either by dialog window or by Borland's proprietary SQL Monitor.
Furthermore to receive debug information use the TCustomDASQLMonitor.OnSQL event.
In applications use descendants of TCustomDASQLMonitor.

Inheritance Hierarchy

TObject
 TCustomDASQLMonitor

© 1997-2012 Devart. All Rights Reserved.

TCustomDASQLMonitor class overview.

Properties

Name Description

Active Used to activate monitoring of SQL.

DBMonitorOptions Used to set options for dbMonitor.

Options Used to include the desired
properties for
TCustomDASQLMonitor.

TraceFlags Used to specify which database
operations the monitor should track
in an application at runtime.

Events

Name Description

OnSQL Occurs when tracing of SQL activity
on database components is needed.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL170

Properties of the TCustomDASQLMonitor class.
For a complete list of the TCustomDASQLMonitor class members, see the TCustomDASQLMonitor
Members topic.

Public

Name Description

Active Used to activate monitoring of SQL.

DBMonitorOptions Used to set options for dbMonitor.

Options Used to include the desired
properties for
TCustomDASQLMonitor.

TraceFlags Used to specify which database
operations the monitor should track
in an application at runtime.

See Also
 TCustomDASQLMonitor Class
 TCustomDASQLMonitor Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to activate monitoring of SQL.

Class

TCustomDASQLMonitor

Syntax

property Active: boolean default True;

Remarks

Set the Active property to True to activate monitoring of SQL.

See Also

 OnSQL

© 1997-2012 Devart. All Rights Reserved.

Used to set options for dbMonitor.

Class

TCustomDASQLMonitor

Syntax

property DBMonitorOptions: TDBMonitorOptions;

Remarks

Use DBMonitorOptions to set options for dbMonitor.

© 1997-2012 Devart. All Rights Reserved.

Used to include the desired properties for TCustomDASQLMonitor.

Class

TCustomDASQLMonitor

Syntax

property Options: TMonitorOptions default [moDialog, moSQLMonitor,
moDBMonitor, moCustom];

171Data Access Components for MySQL

Remarks

Set Options to include the desired properties for TCustomDASQLMonitor.

See Also

 OnSQL

© 1997-2012 Devart. All Rights Reserved.

Used to specify which database operations the monitor should track in an application at runtime.

Class

TCustomDASQLMonitor

Syntax

property TraceFlags: TDATraceFlags default [tfQPrepare,
tfQExecute, tfError, tfConnect, tfTransact, tfParams, tfMisc];

Remarks

Use the TraceFlags property to specify which database operations the monitor should track in an
application at runtime.

See Also

 OnSQL

© 1997-2012 Devart. All Rights Reserved.

Events of the TCustomDASQLMonitor class.
For a complete list of the TCustomDASQLMonitor class members, see the TCustomDASQLMonitor
Members topic.

Public

Name Description

OnSQL Occurs when tracing of SQL activity
on database components is needed.

See Also
 TCustomDASQLMonitor Class
 TCustomDASQLMonitor Class Members

© 1997-2012 Devart. All Rights Reserved.

Occurs when tracing of SQL activity on database components is needed.

Class

TCustomDASQLMonitor

Syntax

property OnSQL: TOnSQLEvent;

Remarks

Write the OnSQL event handler to let an application trace SQL activity on database components. The
Text parameter holds the detected SQL statement. Use the Flag parameter to make selective processing
of SQL in the handler body.

See Also

Data Access Components for MySQL172

 TraceFlags

© 1997-2012 Devart. All Rights Reserved.

17.9.1.2 DASQLMonitor.TDBMonitorOptions Class

This class holds options for dbMonitor.
For a list of all members of this type, see TDBMonitorOptions members.

Unit

DASQLMonitor

Syntax

TDBMonitorOptions = class(TPersistent);

Inheritance Hierarchy

TObject
 TDBMonitorOptions

© 1997-2012 Devart. All Rights Reserved.

TDBMonitorOptions class overview.

Properties

Name Description

Host Used to set the host name or IP
address of the computer where
dbMonitor application runs.

Port Used to set the port number for
connecting to dbMonitor.

ReconnectTimeout Used to set the minimum time that
should be spent before reconnecting
to dbMonitor is allowed.

SendTimeout Used to set timeout for sending
events to dbMonitor.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDBMonitorOptions class.
For a complete list of the TDBMonitorOptions class members, see the TDBMonitorOptions Members
topic.

Published

Name Description

Host Used to set the host name or IP
address of the computer where
dbMonitor application runs.

Port Used to set the port number for
connecting to dbMonitor.

ReconnectTimeout Used to set the minimum time that
should be spent before reconnecting
to dbMonitor is allowed.

SendTimeout Used to set timeout for sending
events to dbMonitor.

See Also
 TDBMonitorOptions Class
 TDBMonitorOptions Class Members

© 1997-2012 Devart. All Rights Reserved.

173Data Access Components for MySQL

Used to set the host name or IP address of the computer where dbMonitor application runs.

Class

TDBMonitorOptions

Syntax

property Host: string;

Remarks

Use the Host property to set the host name or IP address of the computer where dbMonitor application
runs.
dbMonitor supports remote monitoring. You can run dbMonitor on a different computer than monitored
application runs. In this case you need to set the Host property to the corresponding computer name.

© 1997-2012 Devart. All Rights Reserved.

Used to set the port number for connecting to dbMonitor.

Class

TDBMonitorOptions

Syntax

property Port: integer default DBMonitorPort;

Remarks

Use the Port property to set the port number for connecting to dbMonitor.

© 1997-2012 Devart. All Rights Reserved.

Used to set the minimum time that should be spent before reconnecting to dbMonitor is allowed.

Class

TDBMonitorOptions

Syntax

property ReconnectTimeout: integer default
DefaultReconnectTimeout;

Remarks

Use the ReconnectTimeout property to set the minimum time (in milliseconds) that should be spent
before allowing reconnecting to dbMonitor. If an error occurs when the component sends an event to
dbMonitor (dbMonitor is not running), next events are ignored and the component does not restore the
connection until ReconnectTimeout is over.

© 1997-2012 Devart. All Rights Reserved.

Used to set timeout for sending events to dbMonitor.

Class

TDBMonitorOptions

Syntax

property SendTimeout: integer default DefaultSendTimeout;

Remarks

Use the SendTimeout property to set timeout (in milliseconds) for sending events to dbMonitor. If
dbMonitor does not respond in the specified timeout, event is ignored.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL174

17.9.2 Types

Types in the DASQLMonitor unit.

Types

Name Description

TDATraceFlags Represents the set of TDATraceFlag
.

TMonitorOptions Represents the set of
TMonitorOption.

TOnSQLEvent This type is used for the
TCustomDASQLMonitor.OnSQL
event.

© 1997-2012 Devart. All Rights Reserved.

17.9.2.1 DASQLMonitor.TDATraceFlags Set

Represents the set of TDATraceFlag.

Unit

DASQLMonitor

Syntax

TDATraceFlags = set of TDATraceFlag;

© 1997-2012 Devart. All Rights Reserved.

17.9.2.2 DASQLMonitor.TMonitorOptions Set

Represents the set of TMonitorOption.

Unit

DASQLMonitor

Syntax

TMonitorOptions = set of TMonitorOption;

© 1997-2012 Devart. All Rights Reserved.

17.9.2.3 DASQLMonitor.TOnSQLEvent Procedure Reference

This type is used for the TCustomDASQLMonitor.OnSQL event.

Unit

DASQLMonitor

Syntax

TOnSQLEvent = procedure (Sender: TObject; Text: string; Flag:
TDATraceFlag) of object;
Parameters

Sender
An object that raised the event.

Text
Holds the detected SQL statement.

Flag
Use the Flag parameter to make selective processing of SQL in the handler body.

© 1997-2012 Devart. All Rights Reserved.

175Data Access Components for MySQL

17.9.3 Enumerations

Enumerations in the DASQLMonitor unit.

Enumerations

Name Description

TDATraceFlag Use TraceFlags to specify which
database operations the monitor
should track in an application at
runtime.

TMonitorOption Used to define where information
from SQLMonitor will be dispalyed.

© 1997-2012 Devart. All Rights Reserved.

17.9.3.1 DASQLMonitor.TDATraceFlag Enumeration

Use TraceFlags to specify which database operations the monitor should track in an application at
runtime.

Unit

DASQLMonitor

Syntax

TDATraceFlag = (tfQPrepare, tfQExecute, tfQFetch, tfError, tfStmt,
tfConnect, tfTransact, tfBlob, tfService, tfMisc, tfParams,
tfObjDestroy, tfPool);

Values

Value Meaning

tfBlob This option is declared for future use.

tfConnect Establishing a connection.

tfError Errors of query execution.

tfMisc If this flag is set, then just before sending a query to the server, OnSQL
event is called additionally. The difference from usual call is that the query
is already completely decoded, i.e. parameters are quoted and included
into the text of the query. If to use MySQL 4.1 protocol with preparing, a
value of this flag will be ignored.

tfObjDestroy Destroying of components.

tfParams Representing parameter values for tfQPrepare and tfQExecute.

tfPool Connection pool operations.

tfQExecute Execution of the queries.

tfQFetch This option is declared for future use.

tfQPrepare Queries preparation.

tfService This option is declared for future use.

tfStmt This option is declared for future use.

tfTransact Processing transactions.

© 1997-2012 Devart. All Rights Reserved.

17.9.3.2 DASQLMonitor.TMonitorOption Enumeration

Used to define where information from SQLMonitor will be dispalyed.

Unit

DASQLMonitor

Syntax

TMonitorOption = (moDialog, moSQLMonitor, moDBMonitor, moCustom,

Data Access Components for MySQL176

moHandled);

Values

Value Meaning

moCustom Monitoring of SQL for individual components is allowed. Set Debug
properties in SQL-related components to True to let
TCustomDASQLMonitor instance to monitor their behavior. Has effect
when moDialog is included.

moDBMonitor Debug information is displayed in DBMonitor.

moDialog Debug information is displayed in debug window.

moHandled Component handle is included into the event description string.

moSQLMonitor Debug information is displayed in Borland SQL Monitor.

© 1997-2012 Devart. All Rights Reserved.

177Data Access Components for MySQL

17.10 DBAccess

This unit contains base classes for most of the components.

Classes

Name Description

EDAError A base class for exceptions that are
raised when an error occurs on the
server side.

TCRDataSource Provides an interface between a
DAC dataset components and data-
aware controls on a form.

TCustomConnectDialog A base class for the connect dialog
components.

TCustomDAConnection A base class for components used
to establish connections.

TCustomDADataSet Encapsulates general set of
properties, events, and methods for
working with data accessed through
various database engines.

TCustomDASQL A base class for components
executing SQL statements that do
not return result sets.

TCustomDAUpdateSQL A base class for components that
provide DML statements for more
flexible control over data
modifications.

TDAConnectionOptions This class allows setting up the
behaviour of the TDAConnection
class.

TDADataSetOptions This class allows setting up the
behaviour of the TDADataSet class.

TDAEncryptionOptions Used to specify the options of the
data encryption in a dataset.

TDAMapRule Class that formes rules for Data
Type Mapping.

TDAMapRules Used for adding rules for DataSet
fields mapping with both identifying
by field name and by field type and
Delphi field types.

TDAMetaData A class for retrieving
metainformation of the specified
database objects in the form of
dataset.

TDAParam A class that forms objects to
represent the values of the
parameters set.

TDAParams This class is used to manage a list
of TDAParam objects for an object
that uses field parameters.

TDATransaction A base class that implements
functionality for controlling
transactions.

TMacro Object that represents the value of
a macro.

TMacros Controls a list of TMacro objects for
the TCustomDASQL.Macros or
TCustomDADataSet components.

Data Access Components for MySQL178

TPoolingOptions This class allows setting up the
behaviour of the connection pool.

Types

Name Description

TAfterExecuteEvent This type is used for the
TCustomDADataSet.AfterExecute
and TCustomDASQL.AfterExecute
events.

TAfterFetchEvent This type is used for the
TCustomDADataSet.AfterFetch
event.

TBeforeFetchEvent This type is used for the
TCustomDADataSet.BeforeFetch
event.

TConnectionLostEvent This type is used for the
TCustomDAConnection.
OnConnectionLost event.

TDAConnectionErrorEvent This type is used for the
TCustomDAConnection.OnError
event.

TDATransactionErrorEvent This type is used for the
TDATransaction.OnError event.

TRefreshOptions Represents the set of
TRefreshOption.

TUpdateExecuteEvent This type is used for the
TCustomDADataSet.
AfterUpdateExecute and
TCustomDADataSet.
BeforeUpdateExecute events.

Enumerations

Name Description

TLabelSet Sets the languauge of labels in the
connect dialog.

TLockMode This enumeration defines a type of
an editing record locking.

TRefreshOption Indicates when the editing record
will be refreshed.

TRetryMode Specifies the application behavior
when connection is lost.

Variables

Name Description

BaseSQLOldBehavior After assigning SQL text and
modifying it by AddWhere,
DeleteWhere, and SetOrderBy, all
subsequent changes of the SQL
property will not be reflected in the
BaseSQL property.

ChangeCursor When set to True allows data access
components to change screen
cursor for the execution time.

MacroChar Determinates what character is
used for macros.

179Data Access Components for MySQL

SQLGeneratorCompatibility The value of the
TCustomDADataSet.BaseSQL
property is used to complete the
refresh SQL statement, if the
manually assigned
TCustomDAUpdateSQL.RefreshSQL
property contains only WHERE
clause.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL180

17.10.1 Classes

Classes in the DBAccess unit.

Classes

Name Description

EDAError A base class for exceptions that are
raised when an error occurs on the
server side.

TCRDataSource Provides an interface between a
DAC dataset components and data-
aware controls on a form.

TCustomConnectDialog A base class for the connect dialog
components.

TCustomDAConnection A base class for components used
to establish connections.

TCustomDADataSet Encapsulates general set of
properties, events, and methods for
working with data accessed through
various database engines.

TCustomDASQL A base class for components
executing SQL statements that do
not return result sets.

TCustomDAUpdateSQL A base class for components that
provide DML statements for more
flexible control over data
modifications.

TDAConnectionOptions This class allows setting up the
behaviour of the TDAConnection
class.

TDADataSetOptions This class allows setting up the
behaviour of the TDADataSet class.

TDAEncryptionOptions Used to specify the options of the
data encryption in a dataset.

TDAMapRule Class that formes rules for Data
Type Mapping.

TDAMapRules Used for adding rules for DataSet
fields mapping with both identifying
by field name and by field type and
Delphi field types.

TDAMetaData A class for retrieving
metainformation of the specified
database objects in the form of
dataset.

TDAParam A class that forms objects to
represent the values of the
parameters set.

TDAParams This class is used to manage a list
of TDAParam objects for an object
that uses field parameters.

TDATransaction A base class that implements
functionality for controlling
transactions.

TMacro Object that represents the value of
a macro.

TMacros Controls a list of TMacro objects for
the TCustomDASQL.Macros or
TCustomDADataSet components.

TPoolingOptions This class allows setting up the
behaviour of the connection pool.

181Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

17.10.1.1 DBAccess.EDAError Class

A base class for exceptions that are raised when an error occurs on the server side.
For a list of all members of this type, see EDAError members.

Unit

DBAccess

Syntax

EDAError = class(EDatabaseError);

Remarks

EDAError is a base class for exceptions that are raised when an error occurs on the server side.

Inheritance Hierarchy

TObject
 EDAError

© 1997-2012 Devart. All Rights Reserved.

EDAError class overview.

Properties

Name Description

Component Contains the component that
caused the error.

ErrorCode Determines the error code returned
by the server.

© 1997-2012 Devart. All Rights Reserved.

Properties of the EDAError class.
For a complete list of the EDAError class members, see the EDAError Members topic.

Public

Name Description

Component Contains the component that
caused the error.

ErrorCode Determines the error code returned
by the server.

See Also
 EDAError Class
 EDAError Class Members

© 1997-2012 Devart. All Rights Reserved.

Contains the component that caused the error.

Class

EDAError

Syntax

property Component: TObject;

Remarks

The Component property contains the component that caused the error.

Data Access Components for MySQL182

© 1997-2012 Devart. All Rights Reserved.

Determines the error code returned by the server.

Class

EDAError

Syntax

property ErrorCode: integer;

Remarks

Use the ErrorCode property to determine the error code returned by MySQL. This value is always
positive.
See MySQL server Reference Manual.

See Also

 EMyError

© 1997-2012 Devart. All Rights Reserved.

17.10.1.2 DBAccess.TCRDataSource Class

Provides an interface between a DAC dataset components and data-aware controls on a form.
For a list of all members of this type, see TCRDataSource members.

Unit

DBAccess

Syntax

TCRDataSource = class(TDataSource);

Remarks

TCRDataSource provides an interface between a DAC dataset components and data-aware controls on a
form.
TCRDataSource inherits its functionality directly from the TDataSource component.
At design time assign individual data-aware components' DataSource properties from their drop-down
listboxes.

Inheritance Hierarchy

TObject
 TCRDataSource

© 1997-2012 Devart. All Rights Reserved.

TCRDataSource class overview.

© 1997-2012 Devart. All Rights Reserved.

17.10.1.3 DBAccess.TCustomConnectDialog Class

A base class for the connect dialog components.
For a list of all members of this type, see TCustomConnectDialog members.

Unit

DBAccess

Syntax

TCustomConnectDialog = class(TComponent);

Remarks

183Data Access Components for MySQL

TCustomConnectDialog is a base class for the connect dialog components. It provides functionality to
show a dialog box where user can edit username, password and server name before connecting to a
database. You can customize captions of buttons and labels by their properties.

Inheritance Hierarchy

TObject
 TCustomConnectDialog

© 1997-2012 Devart. All Rights Reserved.

TCustomConnectDialog class overview.

Properties

Name Description

CancelButton Used to specify the label for the
Cancel button.

Caption Used to set the caption of dialog
box.

ConnectButton Used to specify the label for the
Connect button.

DialogClass Used to specify the class of the
form that will be displayed to enter
login information.

LabelSet Used to set the language of buttons
and labels captions.

PasswordLabel Used to specify a prompt for
password edit.

Retries Used to indicate the number of
retries of failed connections.

SavePassword Used for the password to be
displayed in ConnectDialog in
asterisks.

ServerLabel Used to specify a prompt for the
server name edit.

StoreLogInfo Used to specify whether the login
information should be kept in
system registry after a connection
was established.

UsernameLabel Used to specify a prompt for
username edit.

Methods

Name Description

Execute Displays the connect dialog and
calls the connection's Connect
method when user clicks the
Connect button.

GetServerList Retrieves a list of available server
names.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TCustomConnectDialog class.
For a complete list of the TCustomConnectDialog class members, see the TCustomConnectDialog
Members topic.

Public

Name Description

CancelButton Used to specify the label for the
Cancel button.

Data Access Components for MySQL184

Caption Used to set the caption of dialog
box.

ConnectButton Used to specify the label for the
Connect button.

DialogClass Used to specify the class of the
form that will be displayed to enter
login information.

LabelSet Used to set the language of buttons
and labels captions.

PasswordLabel Used to specify a prompt for
password edit.

Retries Used to indicate the number of
retries of failed connections.

SavePassword Used for the password to be
displayed in ConnectDialog in
asterisks.

ServerLabel Used to specify a prompt for the
server name edit.

StoreLogInfo Used to specify whether the login
information should be kept in
system registry after a connection
was established.

UsernameLabel Used to specify a prompt for
username edit.

See Also
 TCustomConnectDialog Class
 TCustomConnectDialog Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify the label for the Cancel button.

Class

TCustomConnectDialog

Syntax

property CancelButton: string;

Remarks

Use the CancelButton property to specify the label for the Cancel button.

© 1997-2012 Devart. All Rights Reserved.

Used to set the caption of dialog box.

Class

TCustomConnectDialog

Syntax

property Caption: string;

Remarks

Use the Caption property to set the caption of dialog box.

© 1997-2012 Devart. All Rights Reserved.

185Data Access Components for MySQL

Used to specify the label for the Connect button.

Class

TCustomConnectDialog

Syntax

property ConnectButton: string;

Remarks

Use the ConnectButton property to specify the label for the Connect button.

© 1997-2012 Devart. All Rights Reserved.

Used to specify the class of the form that will be displayed to enter login information.

Class

TCustomConnectDialog

Syntax

property DialogClass: string;

Remarks

Use the DialogClass property to specify the class of the form that will be displayed to enter login
information. When this property is blank, TCustomConnectDialog uses the default form - TConnectForm.
You can write your own login form to enter login information and assign its class name to the
DialogClass property. Each login form must have ConnectDialog: TCustomConnectDialog published
property to access connection information. For details see the implementation of the connect form which
sources are in the Lib subdirectory of the MyDAC installation directory.

See Also

 GetServerList

© 1997-2012 Devart. All Rights Reserved.

Used to set the language of buttons and labels captions.

Class

TCustomConnectDialog

Syntax

property LabelSet: TLabelSet default lsEnglish;

Remarks

Use the LabelSet property to set the language of labels and buttons captions.
The default value is lsEnglish.

© 1997-2012 Devart. All Rights Reserved.

Used to specify a prompt for password edit.

Class

TCustomConnectDialog

Syntax

property PasswordLabel: string;

Remarks

Use the PasswordLabel property to specify a prompt for password edit.

Data Access Components for MySQL186

© 1997-2012 Devart. All Rights Reserved.

Used to indicate the number of retries of failed connections.

Class

TCustomConnectDialog

Syntax

property Retries: word default 3;

Remarks

Use the Retries property to determine the number of retries of failed connections.

© 1997-2012 Devart. All Rights Reserved.

Used for the password to be displayed in ConnectDialog in asterisks.

Class

TCustomConnectDialog

Syntax

property SavePassword: boolean default False;

Remarks

If True, and the Password property of the connection instance is assigned, the password in
ConnectDialog is displayed in asterisks.

© 1997-2012 Devart. All Rights Reserved.

Used to specify a prompt for the server name edit.

Class

TCustomConnectDialog

Syntax

property ServerLabel: string;

Remarks

Use the ServerLabel property to specify a prompt for the server name edit.

© 1997-2012 Devart. All Rights Reserved.

Used to specify whether the login information should be kept in system registry after a connection was
established.

Class

TCustomConnectDialog

Syntax

property StoreLogInfo: boolean default True;

Remarks

Use the StoreLogInfo property to specify whether to keep login information in system registry after a
connection was established using provided username, password and servername.
Set this property to True to store login information.
The default value is True.

© 1997-2012 Devart. All Rights Reserved.

187Data Access Components for MySQL

Used to specify a prompt for username edit.

Class

TCustomConnectDialog

Syntax

property UsernameLabel: string;

Remarks

Use the UsernameLabel property to specify a prompt for username edit.

© 1997-2012 Devart. All Rights Reserved.

Methods of the TCustomConnectDialog class.
For a complete list of the TCustomConnectDialog class members, see the TCustomConnectDialog
Members topic.

Public

Name Description

Execute Displays the connect dialog and
calls the connection's Connect
method when user clicks the
Connect button.

GetServerList Retrieves a list of available server
names.

See Also
 TCustomConnectDialog Class
 TCustomConnectDialog Class Members

© 1997-2012 Devart. All Rights Reserved.

Displays the connect dialog and calls the connection's Connect method when user clicks the Connect
button.

Class

TCustomConnectDialog

Syntax

function Execute: boolean; virtual;
Return Value

True, if connected.

Remarks

Displays the connect dialog and calls the connection's Connect method when user clicks the Connect
button. Returns True if connected. If user clicks Cancel, Execute returns False.
In the case of failed connection Execute offers to connect repeat Retries times.

© 1997-2012 Devart. All Rights Reserved.

Retrieves a list of available server names.

Class

TCustomConnectDialog

Syntax

procedure GetServerList(List: _TStrings); virtual;
Parameters

List

Data Access Components for MySQL188

Holds a list of available server names.

Remarks

Call the GetServerList method to retrieve a list of available server names. It is particularly relevant for
writing custom login form.

See Also

 DialogClass

© 1997-2012 Devart. All Rights Reserved.

17.10.1.4 DBAccess.TCustomDAConnection Class

A base class for components used to establish connections.
For a list of all members of this type, see TCustomDAConnection members.

Unit

DBAccess

Syntax

TCustomDAConnection = class(TCustomConnection);

Remarks

TCustomDAConnection is a base class for components that establish connection with database, provide
customised login support, and perform transaction control.
Do not create instances of TCustomDAConnection. To add a component that represents a connection to a
source of data, use descendants of the TCustomDAConnection class.

Inheritance Hierarchy

TObject
 TCustomDAConnection

© 1997-2012 Devart. All Rights Reserved.

TCustomDAConnection class overview.

Properties

Name Description

ConnectDialog Allows to link a
TCustomConnectDialog component.

ConvertEOL Allows customizing line breaks in
string fields and parameters.

InTransaction Indicates whether the transaction is
active.

LoginPrompt Specifies whether a login dialog
appears immediately before
opening a new connection.

Options Specifies the connection behavior.

Password Serves to supply a password for
login.

Pooling Enables or disables using
connection pool.

PoolingOptions Specifies the behaviour of
connection pool.

Server Serves to supply the server name
for login.

Username Used to supply a user name for
login.

Methods

189Data Access Components for MySQL

Name Description

ApplyUpdates Overloaded. Applies changes in
datasets.

Commit Commits current transaction.

Connect Establishes a connection to the
server.

CreateDataSet Creates a dataset component.

CreateSQL Creates a component for queries
execution.

Disconnect Performs disconnect.

ExecProc Allows to execute stored procedure
or function providing its name and
parameters.

ExecProcEx Allows to execute a stored
procedure or function.

ExecSQL Executes a SQL statement with
parameters.

ExecSQLEx Executes any SQL statement
outside the TQuery or TSQL
components.

GetDatabaseNames Returns a database list from the
server.

GetStoredProcNames Returns a list of stored procedures
from the server.

MonitorMessage Sends a specified message through
the TCustomDASQLMonitor
component.

RemoveFromPool Marks the connection that should
not be returned to the pool after
disconnect.

Rollback Discards all current data changes
and ends transaction.

StartTransaction Begins a new user transaction.

Events

Name Description

OnConnectionLost This event occurs when connection
was lost.

OnError This event occurs when an error has
arisen in the connection.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TCustomDAConnection class.
For a complete list of the TCustomDAConnection class members, see the TCustomDAConnection
Members topic.

Public

Name Description

ConnectDialog Allows to link a
TCustomConnectDialog component.

ConvertEOL Allows customizing line breaks in
string fields and parameters.

InTransaction Indicates whether the transaction is
active.

LoginPrompt Specifies whether a login dialog
appears immediately before
opening a new connection.

Options Specifies the connection behavior.

Data Access Components for MySQL190

Password Serves to supply a password for
login.

Pooling Enables or disables using
connection pool.

PoolingOptions Specifies the behaviour of
connection pool.

Server Serves to supply the server name
for login.

Username Used to supply a user name for
login.

See Also
 TCustomDAConnection Class
 TCustomDAConnection Class Members

© 1997-2012 Devart. All Rights Reserved.

Allows to link a TCustomConnectDialog component.

Class

TCustomDAConnection

Syntax

property ConnectDialog: TCustomConnectDialog;

Remarks

Use the ConnectDialog property to assign to connection a TCustomConnectDialog component.

See Also

 TCustomConnectDialog

© 1997-2012 Devart. All Rights Reserved.

Allows customizing line breaks in string fields and parameters.

Class

TCustomDAConnection

Syntax

property ConvertEOL: boolean default False;

Remarks

Affects the line break behavior in string fields and parameters. When fetching strings (including the TEXT
fields) with ConvertEOL = True, dataset converts their line breaks from the LF to CRLF form. And when
posting strings to server with ConvertEOL turned on, their line breaks are converted from CRLF to LF
form. By default, strings are not converted.

© 1997-2012 Devart. All Rights Reserved.

Indicates whether the transaction is active.

Class

TCustomDAConnection

Syntax

property InTransaction: boolean;

Remarks

191Data Access Components for MySQL

Examine the InTransaction property at runtime to determine whether user transaction is currently in
progress. In other words InTransaction is set to True when user explicitly calls StartTransaction. Calling
Commit or Rollback sets InTransaction to False. The value of the InTransaction property cannot be
changed directly.

See Also

 StartTransaction
 Commit
 Rollback

© 1997-2012 Devart. All Rights Reserved.

Specifies whether a login dialog appears immediately before opening a new connection.

Class

TCustomDAConnection

Syntax

property LoginPrompt default True;

Remarks

Specifies whether a login dialog appears immediately before opening a new connection. If ConnectDialog
is not specified, the default connect dialog will be shown. The connect dialog will appear only if the
MyDacVcl unit appears to the uses clause.

© 1997-2012 Devart. All Rights Reserved.

Specifies the connection behavior.

Class

TCustomDAConnection

Syntax

property Options: TDAConnectionOptions;

Remarks

Set the properties of Options to specify the behaviour of the connection.
Descriptions of all options are in the table below.

Option Name Description

DefaultSortType Used to determine the default type of local
sorting for string fields. It is used when a sort
type is not specified explicitly after the field
name in the TMemDataSet.IndexFieldNames
property of a dataset.

DisconnectedMode Used to open a connection only when needed for
performing a server call and closes after
performing the operation.

KeepDesignConnected Used to prevent an application from establishing
a connection at the time of startup.

LocalFailover If True, the OnConnectionLost event occurs and
a failover operation can be performed after
connection breaks.

See Also


Disconnected Mode

Data Access Components for MySQL192


Working in an Unstable Network

©

 1997-2012 Devart. All Rights Reserved.

Serves to supply a password for login.

Class

TCustomDAConnection

Syntax

property Password: string;

Remarks

Use the Password property to supply a password to handle server's request for a login.
Warning: Storing hard-coded user name and password entries as property values or in code for the
OnLogin event handler can compromise server security.

See Also

 Username
 Server

© 1997-2012 Devart. All Rights Reserved.

Enables or disables using connection pool.

Class

TCustomDAConnection

Syntax

property Pooling: boolean default False;

Remarks

Normally, when TCustomDAConnection establishes connection with the server it takes server memory
and time resources for allocating new server connection. For example, pooling can be very useful when
using disconnect mode. If an application has wide user activity that forces many connect/disconnect
operations, it may spend a lot of time on creating connection and sending requests to the server.
TCustomDAConnection has software pool which stores open connections with identical parameters.
Connection pool uses separate thread that validates the pool every 30 seconds. Pool validation consists
of checking each connection in the pool. If a connection is broken due to a network problem or another
reason, it is deleted from the pool. The validation procedure removes also connections that are not used
for a long time even if they are valid from the pool.
Set Pooling to True to enable pooling. Specify correct values for PoolingOptions. Two connections belong
to the same pool if they have identical values for the parameters: MinPoolSize, MaxPoolSize, Validate,
ConnectionLifeTime , Server, Username, Password, TCustomMyConnection.Database,
TCustomMyConnection.IsolationLevel, TMyConnection.Port, TMyConnection.IOHandler,
TCustomMyConnection.ConnectionTimeout, TMyConnectionOptions.Compress, TMyConnectionOptions.
Direct, TMyConnectionOptions.Embedded, TMyConnectionOptions.Protocol,
TCustomMyConnectionOptions.Charset, TCustomMyConnectionOptions.UseUnicode,
TCustomMyConnectionOptions.NumericType.
Note: Using Pooling := True can cause errors with working with temporary tables.

See Also

193Data Access Components for MySQL

 Username
 Password
 PoolingOptions
 Connection Pooling

© 1997-2012 Devart. All Rights Reserved.

Specifies the behaviour of connection pool.

Class

TCustomDAConnection

Syntax

property PoolingOptions: TPoolingOptions;

Remarks

Set the properties of PoolingOptions to specify the behaviour of connection pool.
Descriptions of all options are in the table below.

Option Name Description

ConnectionLifetime Used to specify the maximum time during which
an opened connection can be used by connection
pool.

MaxPoolSize Used to specify the maximum number of
connections that can be opened in connection
pool.

MinPoolSize Used to specify the minimum number of
connections that can be opened in the connection
pool.

Validate Used for a connection to be validated when it is
returned from the pool.

See Also


Pooling

©

 1997-2012 Devart. All Rights Reserved.

Serves to supply the server name for login.

Class

TCustomDAConnection

Syntax

property Server: string;

Remarks

Use the Server property to supply server name to handle server's request for a login. If this property is
not set, MyDAC tries to connect to Localhost.
The Server property can be used only if TMyConnectionOptions.Embedded is set to False.

See Also

 Username

Data Access Components for MySQL194

 Password
 TMyConnection.Port

© 1997-2012 Devart. All Rights Reserved.

Used to supply a user name for login.

Class

TCustomDAConnection

Syntax

property Username: string;

Remarks

Use the Username property to supply a user name to handle server's request for login. If this property is
not set, MyDAC tries to connect with the empty user name.
Warning: Storing hard-coded user name and password entries as property values or in code for the
OnLogin event handler can compromise server security.

See Also

 Password
 Server

© 1997-2012 Devart. All Rights Reserved.

Methods of the TCustomDAConnection class.
For a complete list of the TCustomDAConnection class members, see the TCustomDAConnection
Members topic.

Public

Name Description

ApplyUpdates Overloaded. Applies changes in
datasets.

Commit Commits current transaction.

Connect Establishes a connection to the
server.

CreateDataSet Creates a dataset component.

CreateSQL Creates a component for queries
execution.

Disconnect Performs disconnect.

ExecProc Allows to execute stored procedure
or function providing its name and
parameters.

ExecProcEx Allows to execute a stored
procedure or function.

ExecSQL Executes a SQL statement with
parameters.

ExecSQLEx Executes any SQL statement
outside the TQuery or TSQL
components.

GetDatabaseNames Returns a database list from the
server.

GetStoredProcNames Returns a list of stored procedures
from the server.

MonitorMessage Sends a specified message through
the TCustomDASQLMonitor
component.

195Data Access Components for MySQL

RemoveFromPool Marks the connection that should
not be returned to the pool after
disconnect.

Rollback Discards all current data changes
and ends transaction.

StartTransaction Begins a new user transaction.

See Also
 TCustomDAConnection Class
 TCustomDAConnection Class Members

© 1997-2012 Devart. All Rights Reserved.

Applies changes in datasets.

Class

TCustomDAConnection

Overload List

Name Description

ApplyUpdates Applies changes from all active datasets.

ApplyUpdates(DataSets: array of
TCustomDADataSet)

Applies changes from the specified datasets.

© 1997-2012 Devart. All Rights Reserved.

Applies changes from all active datasets.

Class

TCustomDAConnection

Syntax

procedure ApplyUpdates; overload; virtual

Remarks

Call the ApplyUpdates method to write all pending cached updates from all active datasets attached to
this connection to a database or from specific datasets. The ApplyUpdates method passes cached data to
the database for storage, takes care of committing or rolling back transactions, and clearing the cache
when the operation is successful.
Using ApplyUpdates for connection is a preferred method of updating datasets rather than calling each
individual dataset's ApplyUpdates method.

See Also

 TMemDataSet.CachedUpdates
 TMemDataSet.ApplyUpdates

© 1997-2012 Devart. All Rights Reserved.

Applies changes from the specified datasets.

Class

TCustomDAConnection

Syntax

procedure ApplyUpdates(DataSets: array of TCustomDADataSet);
overload; virtual
Parameters

Data Access Components for MySQL196

DataSets
A list of datasets changes in which are to be applied.

Remarks

Call the ApplyUpdates method to write all pending cached updates from the specified datasets. The
ApplyUpdates method passes cached data to the database for storage, takes care of committing or
rolling back transactions and clearing the cache when operation is successful.
Using ApplyUpdates for connection is a preferred method of updating datasets rather than calling each
individual dataset's ApplyUpdates method.

© 1997-2012 Devart. All Rights Reserved.

Commits current transaction.

Class

TCustomDAConnection

Syntax

procedure Commit; virtual;

Remarks

Call the Commit method to commit current transaction. On commit server writes permanently all
pending data updates associated with the current transaction to the database and then ends the
transaction. The current transaction is the last transaction started by calling StartTransaction.

See Also

 Rollback
 StartTransaction
 TCustomMyDataSet.FetchAll

© 1997-2012 Devart. All Rights Reserved.

Establishes a connection to the server.

Class

TCustomDAConnection

Syntax

procedure Connect;

Remarks

Call the Connect method to establish a connection to the server. Connect sets the Connected property to
True. If LoginPrompt is True, Connect prompts user for login information as required by the server, or
otherwise tries to establish a connection using values provided in the Username, Password, and Server
properties.

See Also

 Disconnect
 Username
 Password
 Server
 ConnectDialog

© 1997-2012 Devart. All Rights Reserved.

197Data Access Components for MySQL

Creates a dataset component.

Class

TCustomDAConnection

Syntax

function CreateDataSet: TCustomDADataSet; virtual;
Return Value

Returns a new instance of the class.

Remarks

Call the CreateDataSet method to return a new instance of the TCustomDADataSet class and associate it
with this connection object. In the descendant classes this method should be overridden to create an
appropriate descendant of the TCustomDADataset component.

© 1997-2012 Devart. All Rights Reserved.

Creates a component for queries execution.

Class

TCustomDAConnection

Syntax

function CreateSQL: TCustomDASQL; virtual;
Return Value

A new instance of the class.

Remarks

Call the CreateSQL to return a new instance of the TCustomDASQL class and associates it with this
connection object. In the descendant classes this method should be overridden to create an appropriate
descendant of the TCustomDASQL component.

© 1997-2012 Devart. All Rights Reserved.

Performs disconnect.

Class

TCustomDAConnection

Syntax

procedure Disconnect;

Remarks

Call the Disconnect method to drop a connection to database. Before the connection component is
deactivated, all associated datasets are closed. Calling Disconnect is similar to setting the Connected
property to False.
In most cases, closing a connection frees system resources allocated to the connection.
If user transaction is active, e.g. the InTransaction flag is set, calling to Disconnect rolls back the current
user transaction.
Note: If a previously active connection is closed and then reopened, any associated datasets must be
individually reopened; reopening the connection does not automatically reopen associated datasets.

See Also

 Connect

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL198

Allows to execute stored procedure or function providing its name and parameters.

Class

TCustomDAConnection

Syntax

function ExecProc(Name: string; const Params: array of variant):
variant; virtual;
Parameters

Name
Holds the name of the stored procedure or function.

Params
Holds the parameters of the stored procedure or function.

Return Value

the result of the stored procedure.

Remarks

Allows to execute stored procedure or function providing its name and parameters.
Use the following Name value syntax for executing specific overloaded routine: "StoredProcName:1" or
"StoredProcName:5". The first example executes the first overloaded stored procedure, while the second
example executes the fifth overloaded procedure.
Assign parameters' values to the Params array in exactly the same order and number as they appear in
the stored procedure declaration. Out parameters of the procedure can be accessed with the
ParamByName procedure.
If the value of an input parameter was not included to the Params array, parameter default value is
taken. Only parameters at the end of the list can be unincluded to the Params array. If the parameter
has no default value, the NULL value is sent.
Note: Stored functions unlike stored procedures return result values that are obtained internally through
the RESULT parameter. You will no longer have to provide anonymous value in the Params array to
describe the result of the function. The stored function result is obtained from the Params[0] indexed
property or with the ParamByName('RESULT') method call.
For further examples of parameter usage see ExecSQL, ExecSQLEx.

Example

For example, having stored function declaration presented in Example 1), you may execute it and
retrieve its result with commands presented in Example 2):

Example 1)
CREATE procedure MY_SUM (
 A INTEGER,
 B INTEGER)
RETURNS (
 RESULT INTEGER)
as
begin
 Result = a + b;
end;
Example 2)
Label1.Caption:= MyMyConnection1.ExecProc('My_Sum', [10, 20]);
Label2.Caption:= MyMyConnection1.ParamByName('Result').AsString;

See Also


ExecProcEx

 ExecSQL

199Data Access Components for MySQL

 ExecSQLEx

© 1997-2012 Devart. All Rights Reserved.

Allows to execute a stored procedure or function.

Class

TCustomDAConnection

Syntax

function ExecProcEx(Name: string; const Params: array of variant):
variant; virtual;
Parameters

Name
Holds the stored procedure name.

Params
Holds an array of pairs of parameters' names and values.

Return Value

the result of the stored procedure.

Remarks

Allows to execute a stored procedure or function. Provide the stored procedure name and its parameters
to the call of ExecProcEx.
Use the following Name value syntax for executing specific overloaded routine: "StoredProcName:1" or
"StoredProcName:5". The first example executes the first overloaded stored procedure, while the second
example executes the fifth overloaded procedure.
Assign pairs of parameters' names and values to a Params array so that every name comes before its
corresponding value when an array is being indexed.
Out parameters of the procedure can be accessed with the ParamByName procedure. If the value for an
input parameter was not included to the Params array, the parameter default value is taken. If the
parameter has no default value, the NULL value is sent.
Note: Stored functions unlike stored procedures return result values that are obtained internally through
the RESULT parameter. You will no longer have to provide anonymous value in the Params array to
describe the result of the function. Stored function result is obtained from the Params[0] indexed
property or with the ParamByName('RESULT') method call.
For an example of parameters usage see ExecSQLEx.

Example

If you have some stored procedure accepting four parameters, and you want to provide values only for
the first and fourth parameters, you should call ExecProcEx in the following way:

Connection.ExecProcEx('Some_Stored_Procedure', ['Param_Name1', 'Param_Value1', 'Param_Name4', 'Param_Value4']);

See Also


ExecSQL

 ExecSQLEx

 ExecProc

© 1997-2012 Devart. All Rights Reserved.

Executes a SQL statement with parameters.

Class

TCustomDAConnection

Syntax

Data Access Components for MySQL200

function ExecSQL(Text: string): variant; overload;function ExecSQL
(Text: string; const Params: array of variant): variant;
overload; virtual;
Parameters

Text
a SQL statement to be executed.

Params
Array of parameter values arranged in the same order as they appear in SQL statement.

Return Value

Out parameter with the name Result will hold the result of function having data type dtString.
Otherwise returns Null.

Remarks

Use the ExecSQL method to execute any SQL statement outside the TCustomDADataSet or
TCustomDASQL components. Supply the Params array with the values of parameters arranged in the
same order as they appear in a SQL statement which itself is passed to the Text string parameter.
Note: If a query doesn't have parameters (Params.Count = 0), this query will be executed faster.

See Also

 ExecSQLEx
 ExecProc
 TCustomMyConnection.ExecSQL

© 1997-2012 Devart. All Rights Reserved.

Executes any SQL statement outside the TQuery or TSQL components.

Class

TCustomDAConnection

Syntax

function ExecSQLEx(Text: string; const Params: array of variant):
variant; virtual;
Parameters

Text
a SQL statement to be executed.

Params
Array of parameter values arranged in the same order as they appear in SQL statement.

Return Value

Out parameter with the name Result will hold the result of a function having data type dtString.
Otherwise returns Null.

Remarks

Call the ExecSQLEx method to execute any SQL statement outside the TQuery or TSQL components.
Supply the Params array with values arranged in pairs of parameter name and its value. This way each
parameter name in the array is found on even index values whereas parameter value is on odd index
value but right after its parameter name. The parameter pairs must be arranged according to their
occurrence in a SQL statement which itself is passed in the Text string parameter.
The Params array must contain all IN and OUT parameters defined in the SQL statement. For OUT
parameters provide any values of valid types so that they are explicitly defined before call to the
ExecSQLEx method.
Out parameter with the name Result will hold the result of a function having data type dtString. If
neither of the parameters in the Text statement is named Result, ExecSQLEx will return Null.
To get the values of OUT parameters use the ParamByName function.

201Data Access Components for MySQL

Example

MyConnection.ExecSQLEx('begin :A:= :B + :C; end;',
 ['A', 0, 'B', 5, 'C', 3]);
A:= MyConnection.ParamByName('A').AsInteger;

See Also


ExecSQL

© 1997-2012 Devart. All Rights Reserved.

Returns a database list from the server.

Class

TCustomDAConnection

Syntax

procedure GetDatabaseNames(List: _TStrings); virtual;
Parameters

List
A TStrings descendant that will be filled with database names.

Remarks

Populates a string list with the names of databases.
Note: Any contents already in the target string list object are eliminated and overwritten by data
produced by GetDatabaseNames.

See Also

 M:Devart.Dac.TCustomDAConnection.GetTableNames(Borland.Vcl.TStrings,System.Boolean)
 GetStoredProcNames
 TCustomMyConnection.Database

© 1997-2012 Devart. All Rights Reserved.

Returns a list of stored procedures from the server.

Class

TCustomDAConnection

Syntax

procedure GetStoredProcNames(List: _TStrings; AllProcs: boolean =
False); virtual;
Parameters

List
A TStrings descendant that will be filled with the names of stored procedures in the database.

AllProcs
True, if stored procedures from all schemas or including system procudures (depending on the server)
are returned. False otherwise.

Remarks

Call the GetStoredProcNames method to get the names of available stored procedures and functions.
GetStoredProcNames populates a string list with the names of stored procs in the database. If AllProcs =

Data Access Components for MySQL202

True, the procedure returns to the List parameter the names of the stored procedures that belong to all
schemas; otherwise, List will contain the names of functions that belong to the current schema.
Note: Any contents already in the target string list object are eliminated and overwritten by data
produced by GetStoredProcNames.

See Also

 GetDatabaseNames
 M:Devart.Dac.TCustomDAConnection.GetTableNames(Borland.Vcl.TStrings,System.Boolean)
 M:Devart.Dac.TCustomDAConnection.GetTableNames(Borland.Vcl.TStrings,System.Boolean)

© 1997-2012 Devart. All Rights Reserved.

Sends a specified message through the TCustomDASQLMonitor component.

Class

TCustomDAConnection

Syntax

procedure MonitorMessage(const Msg: string);
Parameters

Msg
Message text that will be sent.

Remarks

Call the MonitorMessage method to output specified message via the TCustomDASQLMonitor component.

See Also

 TCustomDASQLMonitor

© 1997-2012 Devart. All Rights Reserved.

Marks the connection that should not be returned to the pool after disconnect.

Class

TCustomDAConnection

Syntax

procedure RemoveFromPool;

Remarks

Call the RemoveFromPool method to mark the connection that should be deleted after disconnect instead
of returning to the connection pool.

See Also

 Pooling
 PoolingOptions

© 1997-2012 Devart. All Rights Reserved.

Discards all current data changes and ends transaction.

Class

TCustomDAConnection

203Data Access Components for MySQL

Syntax

procedure Rollback; virtual;

Remarks

Call the Rollback method to discard all updates, insertions, and deletions of data associated with the
current transaction to the database server and then end the transaction. The current transaction is the
last transaction started by calling StartTransaction.

See Also

 Commit
 StartTransaction
 TCustomMyDataSet.FetchAll

© 1997-2012 Devart. All Rights Reserved.

Begins a new user transaction.

Class

TCustomDAConnection

Syntax

procedure StartTransaction; virtual;

Remarks

Call the StartTransaction method to begin a new user transaction against the database server. Before
calling StartTransaction, an application should check the status of the InTransaction property. If
InTransaction is True, indicating that a transaction is already in progress, a subsequent call to
StartTransaction without first calling Commit or Rollback to end the current transaction raises
EDatabaseError. Calling StartTransaction when connection is closed also raises EDatabaseError.
Updates, insertions, and deletions that take place after a call to StartTransaction are held by the server
until an application calls Commit to save the changes, or Rollback to cancel them.

See Also

 Commit
 Rollback
 InTransaction
 TCustomMyConnection.IsolationLevel

© 1997-2012 Devart. All Rights Reserved.

Events of the TCustomDAConnection class.
For a complete list of the TCustomDAConnection class members, see the TCustomDAConnection
Members topic.

Public

Name Description

OnConnectionLost This event occurs when connection
was lost.

OnError This event occurs when an error has
arisen in the connection.

See Also
 TCustomDAConnection Class
 TCustomDAConnection Class Members

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL204

This event occurs when connection was lost.

Class

TCustomDAConnection

Syntax

property OnConnectionLost: TConnectionLostEvent;

Remarks

Write the OnConnectionLost event handler to process fatal errors and perform failover.
Note: you should explicitly add the MemData unit to the 'uses' list to use the OnConnectionLost event
handler.

© 1997-2012 Devart. All Rights Reserved.

This event occurs when an error has arisen in the connection.

Class

TCustomDAConnection

Syntax

property OnError: TDAConnectionErrorEvent;

Remarks

Write the OnError event handler to respond to errors that arise with connection. Check the E parameter
to get the error code. Set the Fail parameter to False to prevent an error dialog from being displayed
and to raise the EAbort exception to cancel current operation. The default value of Fail is True.

© 1997-2012 Devart. All Rights Reserved.

17.10.1.5 DBAccess.TCustomDADataSet Class

Encapsulates general set of properties, events, and methods for working with data accessed through
various database engines.
For a list of all members of this type, see TCustomDADataSet members.

Unit

DBAccess

Syntax

TCustomDADataSet = class(TMemDataSet);

Remarks

TCustomDADataSet encapsulates general set of properties, events, and methods for working with data
accessed through various database engines. All database-specific features are supported by descendants
of TCustomDADataSet.
Applications should not use TCustomDADataSet objects directly.

Inheritance Hierarchy

TObject
 TMemDataSet
 TCustomDADataSet

© 1997-2012 Devart. All Rights Reserved.

TCustomDADataSet class overview.

Properties

Name Description

205Data Access Components for MySQL

BaseSQL Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

Connection Used to specify a connection object
to use to connect to a data store.

Debug Used to display executing
statement, all its parameters'
values, and the type of parameters.

DetailFields Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Disconnected Used to keep dataset opened after
connection is closed.

Encryption Used to specify the options of the
data encryption in a dataset.

FetchRows Used to define the number of rows
to be transferred across the
network at the same time.

FilterSQL Used to change the WHERE clause
of SELECT statement and reopen a
query.

FinalSQL Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

IsQuery Used to check whether SQL
statement returns rows.

KeyFields Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

MacroCount Used to get the number of macros
associated with the Macros
property.

Macros Makes it possible to change SQL
queries easily.

MasterFields Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

MasterSource Used to specify the data source
component which binds current
dataset to the master one.

Options Used to specify the behaviour of
TCustomDADataSet object.

Data Access Components for MySQL206

ParamCheck Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

ParamCount Used to indicate how many
parameters are there in the Params
property.

Params Used to view and set parameter
names, values, and data types
dynamically.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

ReadOnly Used to prevent users from
updating, inserting, or deleting data
in the dataset.

RefreshOptions Used to indicate when the editing
record is refreshed.

RowsAffected Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SQL Used to provide a SQL statement
that a query component executes
when its Open method is called.

SQLDelete Used to specify a SQL statement
that will be used when applying a
deletion to a record.

SQLInsert Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

SQLLock Used to specify a SQL statement
that will be used to perform a
record lock.

SQLRefresh Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

SQLUpdate Used to specify a SQL statement
that will be used when applying an
update to a dataset.

UniDirectional Used if an application does not need
bidirectional access to records in
the result set.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

Methods

Name Description

AddWhere Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BreakExec Breaks execution of the SQL
statement on the server.

207Data Access Components for MySQL

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

CreateBlobStream Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteWhere Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

Execute Executes a SQL statement on the
server.

Executing Indicates whether SQL statement is
still being executed.

Fetched Used to learn whether
TCustomDADataSet has already
fetched all rows.

Fetching Used to learn whether
TCustomDADataSet is still fetching
rows.

FetchingAll Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

FindKey Searches for a record which
contains specified field values.

FindMacro Indicates whether a specified macro
exists in a dataset.

FindNearest Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

FindParam Determines if a parameter with the
specified name exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetDataType Returns internal field types defined
in the MemData and accompanying
modules.

GetFieldObject Returns a multireference shared
object from field.

GetFieldPrecision Retrieves the precision of a number
field.

GetFieldScale Retrieves the scale of a number
field.

GetOrderBy Retrieves an ORDER BY clause from
a SQL statement.

GotoCurrent Sets the current record in this
dataset similar to the current record
in another dataset.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

Data Access Components for MySQL208

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Lock Locks the current record.

MacroByName Finds a Macro with the name passed
in Name.

ParamByName Sets or uses parameter information
for a specific parameter based on
its name.

Prepare Allocates, opens, and parses cursor
for a query.

RefreshRecord Actualizes field values for the
current record.

RestoreSQL Restores the SQL property modified
by AddWhere and SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

Resync Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

SaveSQL Saves the SQL property value to
BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

SetOrderBy Builds an ORDER BY clause of a
SELECT statement.

SQLSaved Determines if the SQL property
value was saved to the BaseSQL
property.

UnLock Releases a record lock.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

Events

Name Description

AfterExecute Occurs after a component has
executed a query to database.

AfterFetch Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute Occurs after executing insert,
delete, update, lock and refresh
operations.

BeforeFetch Occurs before dataset is going to
fetch block of records from the
server.

209Data Access Components for MySQL

BeforeUpdateExecute Occurs before executing insert,
delete, update, lock, and refresh
operations.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TCustomDADataSet class.
For a complete list of the TCustomDADataSet class members, see the TCustomDADataSet Members
topic.

Public

Name Description

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BaseSQL Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

Connection Used to specify a connection object
to use to connect to a data store.

Debug Used to display executing
statement, all its parameters'
values, and the type of parameters.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DetailFields Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Disconnected Used to keep dataset opened after
connection is closed.

Encryption Used to specify the options of the
data encryption in a dataset.

FetchRows Used to define the number of rows
to be transferred across the
network at the same time.

FilterSQL Used to change the WHERE clause
of SELECT statement and reopen a
query.

FinalSQL Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

Data Access Components for MySQL210

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

IsQuery Used to check whether SQL
statement returns rows.

KeyFields Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

MacroCount Used to get the number of macros
associated with the Macros
property.

Macros Makes it possible to change SQL
queries easily.

MasterFields Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

MasterSource Used to specify the data source
component which binds current
dataset to the master one.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

Options Used to specify the behaviour of
TCustomDADataSet object.

ParamCheck Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

ParamCount Used to indicate how many
parameters are there in the Params
property.

Params Used to view and set parameter
names, values, and data types
dynamically.

Prepare (inherited from TMemDataSet) Allocates resources and creates
field components for a dataset.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

ReadOnly Used to prevent users from
updating, inserting, or deleting data
in the dataset.

211Data Access Components for MySQL

RefreshOptions Used to indicate when the editing
record is refreshed.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

RowsAffected Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

SQL Used to provide a SQL statement
that a query component executes
when its Open method is called.

SQLDelete Used to specify a SQL statement
that will be used when applying a
deletion to a record.

SQLInsert Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

SQLLock Used to specify a SQL statement
that will be used to perform a
record lock.

SQLRefresh Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

SQLUpdate Used to specify a SQL statement
that will be used when applying an
update to a dataset.

UniDirectional Used if an application does not need
bidirectional access to records in
the result set.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

See Also
 TCustomDADataSet Class
 TCustomDADataSet Class Members

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL212

Used to return SQL text without any changes performed by AddWhere, SetOrderBy, and FilterSQL.

Class

TCustomDADataSet

Syntax

property BaseSQL: string;

Remarks

Use the BaseSQL property to return SQL text without any changes performed by AddWhere, SetOrderBy,
and FilterSQL, only macros are expanded. SQL text with all these changes can be returned by FinalSQL.

See Also

 FinalSQL
 AddWhere
 SaveSQL
 SQLSaved
 RestoreSQL

© 1997-2012 Devart. All Rights Reserved.

Used to specify a connection object to use to connect to a data store.

Class

TCustomDADataSet

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify a connection object that will be used to connect to a data store.
Set at design-time by selecting from the list of provided TCustomDAConnection or its descendant class
objects.
At runtime, link an instance of a TCustomDAConnection descendant to the Connection property.

© 1997-2012 Devart. All Rights Reserved.

Used to display executing statement, all its parameters' values, and the type of parameters.

Class

TCustomDADataSet

Syntax

property Debug: boolean default False;

Remarks

Set the Debug property to True to display executing statement and all its parameters' values. Also
displays the type of parameters.
You should add the MyDacVcl unit to the uses clause of any unit in your project to make the Debug
property work.
Note: To enable debug window you should explicitly include the MyDacVcl (MyDacClx under Kylix) unit
to your project.

See Also

 TCustomDASQL.Debug

© 1997-2012 Devart. All Rights Reserved.

213Data Access Components for MySQL

Used to specify the fields that correspond to the foreign key fields from MasterFields when building
master/detail relationship.

Class

TCustomDADataSet

Syntax

property DetailFields: string;

Remarks

Use the DetailFields property to specify the fields that correspond to the foreign key fields from
MasterFields when building master/detail relationship. DetailFields is a string containing one or more field
names in the detail table. Separate field names with semicolons.
Use Field Link Designer to set the value in design time.

See Also

 MasterFields
 MasterSource

© 1997-2012 Devart. All Rights Reserved.

Used to keep dataset opened after connection is closed.

Class

TCustomDADataSet

Syntax

property Disconnected: boolean;

Remarks

Set the Disconnected property to True to keep dataset opened after connection is closed.

© 1997-2012 Devart. All Rights Reserved.

Used to specify the options of the data encryption in a dataset.

Class

TCustomDADataSet

Syntax

property Encryption: TDAEncryptionOptions;

Remarks

Set the properties of Encryption to specify the options of the data encryption in a dataset.

© 1997-2012 Devart. All Rights Reserved.

Used to define the number of rows to be transferred across the network at the same time.

Class

TCustomDADataSet

Syntax

property FetchRows: integer default 25;

Remarks

The number of rows that will be transferred across the network at the same time. This property can
have a great impact on performance. So it is preferable to choose the optimal value of the FetchRows

Data Access Components for MySQL214

property for each SQL statement and software/hardware configuration experimentally.
The default value is 25.

© 1997-2012 Devart. All Rights Reserved.

Used to change the WHERE clause of SELECT statement and reopen a query.

Class

TCustomDADataSet

Syntax

property FilterSQL: string;

Remarks

The FilterSQL property is similar to the Filter property, but it changes the WHERE clause of SELECT
statement and reopens query. Syntax is the same to the WHERE clause.

Example

Query1.FilterSQL := 'Dept >= 20 and DName LIKE ''M%''';

See Also


AddWhere

© 1997-2012 Devart. All Rights Reserved.

Used to return SQL text with all changes performed by AddWhere, SetOrderBy, and FilterSQL, and with
expanded macros.

Class

TCustomDADataSet

Syntax

property FinalSQL: string;

Remarks

Use FinalSQL to return SQL text with all changes performed by AddWhere, SetOrderBy, and FilterSQL,
and with expanded macros. This is the exact statement that will be passed on to the database server.

See Also

 FinalSQL
 AddWhere
 SaveSQL
 SQLSaved
 RestoreSQL
 BaseSQL

© 1997-2012 Devart. All Rights Reserved.

Used to check whether SQL statement returns rows.

Class

TCustomDADataSet

Syntax

215Data Access Components for MySQL

property IsQuery: boolean;

Remarks

After the TCustomDADataSet component is prepared, the IsQuery property returns True if SQL
statement is a SELECT query.
Use the IsQuery property to check whether the SQL statement returns rows or not.
IsQuery is a read-only property. Reading IsQuery on unprepared dataset raises an exception.

© 1997-2012 Devart. All Rights Reserved.

Used to build SQL statements for the SQLDelete, SQLInsert, and SQLUpdate properties if they were
empty before updating the database.

Class

TCustomDADataSet

Syntax

property KeyFields: string;

Remarks

TCustomDADataset uses the KeyFields property to build SQL statements for the SQLDelete, SQLInsert,
and SQLUpdate properties if they were empty before updating the database. For this feature KeyFields
may hold a list of semicolon-delimited field names. If KeyFields is not defined before opening dataset,
TCustomDADataset uses the metainformation sent by the server together with data.

See Also

 SQLDelete
 SQLInsert
 SQLRefresh
 SQLUpdate

© 1997-2012 Devart. All Rights Reserved.

Used to get the number of macros associated with the Macros property.

Class

TCustomDADataSet

Syntax

property MacroCount: word;

Remarks

Use the MacroCount property to get the number of macros associated with the Macros property.

See Also

 Macros

© 1997-2012 Devart. All Rights Reserved.

Makes it possible to change SQL queries easily.

Class

TCustomDADataSet

Syntax

property Macros: TMacros stored False;

Data Access Components for MySQL216

Remarks

With the help of macros you can easily change SQL query text at design- or runtime. Marcos extend
abilities of parameters and allow to change conditions in a WHERE clause or sort order in an ORDER BY
clause. You just insert &MacroName in the SQL query text and change value of macro in the Macro
property editor at design time or call the MacroByName function at run time. At the time of opening the
query macro is replaced by its value.

Example

MyQuery.SQL:= 'SELECT * FROM Dept ORDER BY &Order';
MyQuery.MacroByName('Order').Value:= 'DeptNo';
MyQuery.Open;

See Also


TMacro

 MacroByName

 Params

© 1997-2012 Devart. All Rights Reserved.

Used to specify the names of one or more fields that are used as foreign keys for dataset when
establishing detail/master relationship between it and the dataset specified in MasterSource.

Class

TCustomDADataSet

Syntax

property MasterFields: string;

Remarks

Use the MasterFields property after setting the MasterSource property to specify the names of one or
more fields that are used as foreign keys for this dataset when establishing detail/master relationship
between it and the dataset specified in MasterSource.
MasterFields is a string containing one or more field names in the master table. Separate field names
with semicolons.
Each time the current record in the master table changes, the new values in these fields are used to
select corresponding records in this table for display.
Use Field Link Designer to set the values at design time after setting the MasterSource property.

See Also

 DetailFields
 MasterSource
 Master/Detail Relationships

© 1997-2012 Devart. All Rights Reserved.

Used to specify the data source component which binds current dataset to the master one.

Class

TCustomDADataSet

Syntax

property MasterSource: TDataSource;

217Data Access Components for MySQL

Remarks

The MasterSource property specifies the data source component which binds current dataset to the
master one.
TCustomDADataset uses MasterSource to extract foreign key fields values from the master dataset when
building master/detail relationship between two datasets. MasterSource must point to another dataset; it
cannot point to this dataset component.
When MasterSource is not nil dataset fills parameter values with corresponding field values from the
current record of the master dataset.
Note: Do not set the DataSource property when building master/detail relationships. Although it points
to the same object as the MasterSource property, it may lead to undesirable results.

See Also

 MasterFields
 DetailFields
 Master/Detail Relationships

© 1997-2012 Devart. All Rights Reserved.

Used to specify the behaviour of TCustomDADataSet object.

Class

TCustomDADataSet

Syntax

property Options: TDADataSetOptions;

Remarks

Set the properties of Options to specify the behaviour of a TCustomDADataSet object.
Descriptions of all options are in the table below.

Option Name Description

AutoPrepare Used to execute automatic Prepare on the query
execution.

CacheCalcFields Used to enable caching of the TField.Calculated
and TField.Lookup fields.

DefaultValues Used to request default values/expressions from
the server and assign them to the
DefaultExpression property.

DetailDelay Used to get or set a delay in milliseconds before
refreshing detail dataset while navigating master
dataset.

FieldsOrigin Used for TCustomDADataSet to fill the Origin
property of the TField objects by appropriate
value when opening a dataset.

FlatBuffers Used to control how a dataset treats data of the
ftString and ftVarBytes fields.

LocalMasterDetail Used for TCustomDADataSet to use local filtering
to establish master/detail relationship for detail
dataset and does not refer to the server.

LongStrings Used to represent string fields with the length
that is greater than 255 as TStringField.

NumberRange Used to set the MaxValue and MinValue
properties of TIntegerField and TFloatField to
appropriate values.

QueryRecCount Used for TCustomDADataSet to perform
additional query to get the record count for this
SELECT, so the RecordCount property reflects
the actual number of records.

Data Access Components for MySQL218

QuoteNames Used for TCustomDADataSet to quote all
database object names in autogenerated SQL
statements such as update SQL.

RemoveOnRefresh Used for a dataset to locally remove a record
that can not be found on the server.

RequiredFields Used for TCustomDADataSet to set the Required
property of the TField objects for the NOT NULL
fields.

ReturnParams Used to return the new value of fields to dataset
after insert or update.

SetFieldsReadOnly Used for a dataset to set the ReadOnly property
to True for all fields that do not belong to
UpdatingTable or can not be updated.

StrictUpdate Used for TCustomDADataSet to raise an
exception when the number of updated or
deleted records is not equal 1.

UpdateAllFields Used to include all dataset fields in the generated
UPDATE and INSERT statements.

UpdateBatchSize Used to get or set a value that enables or
disables batch processing support, and specifies
the number of commands that can be executed
in a batch.

See Also


Master/Detail Relationships


TMemDataSet.CachedUpdates

©

 1997-2012 Devart. All Rights Reserved.

Used to specify whether parameters for the Params property are generated automatically after the SQL
property was changed.

Class

TCustomDADataSet

Syntax

property ParamCheck: boolean default True;

Remarks

Use the ParamCheck property to specify whether parameters for the Params property are generated
automatically after the SQL property was changed.
Set ParamCheck to True to let dataset automatically generate the Params property for the dataset based
on a SQL statement.
Setting ParamCheck to False can be used if the dataset component passes to a server the DDL
statements that contain, for example, declarations of stored procedures which themselves will accept
parameterized values. The default value is True.

See Also

 Params

219Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Used to indicate how many parameters are there in the Params property.

Class

TCustomDADataSet

Syntax

property ParamCount: word;

Remarks

Use the ParamCount property to determine how many parameters are there in the Params property.

See Also

 Params

© 1997-2012 Devart. All Rights Reserved.

Used to view and set parameter names, values, and data types dynamically.

Class

TCustomDADataSet

Syntax

property Params: TDAParams stored False;

Remarks

Contains the parameters for a query's SQL statement.
Access Params at runtime to view and set parameter names, values, and data types dynamically (at
design time use the Parameters editor to set the parameter information). Params is a zero-based array
of parameter records. Index specifies the array element to access.
An easier way to set and retrieve parameter values when the name of each parameter is known is to call
ParamByName.

See Also

 ParamByName
 Macros

© 1997-2012 Devart. All Rights Reserved.

Used to prevent users from updating, inserting, or deleting data in the dataset.

Class

TCustomDADataSet

Syntax

property ReadOnly: boolean default False;

Remarks

Use the ReadOnly property to prevent users from updating, inserting, or deleting data in the dataset. By
default, ReadOnly is False, meaning that users can potentially alter data stored in the dataset.
To guarantee that users cannot modify or add data to a dataset, set ReadOnly to True.
When ReadOnly is True, the dataset's CanModify property is False.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL220

Used to indicate when the editing record is refreshed.

Class

TCustomDADataSet

Syntax

property RefreshOptions: TRefreshOptions default [];

Remarks

Use the RefreshOptions property to determine when the editing record is refreshed.
Refresh is performed by the RefreshRecord method.
It queries the current record and replaces one in the dataset. Refresh record is useful when the table has
triggers or the table fields have default values. Use roBeforeEdit to get actual data before editing.
The default value is [].

See Also

 RefreshRecord

© 1997-2012 Devart. All Rights Reserved.

Used to indicate the number of rows which were inserted, updated, or deleted during the last query
operation.

Class

TCustomDADataSet

Syntax

property RowsAffected: integer;

Remarks

Check RowsAffected to determine how many rows were inserted, updated, or deleted during the last
query operation. If RowsAffected is -1, the query has not inserted, updated, or deleted any rows.

© 1997-2012 Devart. All Rights Reserved.

Used to provide a SQL statement that a query component executes when its Open method is called.

Class

TCustomDADataSet

Syntax

property SQL: _TStrings;

Remarks

Use the SQL property to provide a SQL statement that a query component executes when its Open
method is called. At the design time the SQL property can be edited by invoking the String List editor in
Object Inspector.
When SQL is changed, TCustomDADataSet calls Close and UnPrepare.

See Also

 SQLInsert
 SQLUpdate
 SQLDelete
 SQLRefresh

© 1997-2012 Devart. All Rights Reserved.

221Data Access Components for MySQL

Used to specify a SQL statement that will be used when applying a deletion to a record.

Class

TCustomDADataSet

Syntax

property SQLDelete: _TStrings;

Remarks

Use the SQLDelete property to specify the SQL statement that will be used when applying a deletion to a
record. Statements can be parameterized queries.
To create a SQLDelete statement at design-time, use the query statements editor.

Example

DELETE FROM Orders
 WHERE
 OrderID = :Old_OrderID

See Also


SQL

 SQLInsert

 SQLUpdate

 SQLRefresh

© 1997-2012 Devart. All Rights Reserved.

Used to specify the SQL statement that will be used when applying an insertion to a dataset.

Class

TCustomDADataSet

Syntax

property SQLInsert: _TStrings;

Remarks

Use the SQLInsert property to specify the SQL statement that will be used when applying an insertion to
a dataset. Statements can be parameterized queries. Names of the parameters should be the same as
field names. Parameters prefixed with OLD_ allow using current values of fields prior to the actual
operation.
To create a SQLInsert statement at design-time, use the query statements editor.

See Also

 SQL
 SQLUpdate
 SQLDelete
 SQLRefresh

© 1997-2012 Devart. All Rights Reserved.

Used to specify a SQL statement that will be used to perform a record lock.

Class

TCustomDADataSet

Data Access Components for MySQL222

Syntax

property SQLLock: _TStrings;

Remarks

Use the SQLLock property to specify a SQL statement that will be used to perform a record lock.
Statements can be parameterized queries. Names of the parameters should be the same as field names.
The parameters prefixed with OLD_ allow to use current values of fields prior to the actual operation.
To create a SQLLock statement at design-time, the use query statement editor.

See Also

 SQL
 SQLInsert
 SQLUpdate
 SQLDelete
 SQLRefresh

© 1997-2012 Devart. All Rights Reserved.

Used to specify a SQL statement that will be used to refresh current record by calling the RefreshRecord
procedure.

Class

TCustomDADataSet

Syntax

property SQLRefresh: _TStrings;

Remarks

Use the SQLRefresh property to specify a SQL statement that will be used to refresh current record by
calling the RefreshRecord procedure.
Different behavior is observed when the SQLRefresh property is assigned with a single WHERE clause
that holds frequently altered search condition. In this case the WHERE clause from SQLRefresh is
combined with the same clause of the SELECT statement in a SQL property and this final query is then
sent to the database server.
To create a SQLRefresh statement at design-time, use the query statements editor.

Example

SELECT Shipname FROM Orders
 WHERE
 OrderID = :OrderID

See Also


RefreshRecord

 SQL

 SQLInsert

 SQLUpdate

 SQLDelete

© 1997-2012 Devart. All Rights Reserved.

223Data Access Components for MySQL

Used to specify a SQL statement that will be used when applying an update to a dataset.

Class

TCustomDADataSet

Syntax

property SQLUpdate: _TStrings;

Remarks

Use the SQLUpdate property to specify a SQL statement that will be used when applying an update to a
dataset. Statements can be parameterized queries. Names of the parameters should be the same as
field names. The parameters prefixed with OLD_ allow to use current values of fields prior to the actual
operation.
To create a SQLUpdate statement at design-time, use the query statement editor.

Example

UPDATE Orders
 set
 ShipName = :ShipName
 WHERE
 OrderID = :Old_OrderID

See Also


SQL

 SQLInsert

 SQLDelete

 SQLRefresh

© 1997-2012 Devart. All Rights Reserved.

Used if an application does not need bidirectional access to records in the result set.

Class

TCustomDADataSet

Syntax

property UniDirectional: boolean default False;

Remarks

Traditionally SQL cursors are unidirectional. They can travel only forward through a dataset.
TCustomDADataset, however, permits bidirectional travelling by caching records. If an application does
not need bidirectional access to the records in the result set, set UniDirectional to True. When
UniDirectional is True, an application requires less memory and performance is improved. However,
UniDirectional datasets cannot be modified.
In FetchAll=False mode data is fetched on demand. When UniDirectional is set to True, data is fetched
on demand as well, but obtained rows are not cached except for the current row. So, FetchAll=False
mode is a component of UniDirectional=True mode, and setting UniDirectional to True requires FetchAll
to be set to False. Pay attention to the restrictions of TCustomMyDataSet.FetchAll = False mode.
The default value of UniDirectional is False, enabling forward and backward navigation.

See Also

 TCustomMyDataSet.FetchAll

Data Access Components for MySQL224

© 1997-2012 Devart. All Rights Reserved.

Methods of the TCustomDADataSet class.
For a complete list of the TCustomDADataSet class members, see the TCustomDADataSet Members
topic.

Public

Name Description

AddWhere Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BreakExec Breaks execution of the SQL
statement on the server.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

CreateBlobStream Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteWhere Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

Execute Executes a SQL statement on the
server.

Executing Indicates whether SQL statement is
still being executed.

Fetched Used to learn whether
TCustomDADataSet has already
fetched all rows.

Fetching Used to learn whether
TCustomDADataSet is still fetching
rows.

FetchingAll Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

FindKey Searches for a record which
contains specified field values.

FindMacro Indicates whether a specified macro
exists in a dataset.

FindNearest Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

FindParam Determines if a parameter with the
specified name exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

225Data Access Components for MySQL

GetDataType Returns internal field types defined
in the MemData and accompanying
modules.

GetFieldObject Returns a multireference shared
object from field.

GetFieldPrecision Retrieves the precision of a number
field.

GetFieldScale Retrieves the scale of a number
field.

GetOrderBy Retrieves an ORDER BY clause from
a SQL statement.

GotoCurrent Sets the current record in this
dataset similar to the current record
in another dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Lock Locks the current record.

MacroByName Finds a Macro with the name passed
in Name.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

ParamByName Sets or uses parameter information
for a specific parameter based on
its name.

Prepare Allocates, opens, and parses cursor
for a query.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

RefreshRecord Actualizes field values for the
current record.

RestoreSQL Restores the SQL property modified
by AddWhere and SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

Resync Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

SaveSQL Saves the SQL property value to
BaseSQL.

Data Access Components for MySQL226

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

SetOrderBy Builds an ORDER BY clause of a
SELECT statement.

SQLSaved Determines if the SQL property
value was saved to the BaseSQL
property.

UnLock Releases a record lock.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

See Also
 TCustomDADataSet Class
 TCustomDADataSet Class Members

© 1997-2012 Devart. All Rights Reserved.

Adds condition to the WHERE clause of SELECT statement in the SQL property.

Class

TCustomDADataSet

Syntax

procedure AddWhere(Condition: string);
Parameters

Condition
Holds the condition that will be added to the WHERE clause.

Remarks

Call the AddWhere method to add a condition to the WHERE clause of SELECT statement in the SQL
property.
If SELECT has no WHERE clause, AddWhere creates it.
Note: The AddWhere method is implicitly called by RefreshRecord. The AddWhere method works for the
SELECT statements only.

See Also

 DeleteWhere

© 1997-2012 Devart. All Rights Reserved.

Breaks execution of the SQL statement on the server.

Class

TCustomDADataSet

227Data Access Components for MySQL

Syntax

procedure BreakExec; virtual;

Remarks

Call the BreakExec method to break execution of the SQL statement on the server. Execution is broken
by the KILL operator execution on server. It makes sense to call BreakExec only from another thread.

© 1997-2012 Devart. All Rights Reserved.

Used to obtain a stream for reading data from or writing data to a BLOB field, specified by the Field
parameter.

Class

TCustomDADataSet

Syntax

function CreateBlobStream(Field: TField; Mode: TBlobStreamMode):
TStream; override;
Parameters

Field
Holds the BLOB field for reading data from or writing data to from a stream.

Mode
Holds the stream mode, for which the stream will be used.

Return Value

The BLOB Stream.

Remarks

Call the CreateBlobStream method to obtain a stream for reading data from or writing data to a BLOB
field, specified by the Field parameter. It must be a TBlobField component. You can specify whether the
stream will be used for reading, writing, or updating the contents of the field with the Mode parameter.

© 1997-2012 Devart. All Rights Reserved.

Removes WHERE clause from the SQL property and assigns the BaseSQL property.

Class

TCustomDADataSet

Syntax

procedure DeleteWhere;

Remarks

Call the DeleteWhere method to remove WHERE clause from the the SQL property and assign BaseSQL.

See Also

 AddWhere
 BaseSQL

© 1997-2012 Devart. All Rights Reserved.

Executes a SQL statement on the server.

Class

TCustomDADataSet

Data Access Components for MySQL228

Syntax

procedure Execute; virtual;

Remarks

Call the Execute method to execute a SQL statement on the server. If SQL statement is a query, Execute
calls the Open method.
Execute implicitly prepares SQL statement by calling the Prepare method if the Options option is set to
True and the statement has not been prepared yet. To speed up the performance in case of multiple
Execute calls, an application should call Prepare before calling the Execute method for the first time.

See Also

 AfterExecute
 Executing
 Prepare

© 1997-2012 Devart. All Rights Reserved.

Indicates whether SQL statement is still being executed.

Class

TCustomDADataSet

Syntax

function Executing: boolean;
Return Value

True, if SQL statement is still being executed.

Remarks

Check Executing to learn whether TCustomDADataSet is still executing SQL statement. Use the
Executing method if NonBlocking is True.

© 1997-2012 Devart. All Rights Reserved.

Used to learn whether TCustomDADataSet has already fetched all rows.

Class

TCustomDADataSet

Syntax

function Fetched: boolean; virtual;
Return Value

True, if all rows are fetched.

Remarks

Check Fetched to learn whether TCustomDADataSet has already fetched all rows.

See Also

 Fetching

© 1997-2012 Devart. All Rights Reserved.

229Data Access Components for MySQL

Used to learn whether TCustomDADataSet is still fetching rows.

Class

TCustomDADataSet

Syntax

function Fetching: boolean;
Return Value

True, if TCustomDADataSet is still fetching rows.

Remarks

Check Fetching to learn whether TCustomDADataSet is still fetching rows. Use the Fetching method if
NonBlocking is True.

See Also

 Executing

© 1997-2012 Devart. All Rights Reserved.

Used to learn whether TCustomDADataSet is fetching all rows to the end.

Class

TCustomDADataSet

Syntax

function FetchingAll: boolean;
Return Value

True, if TCustomDADataSet is fetching all rows to the end.

Remarks

Check FetchingAll to learn whether TCustomDADataSet is fetching all rows to the end.

See Also

 Executing

© 1997-2012 Devart. All Rights Reserved.

Searches for a record which contains specified field values.

Class

TCustomDADataSet

Syntax

function FindKey(const KeyValues: array of System.TVarRec):
Boolean;
Parameters

KeyValues
Holds a key.

Remarks

Call the FindKey method to search for a specific record in a dataset. KeyValues holds a comma-delimited
array of field values, that is called a key.
This function is provided for BDE compatibility only. It is recommended to use functions TMemDataSet.
Locate and TMemDataSet.LocateEx for the record search.

Data Access Components for MySQL230

© 1997-2012 Devart. All Rights Reserved.

Indicates whether a specified macro exists in a dataset.

Class

TCustomDADataSet

Syntax

function FindMacro(const Value: string): TMacro;
Parameters

Value
Holds the name of the macro to search for.

Return Value

a TMacro object, if a macro with matching name was found, otherwise returns nil.

Remarks

Call the FindMacro method to determine if a specified macro exists. If FindMacro finds a macro with a
matching name, it returns a TMacro object for the specified Name. Otherwise it returns nil.

See Also

 TMacro
 Macros
 MacroByName

© 1997-2012 Devart. All Rights Reserved.

Moves the cursor to a specific record or to the first record in the dataset that matches or is greater than
the values specified in the KeyValues parameter.

Class

TCustomDADataSet

Syntax

procedure FindNearest(const KeyValues: array of System.TVarRec);
Parameters

KeyValues
Holds the values of the record key fields to which the cursor should be moved.

Remarks

Call the FindNearest method to move the cursor to a specific record or to the first record in the dataset
that matches or is greater than the values specified in the KeyValues parameter. If there are no records
that match or exceed the specified criteria, the cursor will not move.
This function is provided for BDE compatibility only. It is recommended to use functions TMemDataSet.
Locate and TMemDataSet.LocateEx for the record search.

See Also

 TMemDataSet.Locate
 TMemDataSet.LocateEx
 FindKey

© 1997-2012 Devart. All Rights Reserved.

231Data Access Components for MySQL

Determines if a parameter with the specified name exists in a dataset.

Class

TCustomDADataSet

Syntax

function FindParam(const Value: string): TDAParam;
Parameters

Value
Holds the name of the param for which to search.

Return Value

the TDAParam object for the specified Name. Otherwise it returns nil.

Remarks

Call the FindParam method to determine if a specified param component exists in a dataset. Name is the
name of the param for which to search. If FindParam finds a param with a matching name, it returns a
TDAParam object for the specified Name. Otherwise it returns nil.

See Also

 Params
 ParamByName

© 1997-2012 Devart. All Rights Reserved.

Returns internal field types defined in the MemData and accompanying modules.

Class

TCustomDADataSet

Syntax

function GetDataType(const FieldName: string): integer; virtual;
Parameters

FieldName
Holds the name of the field.

Return Value

internal field types defined in MemData and accompanying modules.

Remarks

Call the GetDataType method to return internal field types defined in the MemData and accompanying
modules. Internal field data types extend the TFieldType type of VCL by specific database server data
types. For example, ftString, ftFile, ftObject.

© 1997-2012 Devart. All Rights Reserved.

Returns a multireference shared object from field.

Class

TCustomDADataSet

Syntax

function GetFieldObject(Field: TField): TSharedObject; overload;
function GetFieldObject(FieldDesc: TFieldDesc): TSharedObject;
overload;function GetFieldObject(const FieldName: string):
TSharedObject; overload;

Data Access Components for MySQL232

Parameters

FieldName
Holds the field name.

Return Value

multireference shared object.

Remarks

Call the GetFieldObject method to return a multireference shared object from field. If field does not hold
one of the TSharedObject descendants, GetFieldObject raises an exception.

© 1997-2012 Devart. All Rights Reserved.

Retrieves the precision of a number field.

Class

TCustomDADataSet

Syntax

function GetFieldPrecision(const FieldName: string): integer;
Parameters

FieldName
Holds the existing field name.

Return Value

precision of number field.

Remarks

Call the GetFieldPrecision method to retrieve the precision of a number field. FieldName is the name of
an existing field.

See Also

 GetFieldScale

© 1997-2012 Devart. All Rights Reserved.

Retrieves the scale of a number field.

Class

TCustomDADataSet

Syntax

function GetFieldScale(const FieldName: string): integer;
Parameters

FieldName
Holds the existing field name.

Return Value

the scale of the number field.

Remarks

Call the GetFieldScale method to retrieve the scale of a number field. FieldName is the name of an
existing field.

See Also

233Data Access Components for MySQL

 GetFieldPrecision

© 1997-2012 Devart. All Rights Reserved.

Retrieves an ORDER BY clause from a SQL statement.

Class

TCustomDADataSet

Syntax

function GetOrderBy: string;
Return Value

an ORDER BY clause from the SQL statement.

Remarks

Call the GetOrderBy method to retrieve an ORDER BY clause from a SQL statement.
Note: GetOrderBy and SetOrderBy methods serve to process only quite simple queries and don't
support, for example, subqueries.

See Also

 SetOrderBy

© 1997-2012 Devart. All Rights Reserved.

Sets the current record in this dataset similar to the current record in another dataset.

Class

TCustomDADataSet

Syntax

procedure GotoCurrent(DataSet: TCustomDADataSet);
Parameters

DataSet
Holds the TCustomDADataSet descendant to synchronize the record position with.

Remarks

Call the GotoCurrent method to set the current record in this dataset similar to the current record in
another dataset. The key fields in both these DataSets must be coincident.

See Also

 TMemDataSet.Locate
 TMemDataSet.LocateEx

© 1997-2012 Devart. All Rights Reserved.

Locks the current record.

Class

TCustomDADataSet

Syntax

procedure Lock; virtual;

Remarks

Call the Lock method to lock the current record by executing the statement that is defined in the

Data Access Components for MySQL234

SQLLock property.
The Lock method sets the savepoint with the name LOCK_ + <component_name>.

See Also

 UnLock

© 1997-2012 Devart. All Rights Reserved.

Finds a Macro with the name passed in Name.

Class

TCustomDADataSet

Syntax

function MacroByName(const Value: string): TMacro;
Parameters

Value
Holds the name of the Macro to search for.

Return Value

the Macro, if a match was found.

Remarks

Call the MacroByName method to find a Macro with the name passed in Name. If a match was found,
MacroByName returns the Macro. Otherwise, an exception is raised. Use this method rather than a direct
reference to the Items property to avoid depending on the order of the entries.
To locate a parameter by name without raising an exception if the parameter is not found, use the
FindMacro method.
To assign the value of macro use the TMacro.Value property.

Example

MyQuery.SQL:= 'SELECT * FROM Scott.Dept ORDER BY &Order';
MyQuery.MacroByName('Order').Value:= 'DeptNo';
MyQuery.Open;

See Also


TMacro

 Macros

 FindMacro

© 1997-2012 Devart. All Rights Reserved.

Sets or uses parameter information for a specific parameter based on its name.

Class

TCustomDADataSet

Syntax

function ParamByName(const Value: string): TDAParam;
Parameters

Value
Holds the name of the parameter for which to retrieve information.

235Data Access Components for MySQL

Return Value

a TDAParam object.

Remarks

Call the ParamByName method to set or use parameter information for a specific parameter based on its
name. Name is the name of the parameter for which to retrieve information. ParamByName is used to
set a parameter's value at runtime and returns a TDAParam object.

Example

The following statement retrieves the current value of a parameter called "Contact" into an edit box:

Edit1.Text := Query1.ParamsByName('Contact').AsString;

See Also


Params

 FindParam

© 1997-2012 Devart. All Rights Reserved.

Allocates, opens, and parses cursor for a query.

Class

TCustomDADataSet

Syntax

procedure Prepare; override;

Remarks

Call the Prepare method to allocate, open, and parse cursor for a query. Calling Prepare before
executing a query improves application performance.
The MySQL prepared protocol has certain server restrictions, and its work is not always stable. That is
why it is advisable to perform test before using preparation in production versions of applications.
The UnPrepare method unprepares a query.
Note: When you change the text of a query at runtime, the query is automatically closed and
unprepared.

See Also

 TMemDataSet.Prepared
 TMemDataSet.UnPrepare
 Options

© 1997-2012 Devart. All Rights Reserved.

Actualizes field values for the current record.

Class

TCustomDADataSet

Syntax

procedure RefreshRecord;

Remarks

Call the RefreshRecord method to actualize field values for the current record. RefreshRecord performs
query to database and refetches new field values from the returned cursor.

Data Access Components for MySQL236

See Also

 RefreshOptions
 SQLRefresh

© 1997-2012 Devart. All Rights Reserved.

Restores the SQL property modified by AddWhere and SetOrderBy.

Class

TCustomDADataSet

Syntax

procedure RestoreSQL;

Remarks

Call the RestoreSQL method to restore the SQL property modified by AddWhere and SetOrderBy.

See Also

 AddWhere
 SetOrderBy
 SaveSQL
 SQLSaved

© 1997-2012 Devart. All Rights Reserved.

Resynchronize the dataset with underlying physical data when making calls that may change the internal
cursor position.

Class

TCustomDADataSet

Syntax

procedure Resync(Mode: TResyncMode); override;
Parameters

Mode
Holds optional processing that Resync should handle.

Remarks

Resync is used to resynchronize the dataset with underlying physical data when making calls that may
change the internal cursor position.

© 1997-2012 Devart. All Rights Reserved.

Saves the SQL property value to BaseSQL.

Class

TCustomDADataSet

Syntax

procedure SaveSQL;

Remarks

Call the SaveSQL method to save the SQL property value to the BaseSQL property.

237Data Access Components for MySQL

See Also

 SQLSaved
 RestoreSQL
 BaseSQL

© 1997-2012 Devart. All Rights Reserved.

Builds an ORDER BY clause of a SELECT statement.

Class

TCustomDADataSet

Syntax

procedure SetOrderBy(Fields: string);
Parameters

Fields
Holds the names of the fields which will be added to the ORDER BY clause.

Remarks

Call the SetOrderBy method to build an ORDER BY clause of a SELECT statement. The fields are
identified by the comma-delimited field names.
Note: The GetOrderBy and SetOrderBy methods serve to process only quite simple queries and don't
support, for example, subqueries.

Example

Query1.SetOrderBy('DeptNo;DName');

See Also


GetOrderBy

© 1997-2012 Devart. All Rights Reserved.

Determines if the SQL property value was saved to the BaseSQL property.

Class

TCustomDADataSet

Syntax

function SQLSaved: boolean;
Return Value

True, if the SQL property value was saved to the BaseSQL property.

Remarks

Call the SQLSaved method to know whether the SQL property value was saved to the BaseSQL property.

© 1997-2012 Devart. All Rights Reserved.

Releases a record lock.

Class

TCustomDADataSet

Syntax

Data Access Components for MySQL238

procedure UnLock;

Remarks

Call the Unlock method to release the record lock made by the Lock method before.
Unlock is performed by rolling back to the savepoint set by the Lock method.

See Also

 Lock

© 1997-2012 Devart. All Rights Reserved.

Events of the TCustomDADataSet class.
For a complete list of the TCustomDADataSet class members, see the TCustomDADataSet Members
topic.

Public

Name Description

AfterExecute Occurs after a component has
executed a query to database.

AfterFetch Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute Occurs after executing insert,
delete, update, lock and refresh
operations.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BeforeFetch Occurs before dataset is going to
fetch block of records from the
server.

BeforeUpdateExecute Occurs before executing insert,
delete, update, lock, and refresh
operations.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

239Data Access Components for MySQL

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

Prepare (inherited from TMemDataSet) Allocates resources and creates
field components for a dataset.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

See Also
 TCustomDADataSet Class
 TCustomDADataSet Class Members

© 1997-2012 Devart. All Rights Reserved.

Occurs after a component has executed a query to database.

Class

TCustomDADataSet

Syntax

property AfterExecute: TAfterExecuteEvent;

Remarks

Occurs after a component has executed a query to database.

See Also

 Execute

Data Access Components for MySQL240

© 1997-2012 Devart. All Rights Reserved.

Occurs after dataset finishes fetching data from server.

Class

TCustomDADataSet

Syntax

property AfterFetch: TAfterFetchEvent;

Remarks

The AfterFetch event occurs after dataset finishes fetching data from server.

See Also

 BeforeFetch

© 1997-2012 Devart. All Rights Reserved.

Occurs after executing insert, delete, update, lock and refresh operations.

Class

TCustomDADataSet

Syntax

property AfterUpdateExecute: TUpdateExecuteEvent;

Remarks

Occurs after executing insert, delete, update, lock, and refresh operations. You can use
AfterUpdateExecute to set the parameters of corresponding statements.

© 1997-2012 Devart. All Rights Reserved.

Occurs before dataset is going to fetch block of records from the server.

Class

TCustomDADataSet

Syntax

property BeforeFetch: TBeforeFetchEvent;

Remarks

The BeforeFetch event occurs every time before dataset is going to fetch a block of records from the
server. Set Cancel to True to abort current fetch operation.

See Also

 AfterFetch

© 1997-2012 Devart. All Rights Reserved.

Occurs before executing insert, delete, update, lock, and refresh operations.

Class

TCustomDADataSet

Syntax

241Data Access Components for MySQL

property BeforeUpdateExecute: TUpdateExecuteEvent;

Remarks

Occurs before executing insert, delete, update, lock, and refresh operations. You can use
BeforeUpdateExecute to set the parameters of corresponding statements.

See Also

 AfterUpdateExecute

© 1997-2012 Devart. All Rights Reserved.

17.10.1.6 DBAccess.TCustomDASQL Class

A base class for components executing SQL statements that do not return result sets.
For a list of all members of this type, see TCustomDASQL members.

Unit

DBAccess

Syntax

TCustomDASQL = class(TComponent);

Remarks

TCustomDASQL is a base class that defines functionality for descendant classes which access database
using SQL statements. Applications never use TCustomDASQL objects directly. Instead they use
descendants of TCustomDASQL.
Use TCustomDASQL when client application must execute SQL statement or call stored procedure on the
database server. The SQL statement should not retrieve rows from the database.

Inheritance Hierarchy

TObject
 TCustomDASQL

© 1997-2012 Devart. All Rights Reserved.

TCustomDASQL class overview.

Properties

Name Description

ChangeCursor Enables or disables changing screen
cursor when executing commands
in the NonBlocking mode.

Connection Used to specify a connection object
to use to connect to a data store.

Debug Used to display executing
statement, all its parameters'
values, and the type of parameters.

FinalSQL Used to return a SQL statement
with expanded macros.

MacroCount Used to get the number of macros
associated with the Macros
property.

Macros Makes it possible to change SQL
queries easily.

ParamCheck Used to specify whether parameters
for the Params property are
implicitly generated when the SQL
property is being changed.

Data Access Components for MySQL242

ParamCount Indicates the number of parameters
in the Params property.

Params Used to contain parameters for a
SQL statement.

ParamValues Used to get or set the values of
individual field parameters that are
identified by name.

Prepared Used to indicate whether a query is
prepared for execution.

RowsAffected Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SQL Used to provide a SQL statement
that a TCustomDASQL component
executes when the Execute method
is called.

Methods

Name Description

Execute Overloaded. Executes SQL
commands.

Executing Checks whether TCustomDASQL still
executes a SQL statement.

FindMacro Searches for a macro with the
specified name.

FindParam Finds a parameter with the specified
name.

MacroByName Finds a Macro with the name passed
in Name.

ParamByName Finds a parameter with the specified
name.

Prepare Allocates, opens, and parses cursor
for a query.

UnPrepare Frees the resources allocated for a
previously prepared query on the
server and client sides.

WaitExecuting Waits until TCustomDASQL
executes a SQL statement.

Events

Name Description

AfterExecute Occurs after a SQL statement has
been executed.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TCustomDASQL class.
For a complete list of the TCustomDASQL class members, see the TCustomDASQL Members topic.

Public

Name Description

ChangeCursor Enables or disables changing screen
cursor when executing commands
in the NonBlocking mode.

Connection Used to specify a connection object
to use to connect to a data store.

243Data Access Components for MySQL

Debug Used to display executing
statement, all its parameters'
values, and the type of parameters.

FinalSQL Used to return a SQL statement
with expanded macros.

MacroCount Used to get the number of macros
associated with the Macros
property.

Macros Makes it possible to change SQL
queries easily.

ParamCheck Used to specify whether parameters
for the Params property are
implicitly generated when the SQL
property is being changed.

ParamCount Indicates the number of parameters
in the Params property.

Params Used to contain parameters for a
SQL statement.

ParamValues Used to get or set the values of
individual field parameters that are
identified by name.

Prepared Used to indicate whether a query is
prepared for execution.

RowsAffected Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SQL Used to provide a SQL statement
that a TCustomDASQL component
executes when the Execute method
is called.

See Also
 TCustomDASQL Class
 TCustomDASQL Class Members

© 1997-2012 Devart. All Rights Reserved.

Enables or disables changing screen cursor when executing commands in the NonBlocking mode.

Class

TCustomDASQL

Syntax

property ChangeCursor: boolean;

Remarks

Set the ChangeCursor property to False to prevent the screen cursor from changing to crSQLArrow when
executing commands in the NonBlocking mode. The default value is True.

© 1997-2012 Devart. All Rights Reserved.

Used to specify a connection object to use to connect to a data store.

Class

TCustomDASQL

Syntax

property Connection: TCustomDAConnection;

Remarks

Data Access Components for MySQL244

Use the Connection property to specify a connection object that will be used to connect to a data store.
Set at design-time by selecting from the list of provided TCustomDAConnection or its descendant class
objects.
At runtime, link an instance of a TCustomDAConnection descendant to the Connection property.

© 1997-2012 Devart. All Rights Reserved.

Used to display executing statement, all its parameters' values, and the type of parameters.

Class

TCustomDASQL

Syntax

property Debug: boolean default False;

Remarks

Set the Debug property to True to display executing statement and all its parameters' values. Also
displays the type of parameters.
You should add the MyDacVcl unit to the uses clause of any unit in your project to make the Debug
property work.
Note: To enable debug window you should explicitly include the MyDacVcl (MyDacClx under Kylix) unit
to your project.

See Also

 TCustomDADataSet.Debug

© 1997-2012 Devart. All Rights Reserved.

Used to return a SQL statement with expanded macros.

Class

TCustomDASQL

Syntax

property FinalSQL: string;

Remarks

Read the FinalSQL property to return a SQL statement with expanded macros. This is the exact
statement that will be passed on to the database server.

© 1997-2012 Devart. All Rights Reserved.

Used to get the number of macros associated with the Macros property.

Class

TCustomDASQL

Syntax

property MacroCount: word;

Remarks

Use the MacroCount property to get the number of macros associated with the Macros property.

See Also

 Macros

245Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Makes it possible to change SQL queries easily.

Class

TCustomDASQL

Syntax

property Macros: TMacros stored False;

Remarks

With the help of macros you can easily change SQL query text at design- or runtime. Marcos extend
abilities of parameters and allow to change conditions in a WHERE clause or sort order in an ORDER BY
clause. You just insert &MacroName in the SQL query text and change value of macro in the Macro
property editor at design time or call the MacroByName function at run time. At the time of opening the
query macro is replaced by its value.

See Also

 TMacro
 MacroByName
 Params

© 1997-2012 Devart. All Rights Reserved.

Used to specify whether parameters for the Params property are implicitly generated when the SQL
property is being changed.

Class

TCustomDASQL

Syntax

property ParamCheck: boolean default True;

Remarks

Use the ParamCheck property to specify whether parameters for the Params property are implicitly
generated when the SQL property is being changed.
Set ParamCheck to True to let TCustomDASQL generate the Params property for the dataset based on a
SQL statement automatically.
Setting ParamCheck to False can be used if the dataset component passes to a server the DDL
statements that contain, for example, declarations of the stored procedures that will accept
parameterized values themselves. The default value is True.

See Also

 Params

© 1997-2012 Devart. All Rights Reserved.

Indicates the number of parameters in the Params property.

Class

TCustomDASQL

Syntax

property ParamCount: word;

Remarks

Use the ParamCount property to determine how many parameters are there in the Params property.

Data Access Components for MySQL246

© 1997-2012 Devart. All Rights Reserved.

Used to contain parameters for a SQL statement.

Class

TCustomDASQL

Syntax

property Params: TDAParams stored False;

Remarks

Access the Params property at runtime to view and set parameter names, values, and data types
dynamically (at design-time use the Parameters editor to set parameter properties). Params is a zero-
based array of parameter records. Index specifies the array element to access. An easier way to set and
retrieve parameter values when the name of each parameter is known is to call ParamByName.

Example

Setting parameters at runtime:

procedure TForm1.Button1Click(Sender: TObject);
begin
with MySQL do
 begin
 SQL.Clear;
 SQL.Add('INSERT INTO Temp_Table(Id, Name)');
 SQL.Add('VALUES (:id, :Name)');
 ParamByName('Id').AsInteger := 55;
 Params[1].AsString := ' Green';
 Execute;
 end;
end;

See Also


TDAParam

 FindParam

 Macros

© 1997-2012 Devart. All Rights Reserved.

Used to get or set the values of individual field parameters that are identified by name.

Class

TCustomDASQL

Syntax

property ParamValues[ParamName: string]: variant; default;
Parameters

ParamName
Holds parameter names separated by semicolon.

Remarks

Use the ParamValues property to get or set the values of individual field parameters that are identified
by name.

247Data Access Components for MySQL

Setting ParamValues sets the Value property for each parameter listed in the ParamName string. Specify
the values as Variants.
Getting ParamValues retrieves an array of variants, each of which represents the value of one of the
named parameters.
Note: The Params array is generated implicitly if ParamCheck property is set to True. If ParamName
includes a name that does not match any of the parameters in Items, an exception is raised.

© 1997-2012 Devart. All Rights Reserved.

Used to indicate whether a query is prepared for execution.

Class

TCustomDASQL

Syntax

property Prepared: boolean;

Remarks

Check the Prepared property to determine if a query is already prepared for execution. True means that
the query has already been prepared. As a rule prepared queries are executed faster, but the
preparation itself also takes some time. One of the proper cases for using preparation is parametrized
queries that are executed several times.

See Also

 Prepare

© 1997-2012 Devart. All Rights Reserved.

Used to indicate the number of rows which were inserted, updated, or deleted during the last query
operation.

Class

TCustomDASQL

Syntax

property RowsAffected: integer;

Remarks

Check RowsAffected to determine how many rows were inserted, updated, or deleted during the last
query operation. If RowsAffected is -1, the query has not inserted, updated, or deleted any rows.

© 1997-2012 Devart. All Rights Reserved.

Used to provide a SQL statement that a TCustomDASQL component executes when the Execute method
is called.

Class

TCustomDASQL

Syntax

property SQL: _TStrings;

Remarks

Use the SQL property to provide a SQL statement that a TCustomDASQL component executes when the
Execute method is called. At design time the SQL property can be edited by invoking the String List
editor in Object Inspector.

See Also

Data Access Components for MySQL248

 FinalSQL
 TCustomDASQL.Execute

© 1997-2012 Devart. All Rights Reserved.

Methods of the TCustomDASQL class.
For a complete list of the TCustomDASQL class members, see the TCustomDASQL Members topic.

Public

Name Description

Execute Overloaded. Executes SQL
commands.

Executing Checks whether TCustomDASQL still
executes a SQL statement.

FindMacro Searches for a macro with the
specified name.

FindParam Finds a parameter with the specified
name.

MacroByName Finds a Macro with the name passed
in Name.

ParamByName Finds a parameter with the specified
name.

Prepare Allocates, opens, and parses cursor
for a query.

UnPrepare Frees the resources allocated for a
previously prepared query on the
server and client sides.

WaitExecuting Waits until TCustomDASQL
executes a SQL statement.

See Also
 TCustomDASQL Class
 TCustomDASQL Class Members

© 1997-2012 Devart. All Rights Reserved.

Executes SQL commands.

Class

TCustomDASQL

Overload List

Name Description

Execute Executes SQL commands.

Execute(Iters: integer) Is not used in MyDAC.

© 1997-2012 Devart. All Rights Reserved.

Executes SQL commands.

Class

TCustomDASQL

Syntax

procedure Execute; overload; virtual

Remarks

Call the Execute method to execute a SQL statement on the server. If the SQL statement has OUT
parameters, use the TCustomDASQL.ParamByName method or the TCustomDASQL.Params property to

249Data Access Components for MySQL

get their values. Iters argument is ignored.

© 1997-2012 Devart. All Rights Reserved.

Is not used in MyDAC.

Class

TCustomDASQL

Syntax

procedure Execute(Iters: integer); overload; virtual
Parameters

Iters
Is not used in MyDAC.

Remarks

Is not used in MyDAC.

© 1997-2012 Devart. All Rights Reserved.

Checks whether TCustomDASQL still executes a SQL statement.

Class

TCustomDASQL

Syntax

function Executing: boolean;
Return Value

True, if a SQL statement is still being executed by TCustomDASQL.

Remarks

Check Executing to find out whether TCustomDASQL still executes a SQL statement. Executing method is
used for nonblocking execution.

© 1997-2012 Devart. All Rights Reserved.

Searches for a macro with the specified name.

Class

TCustomDASQL

Syntax

function FindMacro(const Value: string): TMacro;
Parameters

Value
Holds the name of a macro to search for.

Return Value

the TMacro object, if a macro with the specified name has been found. If it has not, returns nil.

Remarks

Call the FindMacro method to find a macro with the specified name in a dataset.

See Also

 TMacro
 Macros

Data Access Components for MySQL250

 MacroByName

© 1997-2012 Devart. All Rights Reserved.

Finds a parameter with the specified name.

Class

TCustomDASQL

Syntax

function FindParam(const Value: string): TDAParam;
Parameters

Value
Holds the parameter name to search for.

Return Value

a TDAParm object, if a parameter with the specified name has been found. If it has not, returns nil.

Remarks

Call the FindParam method to find a parameter with the specified name in a dataset.

See Also

 ParamByName

© 1997-2012 Devart. All Rights Reserved.

Finds a Macro with the name passed in Name.

Class

TCustomDASQL

Syntax

function MacroByName(const Value: string): TMacro;
Parameters

Value
Holds the name of the Macro to search for.

Return Value

the Macro, if a match was found.

Remarks

Call the MacroByName method to find a Macro with the name passed in Name. If a match was found,
MacroByName returns the Macro. Otherwise, an exception is raised. Use this method rather than a direct
reference to the Items property to avoid depending on the order of the entries.
To locate a parameter by name without raising an exception if the parameter is not found, use the
FindMacro method.
To assign the value of macro use the TMacro.Value property.

See Also

 TMacro
 Macros
 FindMacro

© 1997-2012 Devart. All Rights Reserved.

251Data Access Components for MySQL

Finds a parameter with the specified name.

Class

TCustomDASQL

Syntax

function ParamByName(const Value: string): TDAParam;
Parameters

Value
Holds the name of the parameter to search for.

Return Value

a TDAParam object, if a match was found. Otherwise, an exception is raised.

Remarks

Use the ParamByName method to find a parameter with the specified name. If no parameter with the
specified name found, an exception is raised.

Example

MyCommandSQL.Execute;
Edit1.Text := MyCommandSQL.ParamsByName('Contact').AsString;

See Also


FindParam

© 1997-2012 Devart. All Rights Reserved.

Allocates, opens, and parses cursor for a query.

Class

TCustomDASQL

Syntax

procedure Prepare; virtual;

Remarks

Call the Prepare method to allocate, open, and parse cursor for a query. Calling Prepare before
executing a query improves application performance.
The MySQL prepared protocol has certain server restrictions, and its work is not always stable. That is
why it is advisable to perform test before using preparation in production versions of applications.
The UnPrepare method unprepares a query.
Note: When you change the text of a query at runtime, the query is automatically closed and
unprepared.

See Also

 Prepared
 UnPrepare

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL252

Frees the resources allocated for a previously prepared query on the server and client sides.

Class

TCustomDASQL

Syntax

procedure UnPrepare; virtual;

Remarks

Call the UnPrepare method to free resources allocated for a previously prepared query on the server and
client sides.

See Also

 Prepare

© 1997-2012 Devart. All Rights Reserved.

Waits until TCustomDASQL executes a SQL statement.

Class

TCustomDASQL

Syntax

function WaitExecuting(TimeOut: integer = 0): boolean;
Parameters

TimeOut
Holds the time in seconds to wait while TCustomDASQL executes the SQL statement. Zero means
infinite time.

Return Value

True, if the execution of a SQL statement was completed in the preset time.

Remarks

Call the WaitExecuting method to wait until TCustomDASQL executes a SQL statement. Use the
WaitExecuting method for nonblocking execution.

See Also

 Executing

© 1997-2012 Devart. All Rights Reserved.

Events of the TCustomDASQL class.
For a complete list of the TCustomDASQL class members, see the TCustomDASQL Members topic.

Public

Name Description

AfterExecute Occurs after a SQL statement has
been executed.

See Also
 TCustomDASQL Class
 TCustomDASQL Class Members

© 1997-2012 Devart. All Rights Reserved.

253Data Access Components for MySQL

Occurs after a SQL statement has been executed.

Class

TCustomDASQL

Syntax

property AfterExecute: TAfterExecuteEvent;

Remarks

Occurs after a SQL statement has been executed. This event may be used for descendant components
which use multithreaded environment.

See Also

 TCustomDASQL.Execute

© 1997-2012 Devart. All Rights Reserved.

17.10.1.7 DBAccess.TCustomDAUpdateSQL Class

A base class for components that provide DML statements for more flexible control over data
modifications.
For a list of all members of this type, see TCustomDAUpdateSQL members.

Unit

DBAccess

Syntax

TCustomDAUpdateSQL = class(TComponent);

Remarks

TCustomDAUpdateSQL is a base class for components that provide DML statements for more flexible
control over data modifications. Besides providing BDE compatibility, this component allows to associate
a separate component for each update command.

Inheritance Hierarchy

TObject
 TCustomDAUpdateSQL

See Also

 P:Devart.MyDac.TCustomMyDataSet.UpdateObject

© 1997-2012 Devart. All Rights Reserved.

TCustomDAUpdateSQL class overview.

Properties

Name Description

DataSet Used to hold a reference to the
TCustomDADataSet object that is
being updated.

DeleteObject Provides ability to perform
advanced adjustment of the delete
operations.

DeleteSQL Used when deleting a record.

InsertObject Provides ability to perform
advanced adjustment of insert
operations.

InsertSQL Used when inserting a record.

Data Access Components for MySQL254

LockObject Provides ability to perform
advanced adjustment of lock
operations.

LockSQL Used to lock the current record.

ModifyObject Provides ability to perform
advanced adjustment of modify
operations.

ModifySQL Used when updating a record.

RefreshObject Provides ability to perform
advanced adjustment of refresh
operations.

RefreshSQL Used to specify an SQL statement
that will be used for refreshing the
current record by
TCustomDADataSet.RefreshRecord
procedure.

SQL Used to return a SQL statement for
one of the ModifySQL, InsertSQL, or
DeleteSQL properties.

Methods

Name Description

Apply Sets parameters for a SQL
statement and executes it to update
a record.

ExecSQL Executes a SQL statement.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TCustomDAUpdateSQL class.
For a complete list of the TCustomDAUpdateSQL class members, see the TCustomDAUpdateSQL
Members topic.

Public

Name Description

DataSet Used to hold a reference to the
TCustomDADataSet object that is
being updated.

SQL Used to return a SQL statement for
one of the ModifySQL, InsertSQL, or
DeleteSQL properties.

Published

Name Description

DeleteObject Provides ability to perform
advanced adjustment of the delete
operations.

DeleteSQL Used when deleting a record.

InsertObject Provides ability to perform
advanced adjustment of insert
operations.

InsertSQL Used when inserting a record.

LockObject Provides ability to perform
advanced adjustment of lock
operations.

LockSQL Used to lock the current record.

ModifyObject Provides ability to perform
advanced adjustment of modify
operations.

255Data Access Components for MySQL

ModifySQL Used when updating a record.

RefreshObject Provides ability to perform
advanced adjustment of refresh
operations.

RefreshSQL Used to specify an SQL statement
that will be used for refreshing the
current record by
TCustomDADataSet.RefreshRecord
procedure.

See Also
 TCustomDAUpdateSQL Class
 TCustomDAUpdateSQL Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to hold a reference to the TCustomDADataSet object that is being updated.

Class

TCustomDAUpdateSQL

Syntax

property DataSet: TCustomDADataSet;

Remarks

The DataSet property holds a reference to the TCustomDADataSet object that is being updated.
Generally it is not used directly.

© 1997-2012 Devart. All Rights Reserved.

Provides ability to perform advanced adjustment of the delete operations.

Class

TCustomDAUpdateSQL

Syntax

property DeleteObject: TComponent;

Remarks

Assign SQL component or a TCustomMyDataSet descendant to this property to perform advanced
adjustment of the delete operations. In some cases this can give some additional performance. Use the
same principle to set the SQL property of an object as for setting the DeleteSQL property.

See Also

 DeleteSQL

© 1997-2012 Devart. All Rights Reserved.

Used when deleting a record.

Class

TCustomDAUpdateSQL

Syntax

property DeleteSQL: _TStrings;

Remarks

Set the DeleteSQL property to a DELETE statement to use when deleting a record. Statements can be

Data Access Components for MySQL256

parameterized queries with parameter names corresponding to the dataset field names.

© 1997-2012 Devart. All Rights Reserved.

Provides ability to perform advanced adjustment of insert operations.

Class

TCustomDAUpdateSQL

Syntax

property InsertObject: TComponent;

Remarks

Assign SQL component or TCustomMyDataSet descendant to this property to perform advanced
adjustment of insert operations. In some cases this can give some additional performance. Set the SQL
property of the object in the same way as used for the InsertSQL property.

See Also

 InsertSQL

© 1997-2012 Devart. All Rights Reserved.

Used when inserting a record.

Class

TCustomDAUpdateSQL

Syntax

property InsertSQL: _TStrings;

Remarks

Set the InsertSQL property to an INSERT INTO statement to use when inserting a record. Statements
can be parameterized queries with parameter names corresponding to the dataset field names.

© 1997-2012 Devart. All Rights Reserved.

Provides ability to perform advanced adjustment of lock operations.

Class

TCustomDAUpdateSQL

Syntax

property LockObject: TComponent;

Remarks

Assign a SQL component or TCustomMyDataSet descendant to this property to perform advanced
adjustment of lock operations. In some cases that can give some additional performance. Set the SQL
property of an object in the same way as used for the LockSQL property.

See Also

 LockSQL

© 1997-2012 Devart. All Rights Reserved.

257Data Access Components for MySQL

Used to lock the current record.

Class

TCustomDAUpdateSQL

Syntax

property LockSQL: _TStrings;

Remarks

Use the LockSQL property to lock the current record. Statements can be parameterized queries with
parameter names corresponding to the dataset field names.

© 1997-2012 Devart. All Rights Reserved.

Provides ability to perform advanced adjustment of modify operations.

Class

TCustomDAUpdateSQL

Syntax

property ModifyObject: TComponent;

Remarks

Assign a SQL component or TCustomMyDataSet descendant to this property to perform advanced
adjustment of modify operations. In some cases this can give some additional performance. Set the SQL
property of the object in the same way as used for the ModifySQL property.

See Also

 ModifySQL

© 1997-2012 Devart. All Rights Reserved.

Used when updating a record.

Class

TCustomDAUpdateSQL

Syntax

property ModifySQL: _TStrings;

Remarks

Set ModifySQL to an UPDATE statement to use when updating a record. Statements can be
parameterized queries with parameter names corresponding to the dataset field names.

© 1997-2012 Devart. All Rights Reserved.

Provides ability to perform advanced adjustment of refresh operations.

Class

TCustomDAUpdateSQL

Syntax

property RefreshObject: TComponent;

Remarks

Assign a SQL component or TCustomMyDataSet descendant to this property to perform advanced
adjustment of refresh operations. In some cases that can give some additional performance. Set the
SQL property of the object in the same way as used for the RefreshSQL property.

Data Access Components for MySQL258

See Also

 RefreshSQL

© 1997-2012 Devart. All Rights Reserved.

Used to specify an SQL statement that will be used for refreshing the current record by
TCustomDADataSet.RefreshRecord procedure.

Class

TCustomDAUpdateSQL

Syntax

property RefreshSQL: _TStrings;

Remarks

Use the RefreshSQL property to specify a SQL statement that will be used for refreshing the current
record by the TCustomDADataSet.RefreshRecord procedure.
You can assign to SQLRefresh a WHERE clause only. In such a case it is added to SELECT defined by the
SQL property by TCustomDADataSet.AddWhere.
To create a RefreshSQL statement at design time, use the query statements editor.

See Also

 TCustomDADataSet.RefreshRecord

© 1997-2012 Devart. All Rights Reserved.

Used to return a SQL statement for one of the ModifySQL, InsertSQL, or DeleteSQL properties.

Class

TCustomDAUpdateSQL

Syntax

property SQL[UpdateKind: TUpdateKind]: _TStrings;
Parameters

UpdateKind
Specifies which of update SQL statements to return.

Remarks

Returns a SQL statement for one of the ModifySQL, InsertSQL, or DeleteSQL properties, depending on
the value of the UpdateKind index.

© 1997-2012 Devart. All Rights Reserved.

Methods of the TCustomDAUpdateSQL class.
For a complete list of the TCustomDAUpdateSQL class members, see the TCustomDAUpdateSQL
Members topic.

Public

Name Description

Apply Sets parameters for a SQL
statement and executes it to update
a record.

ExecSQL Executes a SQL statement.

See Also

259Data Access Components for MySQL

 TCustomDAUpdateSQL Class
 TCustomDAUpdateSQL Class Members

© 1997-2012 Devart. All Rights Reserved.

Sets parameters for a SQL statement and executes it to update a record.

Class

TCustomDAUpdateSQL

Syntax

procedure Apply(UpdateKind: TUpdateKind); virtual;
Parameters

UpdateKind
Specifies which of update SQL statements to execute.

Remarks

Call the Apply method to set parameters for a SQL statement and execute it to update a record.
UpdateKind indicates which SQL statement to bind and execute.
Apply is primarily intended for manually executing update statements from an OnUpdateRecord event
handler.
Note: If a SQL statement does not contain parameters, it is more efficient to call ExecSQL instead of
Apply.

See Also

 ExecSQL

© 1997-2012 Devart. All Rights Reserved.

Executes a SQL statement.

Class

TCustomDAUpdateSQL

Syntax

procedure ExecSQL(UpdateKind: TUpdateKind);
Parameters

UpdateKind
Specifies the kind of update statement to be executed.

Remarks

Call the ExecSQL method to execute a SQL statement, necessary for updating the records belonging to a
read-only result set when cached updates is enabled. UpdateKind specifies the statement to execute.
ExecSQL is primarily intended for manually executing update statements from the OnUpdateRecord
event handler.
Note: To both bind parameters and execute a statement, call Apply.

See Also

 Apply

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL260

17.10.1.8 DBAccess.TDAConnectionOptions Class

This class allows setting up the behaviour of the TDAConnection class.
For a list of all members of this type, see TDAConnectionOptions members.

Unit

DBAccess

Syntax

TDAConnectionOptions = class(TPersistent);

Inheritance Hierarchy

TObject
 TDAConnectionOptions

© 1997-2012 Devart. All Rights Reserved.

TDAConnectionOptions class overview.

Properties

Name Description

DefaultSortType Used to determine the default type
of local sorting for string fields. It is
used when a sort type is not
specified explicitly after the field
name in the TMemDataSet.
IndexFieldNames property of a
dataset.

DisconnectedMode Used to open a connection only
when needed for performing a
server call and closes after
performing the operation.

KeepDesignConnected Used to prevent an application from
establishing a connection at the
time of startup.

LocalFailover If True, the TCustomDAConnection.
OnConnectionLost event occurs and
a failover operation can be
performed after connection breaks.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDAConnectionOptions class.
For a complete list of the TDAConnectionOptions class members, see the TDAConnectionOptions
Members topic.

Public

Name Description

DefaultSortType Used to determine the default type
of local sorting for string fields. It is
used when a sort type is not
specified explicitly after the field
name in the TMemDataSet.
IndexFieldNames property of a
dataset.

DisconnectedMode Used to open a connection only
when needed for performing a
server call and closes after
performing the operation.

KeepDesignConnected Used to prevent an application from
establishing a connection at the
time of startup.

261Data Access Components for MySQL

LocalFailover If True, the TCustomDAConnection.
OnConnectionLost event occurs and
a failover operation can be
performed after connection breaks.

See Also
 TDAConnectionOptions Class
 TDAConnectionOptions Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to determine the default type of local sorting for string fields. It is used when a sort type is not
specified explicitly after the field name in the TMemDataSet.IndexFieldNames property of a dataset.

Class

TDAConnectionOptions

Syntax

property DefaultSortType: TSortType default stCaseSensitive;

Remarks

Use the DefaultSortType property to determine the default type of local sorting for string fields. It is
used when a sort type is not specified explicitly after the field name in the TMemDataSet.
IndexFieldNames property of a dataset.

© 1997-2012 Devart. All Rights Reserved.

Used to open a connection only when needed for performing a server call and closes after performing
the operation.

Class

TDAConnectionOptions

Syntax

property DisconnectedMode: boolean default False;

Remarks

If True, connection opens only when needed for performing a server call and closes after performing the
operation. Datasets remain opened when connection closes. May be useful to save server resources and
operate in unstable or expensive network. Drawback of using disconnect mode is that each connection
establishing requires some time for authorization. If connection is often closed and opened it can slow
down the application work. See the Disconnected Mode topic for more information.

© 1997-2012 Devart. All Rights Reserved.

Used to prevent an application from establishing a connection at the time of startup.

Class

TDAConnectionOptions

Syntax

property KeepDesignConnected: boolean default True;

Remarks

At the time of startup prevents application from establishing a connection even if the Connected property
was set to True at design-time. Set KeepDesignConnected to False to initialize the connected property to
False, even if it was True at design-time.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL262

If True, the TCustomDAConnection.OnConnectionLost event occurs and a failover operation can be
performed after connection breaks.

Class

TDAConnectionOptions

Syntax

property LocalFailover: boolean default False;

Remarks

If True, the TCustomDAConnection.OnConnectionLost event occurs and a failover operation can be
performed after connection breaks. Read the Working in an Unstable Network topic for more information
about using failover.

© 1997-2012 Devart. All Rights Reserved.

17.10.1.9 DBAccess.TDADataSetOptions Class

This class allows setting up the behaviour of the TDADataSet class.
For a list of all members of this type, see TDADataSetOptions members.

Unit

DBAccess

Syntax

TDADataSetOptions = class(TPersistent);

Inheritance Hierarchy

TObject
 TDADataSetOptions

© 1997-2012 Devart. All Rights Reserved.

TDADataSetOptions class overview.

Properties

Name Description

AutoPrepare Used to execute automatic
TCustomDADataSet.Prepare on the
query execution.

CacheCalcFields Used to enable caching of the
TField.Calculated and TField.Lookup
fields.

DefaultValues Used to request default values/
expressions from the server and
assign them to the
DefaultExpression property.

DetailDelay Used to get or set a delay in
milliseconds before refreshing detail
dataset while navigating master
dataset.

FieldsOrigin Used for TCustomDADataSet to fill
the Origin property of the TField
objects by appropriate value when
opening a dataset.

FlatBuffers Used to control how a dataset
treats data of the ftString and
ftVarBytes fields.

LocalMasterDetail Used for TCustomDADataSet to use
local filtering to establish master/
detail relationship for detail dataset
and does not refer to the server.

263Data Access Components for MySQL

LongStrings Used to represent string fields with
the length that is greater than 255
as TStringField.

NumberRange Used to set the MaxValue and
MinValue properties of TIntegerField
and TFloatField to appropriate
values.

QueryRecCount Used for TCustomDADataSet to
perform additional query to get the
record count for this SELECT, so the
RecordCount property reflects the
actual number of records.

QuoteNames Used for TCustomDADataSet to
quote all database object names in
autogenerated SQL statements such
as update SQL.

RemoveOnRefresh Used for a dataset to locally remove
a record that can not be found on
the server.

RequiredFields Used for TCustomDADataSet to set
the Required property of the TField
objects for the NOT NULL fields.

ReturnParams Used to return the new value of
fields to dataset after insert or
update.

SetFieldsReadOnly Used for a dataset to set the
ReadOnly property to True for all
fields that do not belong to
UpdatingTable or can not be
updated.

StrictUpdate Used for TCustomDADataSet to
raise an exception when the
number of updated or deleted
records is not equal 1.

UpdateAllFields Used to include all dataset fields in
the generated UPDATE and INSERT
statements.

UpdateBatchSize Used to get or set a value that
enables or disables batch
processing support, and specifies
the number of commands that can
be executed in a batch.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDADataSetOptions class.
For a complete list of the TDADataSetOptions class members, see the TDADataSetOptions Members
topic.

Public

Name Description

AutoPrepare Used to execute automatic
TCustomDADataSet.Prepare on the
query execution.

CacheCalcFields Used to enable caching of the
TField.Calculated and TField.Lookup
fields.

DefaultValues Used to request default values/
expressions from the server and
assign them to the
DefaultExpression property.

Data Access Components for MySQL264

DetailDelay Used to get or set a delay in
milliseconds before refreshing detail
dataset while navigating master
dataset.

FieldsOrigin Used for TCustomDADataSet to fill
the Origin property of the TField
objects by appropriate value when
opening a dataset.

FlatBuffers Used to control how a dataset
treats data of the ftString and
ftVarBytes fields.

LocalMasterDetail Used for TCustomDADataSet to use
local filtering to establish master/
detail relationship for detail dataset
and does not refer to the server.

LongStrings Used to represent string fields with
the length that is greater than 255
as TStringField.

NumberRange Used to set the MaxValue and
MinValue properties of TIntegerField
and TFloatField to appropriate
values.

QueryRecCount Used for TCustomDADataSet to
perform additional query to get the
record count for this SELECT, so the
RecordCount property reflects the
actual number of records.

QuoteNames Used for TCustomDADataSet to
quote all database object names in
autogenerated SQL statements such
as update SQL.

RemoveOnRefresh Used for a dataset to locally remove
a record that can not be found on
the server.

RequiredFields Used for TCustomDADataSet to set
the Required property of the TField
objects for the NOT NULL fields.

ReturnParams Used to return the new value of
fields to dataset after insert or
update.

SetFieldsReadOnly Used for a dataset to set the
ReadOnly property to True for all
fields that do not belong to
UpdatingTable or can not be
updated.

StrictUpdate Used for TCustomDADataSet to
raise an exception when the
number of updated or deleted
records is not equal 1.

UpdateAllFields Used to include all dataset fields in
the generated UPDATE and INSERT
statements.

UpdateBatchSize Used to get or set a value that
enables or disables batch
processing support, and specifies
the number of commands that can
be executed in a batch.

See Also
 TDADataSetOptions Class
 TDADataSetOptions Class Members

265Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Used to execute automatic TCustomDADataSet.Prepare on the query execution.

Class

TDADataSetOptions

Syntax

property AutoPrepare: boolean default False;

Remarks

Use the AutoPrepare property to execute automatic TCustomDADataSet.Prepare on the query execution.
Makes sense for cases when a query will be executed several times, for example, in Master/Detail
relationships.

© 1997-2012 Devart. All Rights Reserved.

Used to enable caching of the TField.Calculated and TField.Lookup fields.

Class

TDADataSetOptions

Syntax

property CacheCalcFields: boolean default False;

Remarks

Use the CacheCalcFields property to enable caching of the TField.Calculated and TField.Lookup fields. It
can be useful for reducing CPU usage for calculated fields. Using caching of calculated and lookup fields
increases memory usage on the client side.

© 1997-2012 Devart. All Rights Reserved.

Used to request default values/expressions from the server and assign them to the DefaultExpression
property.

Class

TDADataSetOptions

Syntax

property DefaultValues: boolean default False;

Remarks

If True, the default values/expressions are requested from the server and assigned to the
DefaultExpression property of TField objects replacing already existent values.

© 1997-2012 Devart. All Rights Reserved.

Used to get or set a delay in milliseconds before refreshing detail dataset while navigating master
dataset.

Class

TDADataSetOptions

Syntax

property DetailDelay: integer default 0;

Remarks

Use the DetailDelay property to get or set a delay in milliseconds before refreshing detail dataset while
navigating master dataset. If DetailDelay is 0 (the default value) then refreshing of detail dataset occurs

Data Access Components for MySQL266

immediately. The DetailDelay option should be used for detail dataset.

© 1997-2012 Devart. All Rights Reserved.

Used for TCustomDADataSet to fill the Origin property of the TField objects by appropriate value when
opening a dataset.

Class

TDADataSetOptions

Syntax

property FieldsOrigin: boolean default False;

Remarks

If True, TCustomDADataSet fills the Origin property of the TField objects by appropriate value when
opening a dataset.

© 1997-2012 Devart. All Rights Reserved.

Used to control how a dataset treats data of the ftString and ftVarBytes fields.

Class

TDADataSetOptions

Syntax

property FlatBuffers: boolean default False;

Remarks

Use the FlatBuffers property to control how a dataset treats data of the ftString and ftVarBytes fields.
When set to True, all data fetched from the server is stored in record pdata without unused tails.

© 1997-2012 Devart. All Rights Reserved.

Used for TCustomDADataSet to use local filtering to establish master/detail relationship for detail dataset
and does not refer to the server.

Class

TDADataSetOptions

Syntax

property LocalMasterDetail: boolean default False;

Remarks

If True, for detail dataset in master-detail relationship TCustomDADataSet uses local filtering for
establishing master/detail relationship and does not refer to the server. Otherwise detail dataset
performs query each time a record is selected in master dataset. This option is useful for reducing server
calls number, server resources economy. It can be useful for slow connection. The TMemDataSet.
CachedUpdates mode can be used for detail dataset only when this option is set to true. Setting the
LocalMasterDetail option to True is not recommended when detail table contains too many rows, because
when it is set to False, only records that correspond to the current record in master dataset are fetched.

© 1997-2012 Devart. All Rights Reserved.

Used to represent string fields with the length that is greater than 255 as TStringField.

Class

TDADataSetOptions

Syntax

267Data Access Components for MySQL

property LongStrings: boolean default True;

Remarks

Use the LongStrings property to represent string fields with the length that is greater than 255 as
TStringField, not as TMemoField.

© 1997-2012 Devart. All Rights Reserved.

Used to set the MaxValue and MinValue properties of TIntegerField and TFloatField to appropriate values.

Class

TDADataSetOptions

Syntax

property NumberRange: boolean default False;

Remarks

Use the NumberRange property to set the MaxValue and MinValue properties of TIntegerField and
TFloatField to appropriate values.

© 1997-2012 Devart. All Rights Reserved.

Used for TCustomDADataSet to perform additional query to get the record count for this SELECT, so the
RecordCount property reflects the actual number of records.

Class

TDADataSetOptions

Syntax

property QueryRecCount: boolean default False;

Remarks

If True, and the TCustomMyDataSet.FetchAll property is False, TCustomDADataSet performs additional
query to get the record count for this SELECT, so the RecordCount property reflects the actual number
of records. Does not have any effect if the FetchAll property is True.

© 1997-2012 Devart. All Rights Reserved.

Used for TCustomDADataSet to quote all database object names in autogenerated SQL statements such
as update SQL.

Class

TDADataSetOptions

Syntax

property QuoteNames: boolean default False;

Remarks

If True, TCustomDADataSet quotes all database object names in autogenerated SQL statements such as
update SQL.

© 1997-2012 Devart. All Rights Reserved.

Used for a dataset to locally remove a record that can not be found on the server.

Class

TDADataSetOptions

Syntax

Data Access Components for MySQL268

property RemoveOnRefresh: boolean default True;

Remarks

When the RefreshRecord procedure can't find necessary record on the server and RemoveOnRefresh is
set to True, dataset removes the record locally. Usually RefreshRecord can't find necessary record when
someone else dropped the record or changed the key value of it.
This option makes sense only if the StrictUpdate option is set to False. If the StrictUpdate option is True,
error will be generated regardless of the RemoveOnRefresh option value.

© 1997-2012 Devart. All Rights Reserved.

Used for TCustomDADataSet to set the Required property of the TField objects for the NOT NULL fields.

Class

TDADataSetOptions

Syntax

property RequiredFields: boolean default True;

Remarks

If True, TCustomDADataSet sets the Required property of the TField objects for the NOT NULL fields. It
is useful when table has a trigger which updates the NOT NULL fields.

© 1997-2012 Devart. All Rights Reserved.

Used to return the new value of fields to dataset after insert or update.

Class

TDADataSetOptions

Syntax

property ReturnParams: boolean default False;

Remarks

Use the ReturnParams property to return the new value of fields to dataset after insert or update. The
actual value of field after insert or update may be different from the value stored in the local memory if
the table has a trigger. When ReturnParams is True, OUT parameters of the SQLInsert and SQLUpdate
statements is assigned to the corresponding fields.

© 1997-2012 Devart. All Rights Reserved.

Used for a dataset to set the ReadOnly property to True for all fields that do not belong to UpdatingTable
or can not be updated.

Class

TDADataSetOptions

Syntax

property SetFieldsReadOnly: boolean default True;

Remarks

If True, dataset sets the ReadOnly property to True for all fields that do not belong to UpdatingTable or
can not be updated. Set this option for datasets that use automatic generation of the update SQL
statements only.

© 1997-2012 Devart. All Rights Reserved.

269Data Access Components for MySQL

Used for TCustomDADataSet to raise an exception when the number of updated or deleted records is not
equal 1.

Class

TDADataSetOptions

Syntax

property StrictUpdate: boolean default True;

Remarks

If True, TCustomDADataSet raises an exception when the number of updated or deleted records is not
equal 1. Setting this option also causes the exception if the RefreshRecord procedure returns more than
one record. The exception does not occur when you execute SQL query, that doesn't return resultset.
Note: There can be problems if this option is set to True and triggers for UPDATE, DELETE, REFRESH
commands that are defined for the table. So it is recommended to disable (set to False) this option with
triggers.

© 1997-2012 Devart. All Rights Reserved.

Used to include all dataset fields in the generated UPDATE and INSERT statements.

Class

TDADataSetOptions

Syntax

property UpdateAllFields: boolean default False;

Remarks

If True, all dataset fields will be included in the generated UPDATE and INSERT statements. Unspecified
fields will have NULL value in the INSERT statements. Otherwise, only updated fields will be included to
the generated update statements.

© 1997-2012 Devart. All Rights Reserved.

Used to get or set a value that enables or disables batch processing support, and specifies the number of
commands that can be executed in a batch.

Class

TDADataSetOptions

Syntax

property UpdateBatchSize: Integer default 1;

Remarks

Use the UpdateBatchSize property to get or set a value that enables or disables batch processing
support, and specifies the number of commands that can be executed in a batch. Takes effect only when
updating dataset in the TMemDataSet.CachedUpdates mode. The default value is 1.

© 1997-2012 Devart. All Rights Reserved.

17.10.1.10 DBAccess.TDAEncryptionOptions Class

Used to specify the options of the data encryption in a dataset.
For a list of all members of this type, see TDAEncryptionOptions members.

Unit

DBAccess

Syntax

TDAEncryptionOptions = class(TPersistent);

Remarks

Data Access Components for MySQL270

Set the properties of Encryption to specify the options of the data encryption in a dataset.

Inheritance Hierarchy

TObject
 TDAEncryptionOptions

© 1997-2012 Devart. All Rights Reserved.

TDAEncryptionOptions class overview.

Properties

Name Description

Encryptor Used to specify the encryptor class
that will perform the data
encryption.

Fields Used to set field names for which
encryption will be performed.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDAEncryptionOptions class.
For a complete list of the TDAEncryptionOptions class members, see the TDAEncryptionOptions
Members topic.

Public

Name Description

Encryptor Used to specify the encryptor class
that will perform the data
encryption.

Published

Name Description

Fields Used to set field names for which
encryption will be performed.

See Also
 TDAEncryptionOptions Class
 TDAEncryptionOptions Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify the encryptor class that will perform the data encryption.

Class

TDAEncryptionOptions

Syntax

property Encryptor: TCREncryptor;

Remarks

Use the Encryptor property to specify the encryptor class that will perform the data encryption.

© 1997-2012 Devart. All Rights Reserved.

Used to set field names for which encryption will be performed.

Class

TDAEncryptionOptions

Syntax

271Data Access Components for MySQL

property Fields: string;

Remarks

Used to set field names for which encryption will be performed. Field names must be separated by
semicolons.

© 1997-2012 Devart. All Rights Reserved.

17.10.1.11 DBAccess.TDAMapRule Class

Class that formes rules for Data Type Mapping.
For a list of all members of this type, see TDAMapRule members.

Unit

DBAccess

Syntax

TDAMapRule = class(TMapRule);

Remarks

Using properties of this class, it is possible to change parameter values of the specified rules from the
TDAMapRules set.

Inheritance Hierarchy

TObject
 TMapRule
 TDAMapRule

© 1997-2012 Devart. All Rights Reserved.

TDAMapRule class overview.

Properties

Name Description

DBLengthMax Maximum DB field length, until
which the rule is applied.

DBLengthMin Minimum DB field length, starting
from which the rule is applied.

DBScaleMax Maximum DB field scale, until which
the rule is applied to the specified
DB field.

DBScaleMin Minimum DB field Scale, starting
from which the rule is applied to the
specified DB field.

DBType DB field type, that the rule is
applied to.

FieldLength The resultant field length in Delphi.

FieldName DataSet field name, for which the
rule is applied.

FieldScale The resultant field Scale in Delphi.

FieldType Delphi field type, that the specified
DB type or DataSet field will be
mapped to.

IgnoreErrors Ignoring errors when converting
data from DB to Delphi type.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL272

Properties of the TDAMapRule class.
For a complete list of the TDAMapRule class members, see the TDAMapRule Members topic.

Published

Name Description

DBLengthMax Maximum DB field length, until
which the rule is applied.

DBLengthMin Minimum DB field length, starting
from which the rule is applied.

DBScaleMax Maximum DB field scale, until which
the rule is applied to the specified
DB field.

DBScaleMin Minimum DB field Scale, starting
from which the rule is applied to the
specified DB field.

DBType DB field type, that the rule is
applied to.

FieldLength The resultant field length in Delphi.

FieldName DataSet field name, for which the
rule is applied.

FieldScale The resultant field Scale in Delphi.

FieldType Delphi field type, that the specified
DB type or DataSet field will be
mapped to.

IgnoreErrors Ignoring errors when converting
data from DB to Delphi type.

See Also
 TDAMapRule Class
 TDAMapRule Class Members

© 1997-2012 Devart. All Rights Reserved.

Maximum DB field length, until which the rule is applied.

Class

TDAMapRule

Syntax

property DBLengthMax: Integer default rlAny;

Remarks

Setting maximum DB field length, until which the rule is applied to the specified DB field.

© 1997-2012 Devart. All Rights Reserved.

Minimum DB field length, starting from which the rule is applied.

Class

TDAMapRule

Syntax

property DBLengthMin: Integer default rlAny;

Remarks

Setting minimum DB field length, starting from which the rule is applied to the specified DB field.

© 1997-2012 Devart. All Rights Reserved.

273Data Access Components for MySQL

Maximum DB field scale, until which the rule is applied to the specified DB field.

Class

TDAMapRule

Syntax

property DBScaleMax: Integer default rlAny;

Remarks

Setting maximum DB field scale, until which the rule is applied to the specified DB field.

© 1997-2012 Devart. All Rights Reserved.

Minimum DB field Scale, starting from which the rule is applied to the specified DB field.

Class

TDAMapRule

Syntax

property DBScaleMin: Integer default rlAny;

Remarks

Setting minimum DB field Scale, starting from which the rule is applied to the specified DB field.

© 1997-2012 Devart. All Rights Reserved.

DB field type, that the rule is applied to.

Class

TDAMapRule

Syntax

property DBType: Word default dtUnknown;

Remarks

Setting DB field type, that the rule is applied to. If the current rule is set for Connection, the rule will be
applied to all fields of the specified type in all DataSets related to this Connection.

© 1997-2012 Devart. All Rights Reserved.

The resultant field length in Delphi.

Class

TDAMapRule

Syntax

property FieldLength: Integer default rlAny;

Remarks

Setting the Delphi field length after conversion.

© 1997-2012 Devart. All Rights Reserved.

DataSet field name, for which the rule is applied.

Class

TDAMapRule

Syntax

Data Access Components for MySQL274

property FieldName: string;

Remarks

Specifies the DataSet field name, that the rule is applied to. If the current rule is set for Connection, the
rule will be applied to all fields with such name in DataSets related to this Connection.

© 1997-2012 Devart. All Rights Reserved.

The resultant field Scale in Delphi.

Class

TDAMapRule

Syntax

property FieldScale: Integer default rlAny;

Remarks

Setting the Delphi field Scale after conversion.

© 1997-2012 Devart. All Rights Reserved.

Delphi field type, that the specified DB type or DataSet field will be mapped to.

Class

TDAMapRule

Syntax

property FieldType: TFieldType default ftUnknown;

Remarks

Setting Delphi field type, that the specified DB type or DataSet field will be mapped to.

© 1997-2012 Devart. All Rights Reserved.

Ignoring errors when converting data from DB to Delphi type.

Class

TDAMapRule

Syntax

property IgnoreErrors: Boolean default False;

Remarks

Allows to ignore errors while data conversion in case if data or DB data format cannot be recorded to the
specified Delphi field type. The default value is false.

© 1997-2012 Devart. All Rights Reserved.

17.10.1.12 DBAccess.TDAMapRules Class

Used for adding rules for DataSet fields mapping with both identifying by field name and by field type
and Delphi field types.
For a list of all members of this type, see TDAMapRules members.

Unit

DBAccess

Syntax

TDAMapRules = class(TMapRules);

275Data Access Components for MySQL

Inheritance Hierarchy

TObject
 TMapRules
 TDAMapRules

© 1997-2012 Devart. All Rights Reserved.

TDAMapRules class overview.

Methods

Name Description

AddDBTypeRule Overloaded. Adding rules for
mapping Database field types to
Delphi field types.

AddFieldNameRule Overloaded. Adding rules for
mapping named fields to Delphi
field types and setting resultant
length and scale for Delphi fields

AddRule A unified method of adding rules for
mapping a DataSet named field or
DB field type with the specified
length and scale to a field type with
the specified length and scale in
Delphi.

© 1997-2012 Devart. All Rights Reserved.

Methods of the TDAMapRules class.
For a complete list of the TDAMapRules class members, see the TDAMapRules Members topic.

Public

Name Description

AddDBTypeRule Overloaded. Adding rules for
mapping Database field types to
Delphi field types.

AddFieldNameRule Overloaded. Adding rules for
mapping named fields to Delphi
field types and setting resultant
length and scale for Delphi fields

AddRule A unified method of adding rules for
mapping a DataSet named field or
DB field type with the specified
length and scale to a field type with
the specified length and scale in
Delphi.

See Also
 TDAMapRules Class
 TDAMapRules Class Members

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types.

Class

TDAMapRules

Overload List

Name Description

Data Access Components for MySQL276

AddDBTypeRule(DBType: Word; FieldType:
TFieldType; IgnoreErrors: boolean)

Adding rules for mapping Database field types to
Delphi field types.

AddDBTypeRule(DBType: Word; FieldType:
TFieldType; FieldLength: Integer; IgnoreErrors:
boolean)

Adding rules for mapping Database field types to
Delphi field types with the specified Delphi field
length.

AddDBTypeRule(DBType: Word; FieldType:
TFieldType; FieldLength: Integer; FieldScale:
Integer; IgnoreErrors: boolean)

Adding rules for mapping Database field types to
Delphi field types with the specified resultant
length and scale of Delphi field.

AddDBTypeRule(DBType: Word; DBLengthMin:
Integer; DBLengthMax: Integer; FieldType:
TFieldType; IgnoreErrors: boolean)

Adding rules for mapping Database field types to
Delphi field types with the specified minimum
and maximum length of DB fields, for which the
specified conversion will be applied.

AddDBTypeRule(DBType: Word; DBLengthMin:
Integer; DBLengthMax: Integer; FieldType:
TFieldType; FieldLength: Integer; IgnoreErrors:
boolean)

Adding rules for mapping Database field types to
Delphi field types with the specified minimum
and maximum length of DB fields, for which the
specified conversion will be applied.

AddDBTypeRule(DBType: Word; DBLengthMin:
Integer; DBLengthMax: Integer; DBScaleMin:
Integer; DBScaleMax: Integer; FieldType:
TFieldType; IgnoreErrors: boolean)

Adding rules for mapping Database field types to
Delphi field types with the specified minimum
and maximum length and scale of DB fields, for
which the specified conversion will be applied,
and with setting the resultant Delphi field length.

AddDBTypeRule(DBType: Word; DBLengthMin:
Integer; DBLengthMax: Integer; DBScaleMin:
Integer; DBScaleMax: Integer; FieldType:
TFieldType; FieldLength: Integer; FieldScale:
Integer; IgnoreErrors: boolean)

Adding rules for mapping Database field types to
Delphi field types with the specified minimum
and maximum length and scale of DB fields, for
which the specified conversion will be applied,
and with setting the resultant Delphi field length
and scale.

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types.

Class

TDAMapRules

Syntax

procedure AddDBTypeRule(DBType: Word; FieldType: TFieldType;
IgnoreErrors: boolean = False); overload
Parameters

DBType
DB type

FieldType
Delphi field type

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be applied to all DB fields and Delphi fields, that support conversion between each
other.

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types with the specified Delphi field length.

Class

TDAMapRules

Syntax

procedure AddDBTypeRule(DBType: Word; FieldType: TFieldType;

277Data Access Components for MySQL

FieldLength: Integer; IgnoreErrors: boolean = False); overload
Parameters

DBType
DB type

FieldType
Delphi field type

FieldLength
Delphi field length

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be used for retrieving Delphi fields ftString, ftWideString, ftBytes, ftVarBytes.

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types with the specified resultant length
and scale of Delphi field.

Class

TDAMapRules

Syntax

procedure AddDBTypeRule(DBType: Word; FieldType: TFieldType;
FieldLength: Integer; FieldScale: Integer; IgnoreErrors: boolean
= False); overload
Parameters

DBType
DB type

FieldType
Delphi field type

FieldLength
Delphi field length

FieldScale
Delphi field scale

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be used for retrieving Delphi fields ftBCD and ftFMTBCD.

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types with the specified minimum and
maximum length of DB fields, for which the specified conversion will be applied.

Class

TDAMapRules

Syntax

procedure AddDBTypeRule(DBType: Word; DBLengthMin: Integer;
DBLengthMax: Integer; FieldType: TFieldType; IgnoreErrors:
boolean = False); overload
Parameters

DBType

Data Access Components for MySQL278

DB type

DBLengthMin
Minimum DB field length

DBLengthMax
Maximum DB field length

FieldType
Delphi field type

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be applied for all DB text fields.

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types with the specified minimum and
maximum length of DB fields, for which the specified conversion will be applied.

Class

TDAMapRules

Syntax

procedure AddDBTypeRule(DBType: Word; DBLengthMin: Integer;
DBLengthMax: Integer; FieldType: TFieldType; FieldLength:
Integer; IgnoreErrors: boolean = False); overload
Parameters

DBType
DB type

DBLengthMin
Minimum DB field length

DBLengthMax
Maximum DB field length

FieldType
Delphi field type

FieldLength
Delphi field length

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be applied to DB text fields for retrieving Delphi fields ftString, ftWideString, ftBytes,
ftVarBytes.

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types with the specified minimum and
maximum length and scale of DB fields, for which the specified conversion will be applied, and with
setting the resultant Delphi field length.

Class

TDAMapRules

Syntax

procedure AddDBTypeRule(DBType: Word; DBLengthMin: Integer;
DBLengthMax: Integer; DBScaleMin: Integer; DBScaleMax: Integer;
FieldType: TFieldType; IgnoreErrors: boolean = False); overload
Parameters

279Data Access Components for MySQL

DBType
DB type

DBLengthMin
Minimum DB field length

DBLengthMax
Maximum DB field length

DBScaleMin
Minimum DB field scale

DBScaleMax
Maximum DB field scale

FieldType
Delphi field type

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be applied to those DB fields, for which it is possible to set Scale and Length.

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types with the specified minimum and
maximum length and scale of DB fields, for which the specified conversion will be applied, and with
setting the resultant Delphi field length and scale.

Class

TDAMapRules

Syntax

procedure AddDBTypeRule(DBType: Word; DBLengthMin: Integer;
DBLengthMax: Integer; DBScaleMin: Integer; DBScaleMax: Integer;
FieldType: TFieldType; FieldLength: Integer; FieldScale:
Integer; IgnoreErrors: boolean = False); overload
Parameters

DBType
DB type

DBLengthMin
Minimum DB field length

DBLengthMax
Maximum DB field length

DBScaleMin
Minimum DB field scale

DBScaleMax
Maximum DB field scale

FieldType
Delphi field type

FieldLength
Delphi field length

FieldScale
Delphi field scale

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be applied to those DB fields, for which it is possible to set Scale and Length for
retrieving Delphi fields ftBCD, ftFMTBCD.

Data Access Components for MySQL280

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping named fields to Delphi field types and setting resultant length and scale for
Delphi fields

Class

TDAMapRules

Overload List

Name Description

AddFieldNameRule(FieldName: string; FieldType:
TFieldType; IgnoreErrors: Boolean)

Adding rules for mapping named fields to Delphi
field types.

AddFieldNameRule(FieldName: string; FieldType:
TFieldType; FieldLength: Integer; IgnoreErrors:
Boolean)

Adding rules for mapping named fields to Delphi
field types and setting the length for Delphi
fields.

AddFieldNameRule(FieldName: string; FieldType:
TFieldType; FieldLength: Integer; FieldScale:
Integer; IgnoreErrors: Boolean)

Adding rules for mapping named fields to Delphi
field types and setting the resultant length and
scale for Delphi fields

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping named fields to Delphi field types.

Class

TDAMapRules

Syntax

procedure AddFieldNameRule(FieldName: string; FieldType:
TFieldType; IgnoreErrors: Boolean = False); overload
Parameters

FieldName
Field name in DataSet

FieldType
Delphi field type

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be applied to all DataSet field names and Delphi fields. If the DB field type, whose
name is specified in the rule, doesn't support conversion to the specified Delphi type, the Unsupported
Data Type Mapping error will occur when opening DataSet.

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping named fields to Delphi field types and setting the length for Delphi fields.

Class

TDAMapRules

Syntax

procedure AddFieldNameRule(FieldName: string; FieldType:
TFieldType; FieldLength: Integer; IgnoreErrors: Boolean =
False); overload
Parameters

FieldName
Field name in DataSet

281Data Access Components for MySQL

FieldType
Delphi field type

FieldLength
Delphi field length

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be used for retrieving Delphi fields ftString, ftWideString, ftBytes, ftVarBytes.

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping named fields to Delphi field types and setting the resultant length and scale for
Delphi fields

Class

TDAMapRules

Syntax

procedure AddFieldNameRule(FieldName: string; FieldType:
TFieldType; FieldLength: Integer; FieldScale: Integer;
IgnoreErrors: Boolean = False); overload
Parameters

FieldName
Field name in DataSet

FieldType
Delphi field type

FieldLength
Delphi field length

FieldScale
Delphi field scale

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be used for retrieving Delphi fields ftBCD and ftFMTBCD.

© 1997-2012 Devart. All Rights Reserved.

A unified method of adding rules for mapping a DataSet named field or DB field type with the specified
length and scale to a field type with the specified length and scale in Delphi.

Class

TDAMapRules

Syntax

procedure AddRule(FieldName: string; DBType: Word; DBLengthMin:
Integer; DBLengthMax: Integer; DBScaleMin: Integer; DBScaleMax:
Integer; FieldType: TFieldType; FieldLength: Integer;
FieldScale: Integer; IgnoreErrors: boolean = False); overload;
procedure AddRule(Rule: string); overload;
Parameters

FieldName
Field name in DataSet

DBType
DB type

Data Access Components for MySQL282

DBLengthMin
Minimum DB field length

DBLengthMax
Maximum DB field length

DBScaleMin
Minimum DB field scale

DBScaleMax
Maximum DB field scale

FieldType
Delphi field type

FieldLength
Delphi field length

FieldScale
Delphi field scale

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

One of two parameters requires to be specified: FieldName or DBType. Also, it is required to specify the
FieldType parameter. The other parameters are not required, therefore it is allowed to set the rlAny
constant for them instead of a specific value. If the rlAny constant is set, then the given rule will be
applied for all fields independently on their length and scale.
For example, if it is necessary to set the field length in a database to 20 or more, then DBLengthMin
should be set to 20, and DBLengthMax - to rlAny.
If it is necessary to set scale to 5 or less, then DBScaleMin should be set to rlAny, and DBScaleMax - to
5.

© 1997-2012 Devart. All Rights Reserved.

17.10.1.13 DBAccess.TDAMetaData Class

A class for retrieving metainformation of the specified database objects in the form of dataset.
For a list of all members of this type, see TDAMetaData members.

Unit

DBAccess

Syntax

TDAMetaData = class(TMemDataSet);

Remarks

TDAMetaData is a TDataSet descendant standing for retrieving metainformation of the specified
database objects in the form of dataset. First of all you need to specify which kind of metainformation
you want to see. For this you need to assign the TDAMetaData.MetaDataKind property. Provide one or
more conditions in the TDAMetaData.Restrictions property to diminish the size of the resultset and get
only information you are interested in.
Use the TDAMetaData.GetMetaDataKinds method to get the full list of supported kinds of meta data.
With the TDAMetaData.GetRestrictions method you can find out what restrictions are applicable to the
specified MetaDataKind.

Example

The code below demonstrates how to get information about columns of the 'emp' table:

MetaData.Connection := Connection;
MetaData.MetaDataKind := 'Columns';
MetaData.Restrictions.Values['TABLE_NAME'] := 'Emp';
MetaData.Open;

Inheritance Hierarchy

TObject

283Data Access Components for MySQL

 TMemDataSet
 TDAMetaData

See Also


TDAMetaData.MetaDataKind

 TDAMetaData.Restrictions

 TDAMetaData.GetMetaDataKinds

 TDAMetaData.GetRestrictions

© 1997-2012 Devart. All Rights Reserved.

TDAMetaData class overview.

Properties

Name Description

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

Connection Used to specify a connection object
to use to connect to a data store.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

MetaDataKind Used to specify which kind of
metainformation to show.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

Restrictions Used to provide one or more
conditions restricting the list of
objects to be described.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

Methods

Name Description

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

Data Access Components for MySQL284

GetMetaDataKinds Used to get values acceptable in the
MetaDataKind property.

GetRestrictions Used to find out which restrictions
are applicable to a certain
MetaDataKind.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Prepare (inherited from TMemDataSet) Allocates resources and creates
field components for a dataset.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

Events

Name Description

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDAMetaData class.
For a complete list of the TDAMetaData class members, see the TDAMetaData Members topic.

Public

Name Description

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

Connection Used to specify a connection object
to use to connect to a data store.

285Data Access Components for MySQL

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

MetaDataKind Used to specify which kind of
metainformation to show.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

Prepare (inherited from TMemDataSet) Allocates resources and creates
field components for a dataset.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

Restrictions Used to provide one or more
conditions restricting the list of
objects to be described.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

See Also

Data Access Components for MySQL286

 TDAMetaData Class
 TDAMetaData Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify a connection object to use to connect to a data store.

Class

TDAMetaData

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify a connection object to use to connect to a data store.
Set at design-time by selecting from the list of provided TCustomDAConnection or its descendant class
objects.
At runtime, set the Connection property to reference an instanciated TCustomDAConnection object.

© 1997-2012 Devart. All Rights Reserved.

Used to specify which kind of metainformation to show.

Class

TDAMetaData

Syntax

property MetaDataKind: string;

Remarks

This string property specifies which kind of metainformation to show. The value of this property should
be assigned before activating the component. If MetaDataKind equals to an empty string (the default
value), the full value list that this property accepts will be shown.
They are described in the table below:

MetaDataKind Description

Columns show metainformation about columns of existing tables

Constraints show metainformation about the constraints defined in the database

Databases show metainformation about existing databases

IndexColumns show metainformation about indexed columns

Indexes show metainformation about indexes in a database

MetaDataKinds
show the acceptable values of this property. You will get the same result if
the MetadataKind property is an empty string

ProcedureParamet
ers

show metainformation about parameters of existing procedures

Procedures show metainformation about existing procedures

Restrictions
generates a dataset that describes which restrictions are applicable to each
MetaDataKind

Tables show metainformation about existing tables

If you provide a value that equals neither of the values described in the table, an error will be raised.

See Also

 Restrictions

© 1997-2012 Devart. All Rights Reserved.

287Data Access Components for MySQL

Used to provide one or more conditions restricting the list of objects to be described.

Class

TDAMetaData

Syntax

property Restrictions: _TStrings;

Remarks

Use the Restriction list to provide one or more conditions restricting the list of objects to be described.
To see the full list of restrictions and to which metadata kinds they are applicable, you should assign the
Restrictions value to the MetaDataKind property and view the result.

See Also

 MetaDataKind

© 1997-2012 Devart. All Rights Reserved.

Methods of the TDAMetaData class.
For a complete list of the TDAMetaData class members, see the TDAMetaData Members topic.

Public

Name Description

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetMetaDataKinds Used to get values acceptable in the
MetaDataKind property.

GetRestrictions Used to find out which restrictions
are applicable to a certain
MetaDataKind.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Data Access Components for MySQL288

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

Prepare (inherited from TMemDataSet) Allocates resources and creates
field components for a dataset.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

See Also
 TDAMetaData Class
 TDAMetaData Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to get values acceptable in the MetaDataKind property.

Class

TDAMetaData

Syntax

procedure GetMetaDataKinds(List: _TStrings);
Parameters

List
Holds the object that will be filled with metadata kinds (restrictions).

Remarks

Call the GetMetaDataKinds method to get values acceptable in the MetaDataKind property. The List
parameter will be cleared and then filled with values.

See Also

 MetaDataKind

289Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Used to find out which restrictions are applicable to a certain MetaDataKind.

Class

TDAMetaData

Syntax

procedure GetRestrictions(List: _TStrings; const MetaDataKind:
string);
Parameters

List
Holds the object that will be filled with metadata kinds (restrictions).

MetaDataKind
Holds the metadata kind for which restrictions are returned.

Remarks

Call the GetRestrictions method to find out which restrictions are applicable to a certain MetaDataKind.
The List parameter will be cleared and then filled with values.

See Also

 Restrictions
 GetMetaDataKinds

© 1997-2012 Devart. All Rights Reserved.

17.10.1.14 DBAccess.TDAParam Class

A class that forms objects to represent the values of the parameters set.
For a list of all members of this type, see TDAParam members.

Unit

DBAccess

Syntax

TDAParam = class(TParam);

Remarks

Use the properties of TDAParam to set the value of a parameter. Objects that use parameters create
TDAParam objects to represent these parameters. For example, TDAParam objects are used by
TCustomDASQL, TCustomDADataSet.
TDAParam shares many properties with TField, as both describe the value of a field in a dataset.
However, a TField object has several properties to describe the field binding and the way the field is
displayed, edited, or calculated, that are not needed in a TDAParam object. Conversely, TDAParam
includes properties that indicate how the field value is passed as a parameter.

Inheritance Hierarchy

TObject
 TDAParam

See Also

 TCustomDADataSet
 TCustomDASQL
 TDAParams

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL290

TDAParam class overview.

Properties

Name Description

AsBlob Used to set and read the value of
the BLOB parameter as string.

AsBlobRef Used to set and read the value of
the BLOB parameter as a TBlob
object.

AsFloat Used to assign the value for a float
field to a parameter.

AsInteger Used to assign the value for an
integer field to the parameter.

AsLargeInt Used to assign the value for a
LargeInteger field to the parameter.

AsMemo Used to assign the value for a
memo field to the parameter.

AsMemoRef Used to set and read the value of
the memo parameter as a TBlob
object.

AsSQLTimeStamp Used to specify the value of the
parameter when it represents a SQL
timestamp field.

AsString Used to assign the string value to
the parameter.

AsWideString Used to assign the Unicode string
value to the parameter.

DataType Indicates the data type of the
parameter.

IsNull Used to indicate whether the value
assigned to a parameter is NULL.

ParamType Used to indicate the type of use for
a parameter.

Size Specifies the size of a string type
parameter.

Value Used to represent the value of the
parameter as Variant.

Methods

Name Description

AssignField Assigns field name and field value
to a param.

AssignFieldValue Assigns the specified field
properties and value to a
parameter.

LoadFromFile Places the content of a specified file
into a TDAParam object.

LoadFromStream Places the content from a stream
into a TDAParam object.

SetBlobData Overloaded. Writes the data from a
specified buffer to BLOB.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDAParam class.
For a complete list of the TDAParam class members, see the TDAParam Members topic.

Public

Name Description

291Data Access Components for MySQL

AsBlob Used to set and read the value of
the BLOB parameter as string.

AsBlobRef Used to set and read the value of
the BLOB parameter as a TBlob
object.

AsFloat Used to assign the value for a float
field to a parameter.

AsInteger Used to assign the value for an
integer field to the parameter.

AsLargeInt Used to assign the value for a
LargeInteger field to the parameter.

AsMemo Used to assign the value for a
memo field to the parameter.

AsMemoRef Used to set and read the value of
the memo parameter as a TBlob
object.

AsSQLTimeStamp Used to specify the value of the
parameter when it represents a SQL
timestamp field.

AsString Used to assign the string value to
the parameter.

AsWideString Used to assign the Unicode string
value to the parameter.

IsNull Used to indicate whether the value
assigned to a parameter is NULL.

Published

Name Description

DataType Indicates the data type of the
parameter.

ParamType Used to indicate the type of use for
a parameter.

Size Specifies the size of a string type
parameter.

Value Used to represent the value of the
parameter as Variant.

See Also
 TDAParam Class
 TDAParam Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to set and read the value of the BLOB parameter as string.

Class

TDAParam

Syntax

property AsBlob: TBlobData;

Remarks

Use the AsBlob property to set and read the value of the BLOB parameter as string. Setting AsBlob will
set the DataType property to ftBlob.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL292

Used to set and read the value of the BLOB parameter as a TBlob object.

Class

TDAParam

Syntax

property AsBlobRef: TBlob;

Remarks

Use the AsBlobRef property to set and read the value of the BLOB parameter as a TBlob object. Setting
AsBlobRef will set the DataType property to ftBlob.

© 1997-2012 Devart. All Rights Reserved.

Used to assign the value for a float field to a parameter.

Class

TDAParam

Syntax

property AsFloat: double;

Remarks

Use the AsFloat property to assign the value for a float field to the parameter. Setting AsFloat will set
the DataType property to dtFloat.
Read the AsFloat property to determine the value that was assigned to an output parameter,
represented as Double. The value of the parameter will be converted to the Double value if possible.

© 1997-2012 Devart. All Rights Reserved.

Used to assign the value for an integer field to the parameter.

Class

TDAParam

Syntax

property AsInteger: integer;

Remarks

Use the AsInteger property to assign the value for an integer field to the parameter. Setting AsInteger
will set the DataType property to dtInteger.
Read the AsInteger property to determine the value that was assigned to an output parameter,
represented as a 32-bit integer. The value of the parameter will be converted to the Integer value if
possible.

© 1997-2012 Devart. All Rights Reserved.

Used to assign the value for a LargeInteger field to the parameter.

Class

TDAParam

Syntax

property AsLargeInt: Int64;

Remarks

Set the AsLargeInt property to assign the value for an Int64 field to the parameter. Setting AsLargeInt
will set the DataType property to dtLargeint.
Read the AsLargeInt property to determine the value that was assigned to an output parameter,
represented as a 64-bit integer. The value of the parameter will be converted to the Int64 value if

293Data Access Components for MySQL

possible.

© 1997-2012 Devart. All Rights Reserved.

Used to assign the value for a memo field to the parameter.

Class

TDAParam

Syntax

property AsMemo: string;

Remarks

Use the AsMemo property to assign the value for a memo field to the parameter. Setting AsMemo will
set the DataType property to ftMemo.

© 1997-2012 Devart. All Rights Reserved.

Used to set and read the value of the memo parameter as a TBlob object.

Class

TDAParam

Syntax

property AsMemoRef: TBlob;

Remarks

Use the AsMemoRef property to set and read the value of the memo parameter as a TBlob object.
Setting AsMemoRef will set the DataType property to ftMemo.

© 1997-2012 Devart. All Rights Reserved.

Used to specify the value of the parameter when it represents a SQL timestamp field.

Class

TDAParam

Syntax

property AsSQLTimeStamp: TSQLTimeStamp;

Remarks

Set the AsSQLTimeStamp property to assign the value for a SQL timestamp field to the parameter.
Setting AsSQLTimeStamp sets the DataType property to ftTimeStamp.

© 1997-2012 Devart. All Rights Reserved.

Used to assign the string value to the parameter.

Class

TDAParam

Syntax

property AsString: string;

Remarks

Use the AsString property to assign the string value to the parameter. Setting AsString will set the
DataType property to ftString.
Read the AsString property to determine the value that was assigned to an output parameter
represented as a string. The value of the parameter will be converted to a string.

Data Access Components for MySQL294

© 1997-2012 Devart. All Rights Reserved.

Used to assign the Unicode string value to the parameter.

Class

TDAParam

Syntax

property AsWideString: string;

Remarks

Set AsWideString to assign the Unicode string value to the parameter. Setting AsWideString will set the
DataType property to ftWideString.
Read the AsWideString property to determine the value that was assigned to an output parameter,
represented as a Unicode string. The value of the parameter will be converted to a Unicode string.

© 1997-2012 Devart. All Rights Reserved.

Indicates the data type of the parameter.

Class

TDAParam

Syntax

property DataType: TFieldType stored IsDataTypeStored;

Remarks

DataType is set automatically when a value is assigned to a parameter. Do not set DataType for bound
fields, as this may cause the assigned value to be misinterpreted.
Read DataType to learn the type of data that was assigned to the parameter. Every possible value of
DataType corresponds to the type of a database field.

© 1997-2012 Devart. All Rights Reserved.

Used to indicate whether the value assigned to a parameter is NULL.

Class

TDAParam

Syntax

property IsNull: boolean;

Remarks

Use the IsNull property to indicate whether the value assigned to a parameter is NULL.

© 1997-2012 Devart. All Rights Reserved.

Used to indicate the type of use for a parameter.

Class

TDAParam

Syntax

property ParamType default DB . ptUnknown;

Remarks

Objects that use TDAParam objects to represent field parameters set ParamType to indicate the type of
use for a parameter.
To learn the description of TParamType refer to Delphi Help.

295Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Specifies the size of a string type parameter.

Class

TDAParam

Syntax

property Size: integer default 0;

Remarks

Use the Size property to indicate the maximum number of characters the parameter may contain. Use
the Size property only for Output parameters of the ftString, ftFixedChar, ftBytes, ftVarBytes, or
ftWideString type.

© 1997-2012 Devart. All Rights Reserved.

Used to represent the value of the parameter as Variant.

Class

TDAParam

Syntax

property Value: variant stored IsValueStored;

Remarks

The Value property represents the value of the parameter as Variant.
Use Value in generic code that manipulates the values of parameters without the need to know the field
type the parameter represent.

© 1997-2012 Devart. All Rights Reserved.

Methods of the TDAParam class.
For a complete list of the TDAParam class members, see the TDAParam Members topic.

Public

Name Description

AssignField Assigns field name and field value
to a param.

AssignFieldValue Assigns the specified field
properties and value to a
parameter.

LoadFromFile Places the content of a specified file
into a TDAParam object.

LoadFromStream Places the content from a stream
into a TDAParam object.

SetBlobData Overloaded. Writes the data from a
specified buffer to BLOB.

See Also
 TDAParam Class
 TDAParam Class Members

© 1997-2012 Devart. All Rights Reserved.

Assigns field name and field value to a param.

Class

TDAParam

Data Access Components for MySQL296

Syntax

procedure AssignField(Field: TField);
Parameters

Field
Holds the field which name and value should be assigned to the param.

Remarks

Call the AssignField method to assign field name and field value to a param.

© 1997-2012 Devart. All Rights Reserved.

Assigns the specified field properties and value to a parameter.

Class

TDAParam

Syntax

procedure AssignFieldValue(Field: TField; const Value: Variant);
virtual;
Parameters

Field
Holds the field the properties of which will be assigned to the parameter.

Value
Holds the value for the parameter.

Remarks

Call the AssignFieldValue method to assign the specified field properties and value to a parameter.

© 1997-2012 Devart. All Rights Reserved.

Places the content of a specified file into a TDAParam object.

Class

TDAParam

Syntax

procedure LoadFromFile(const FileName: string; BlobType:
TBlobType);
Parameters

FileName
Holds the name of the file.

BlobType
Holds a value that modifies the DataType property so that this TDAParam object now holds the BLOB
value.

Remarks

Use the LoadFromFile method to place the content of a file specified by FileName into a TDAParam
object. The BlobType value modifies the DataType property so that this TDAParam object now holds the
BLOB value.

See Also

 LoadFromStream

© 1997-2012 Devart. All Rights Reserved.

297Data Access Components for MySQL

Places the content from a stream into a TDAParam object.

Class

TDAParam

Syntax

procedure LoadFromStream(Stream: TStream; BlobType: TBlobType);
virtual;
Parameters

Stream
Holds the stream to copy content from.

BlobType
Holds a value that modifies the DataType property so that this TDAParam object now holds the BLOB
value.

Remarks

Call the LoadFromStream method to place the content from a stream into a TDAParam object. The
BlobType value modifies the DataType property so that this TDAParam object now holds the BLOB value.

See Also

 LoadFromFile

© 1997-2012 Devart. All Rights Reserved.

Writes the data from a specified buffer to BLOB.

Class

TDAParam

Overload List

Name Description

SetBlobData Writes the data from a specified buffer to BLOB.

SetBlobData(Buffer: TValueBuffer) Writes the data from a specified buffer to BLOB.

© 1997-2012 Devart. All Rights Reserved.

Writes the data from a specified buffer to BLOB.

Unit

Syntax

Remarks

Call the SetBlobData method to write data from a specified buffer to BLOB.

© 1997-2012 Devart. All Rights Reserved.

Writes the data from a specified buffer to BLOB.

Class

TDAParam

Syntax

procedure SetBlobData(Buffer: TValueBuffer); overload
Parameters

Buffer
Holds the pointer to the data.

Data Access Components for MySQL298

© 1997-2012 Devart. All Rights Reserved.

17.10.1.15 DBAccess.TDAParams Class

This class is used to manage a list of TDAParam objects for an object that uses field parameters.
For a list of all members of this type, see TDAParams members.

Unit

DBAccess

Syntax

TDAParams = class(TParams);

Remarks

Use TDAParams to manage a list of TDAParam objects for an object that uses field parameters. For
example, TCustomDADataSet objects and TCustomDASQL objects use TDAParams objects to create and
access their parameters.

Inheritance Hierarchy

TObject
 TDAParams

See Also

 TCustomDADataSet.Params
 TCustomDASQL.Params
 TDAParam

© 1997-2012 Devart. All Rights Reserved.

TDAParams class overview.

Properties

Name Description

Items Used to interate through all
parameters.

Methods

Name Description

FindParam Searches for a parameter with the
specified name.

ParamByName Searches for a parameter with the
specified name.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDAParams class.
For a complete list of the TDAParams class members, see the TDAParams Members topic.

Public

Name Description

Items Used to interate through all
parameters.

See Also
 TDAParams Class
 TDAParams Class Members

© 1997-2012 Devart. All Rights Reserved.

299Data Access Components for MySQL

Used to interate through all parameters.

Class

TDAParams

Syntax

property Items[Index: integer]: TDAParam; default;
Parameters

Index
Holds an index in the range 0..Count - 1.

Remarks

Use the Items property to iterate through all parameters. Index identifies the index in the range 0..
Count - 1. Items can reference a particular parameter by its index, but the ParamByName method is
preferred in order to avoid depending on the order of the parameters.

© 1997-2012 Devart. All Rights Reserved.

Methods of the TDAParams class.
For a complete list of the TDAParams class members, see the TDAParams Members topic.

Public

Name Description

FindParam Searches for a parameter with the
specified name.

ParamByName Searches for a parameter with the
specified name.

See Also
 TDAParams Class
 TDAParams Class Members

© 1997-2012 Devart. All Rights Reserved.

Searches for a parameter with the specified name.

Class

TDAParams

Syntax

function FindParam(const Value: string): TDAParam;
Parameters

Value
Holds the parameter name.

Return Value

a parameter, if a match was found. Nil otherwise.

Remarks

Use the FindParam method to find a parameter with the name passed in Value. If a match is found,
FindParam returns the parameter. Otherwise, it returns nil. Use this method rather than a direct
reference to the Items property to avoid depending on the order of the entries.
To locate more than one parameter at a time by name, use the GetParamList method instead. To get
only the value of a named parameter, use the ParamValues property.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL300

Searches for a parameter with the specified name.

Class

TDAParams

Syntax

function ParamByName(const Value: string): TDAParam;
Parameters

Value
Holds the parameter name.

Return Value

a parameter, if the match was found. otherwise an exception is raised.

Remarks

Use the ParamByName method to find a parameter with the name passed in Value. If a match was
found, ParamByName returns the parameter. Otherwise, an exception is raised. Use this method rather
than a direct reference to the Items property to avoid depending on the order of the entries.
To locate a parameter by name without raising an exception if the parameter is not found, use the
FindParam method.

© 1997-2012 Devart. All Rights Reserved.

17.10.1.16 DBAccess.TDATransaction Class

A base class that implements functionality for controlling transactions.
For a list of all members of this type, see TDATransaction members.

Unit

DBAccess

Syntax

TDATransaction = class(TComponent);

Remarks

TDATransaction is a base class for components implementing functionality for managing transactions.
Do not create instances of TDATransaction. Use descendants of the TDATransaction class instead.

Inheritance Hierarchy

TObject
 TDATransaction

© 1997-2012 Devart. All Rights Reserved.

TDATransaction class overview.

Properties

Name Description

Active Used to determine if the transaction
is active.

DefaultCloseAction Used to specify the transaction
behaviour when it is destroyed
while being active, or when one of
its connections is closed with the
active transaction.

Methods

Name Description

Commit Commits the current transaction.

301Data Access Components for MySQL

Rollback Discards all modifications of data
associated with the current
transaction and ends the
transaction.

StartTransaction Begins a new transaction.

Events

Name Description

OnError Used to process errors that occur
during executing a transaction.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDATransaction class.
For a complete list of the TDATransaction class members, see the TDATransaction Members topic.

Public

Name Description

Active Used to determine if the transaction
is active.

DefaultCloseAction Used to specify the transaction
behaviour when it is destroyed
while being active, or when one of
its connections is closed with the
active transaction.

See Also
 TDATransaction Class
 TDATransaction Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to determine if the transaction is active.

Class

TDATransaction

Syntax

property Active: boolean;

Remarks

Indicates whether the transaction is active. This property is read-only.

© 1997-2012 Devart. All Rights Reserved.

Used to specify the transaction behaviour when it is destroyed while being active, or when one of its
connections is closed with the active transaction.

Class

TDATransaction

Syntax

property DefaultCloseAction: TCRTransactionAction default
taRollback;

Remarks

Use DefaultCloseAction to specify the transaction behaviour when it is destroyed while being active, or
when one of its connections is closed with the active transaction.

Data Access Components for MySQL302

© 1997-2012 Devart. All Rights Reserved.

Methods of the TDATransaction class.
For a complete list of the TDATransaction class members, see the TDATransaction Members topic.

Public

Name Description

Commit Commits the current transaction.

Rollback Discards all modifications of data
associated with the current
transaction and ends the
transaction.

StartTransaction Begins a new transaction.

See Also
 TDATransaction Class
 TDATransaction Class Members

© 1997-2012 Devart. All Rights Reserved.

Commits the current transaction.

Class

TDATransaction

Syntax

procedure Commit; virtual;

Remarks

Call the Commit method to commit the current transaction. On commit server writes permanently all
pending data updates associated with the current transaction to the database, and then finishes the
transaction.

See Also

 Rollback
 StartTransaction

© 1997-2012 Devart. All Rights Reserved.

Discards all modifications of data associated with the current transaction and ends the transaction.

Class

TDATransaction

Syntax

procedure Rollback; virtual;

Remarks

Call Rollback to cancel all data modifications made within the current transaction to the database server,
and finish the transaction.

See Also

 Commit
 StartTransaction

© 1997-2012 Devart. All Rights Reserved.

303Data Access Components for MySQL

Begins a new transaction.

Class

TDATransaction

Syntax

procedure StartTransaction; virtual;

Remarks

Call the StartTransaction method to begin a new transaction against the database server. Before calling
StartTransaction, an application should check the Active property. If TDATransaction.Active is True,
indicating that a transaction is already in progress, a subsequent call to StartTransaction will raise
EDatabaseError. An active transaction must be finished by call to Commit or Rollback before call to
StartTransaction. Call to StartTransaction when connection is closed also will raise EDatabaseError.
Updates, insertions, and deletions that take place after a call to StartTransaction are held by the server
until the application calls Commit to save the changes, or Rollback to cancel them.

See Also

 Commit
 Rollback

© 1997-2012 Devart. All Rights Reserved.

Events of the TDATransaction class.
For a complete list of the TDATransaction class members, see the TDATransaction Members topic.

Public

Name Description

OnError Used to process errors that occur
during executing a transaction.

See Also
 TDATransaction Class
 TDATransaction Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to process errors that occur during executing a transaction.

Class

TDATransaction

Syntax

property OnError: TDATransactionErrorEvent;

Remarks

Add a handler to the OnError event to process errors that occur during executing a transaction control
statements such as Commit, Rollback. Check the E parameter to get the error code.

See Also

 Commit
 Rollback
 StartTransaction

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL304

17.10.1.17 DBAccess.TMacro Class

Object that represents the value of a macro.
For a list of all members of this type, see TMacro members.

Unit

DBAccess

Syntax

TMacro = class(TCollectionItem);

Remarks

TMacro object represents the value of a macro. Macro is a variable that holds string value. You just
insert & MacroName in a SQL query text and change the value of macro by the Macro property editor at
design time or the Value property at run time. At the time of opening query macro is replaced by its
value.
If by any reason it is not convenient for you to use the ' & ' symbol as a character of macro
replacement, change the value of the MacroChar variable.

Inheritance Hierarchy

TObject
 TMacro

See Also

 TMacros

© 1997-2012 Devart. All Rights Reserved.

TMacro class overview.

Properties

Name Description

Active Used to determine if the macro
should be expanded.

AsDateTime Used to set the TDataTime value to
a macro.

AsFloat Used to set the float value to a
macro.

AsInteger Used to set the integer value to a
macro.

AsString Used to assign the string value to a
macro.

Name Used to identify a particular macro.

Value Used to set the value to a macro.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMacro class.
For a complete list of the TMacro class members, see the TMacro Members topic.

Public

Name Description

AsDateTime Used to set the TDataTime value to
a macro.

AsFloat Used to set the float value to a
macro.

AsInteger Used to set the integer value to a
macro.

305Data Access Components for MySQL

AsString Used to assign the string value to a
macro.

Published

Name Description

Active Used to determine if the macro
should be expanded.

Name Used to identify a particular macro.

Value Used to set the value to a macro.

See Also
 TMacro Class
 TMacro Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to determine if the macro should be expanded.

Class

TMacro

Syntax

property Active: boolean default True;

Remarks

When set to True, the macro will be expanded, otherwise macro definition is replaced by null string. You
can use the Active property to modify the SQL property.
The default value is True.

Example

MyQuery.SQL.Text := 'SELECT * FROM Dept WHERE DeptNo > 20 &Cond1';
MyQuery.Macros[0].Value := 'and DName is NULL';
MyQuery.Macros[0].Active:= False;

© 1997-2012 Devart. All Rights Reserved.

Used to set the TDataTime value to a macro.

Class

TMacro

Syntax

property AsDateTime: TDateTime;

Remarks

Use the AsDataTime property to set the TDataTime value to a macro.

© 1997-2012 Devart. All Rights Reserved.

Used to set the float value to a macro.

Class

TMacro

Syntax

property AsFloat: double;

Data Access Components for MySQL306

Remarks

Use the AsFloat property to set the float value to a macro.

© 1997-2012 Devart. All Rights Reserved.

Used to set the integer value to a macro.

Class

TMacro

Syntax

property AsInteger: integer;

Remarks

Use the AsInteger property to set the integer value to a macro.

© 1997-2012 Devart. All Rights Reserved.

Used to assign the string value to a macro.

Class

TMacro

Syntax

property AsString: string;

Remarks

Use the AsString property to assign the string value to a macro. Read the AsString property to
determine the value of macro represented as a string.

© 1997-2012 Devart. All Rights Reserved.

Used to identify a particular macro.

Class

TMacro

Syntax

property Name: string;

Remarks

Use the Name property to identify a particular macro.

© 1997-2012 Devart. All Rights Reserved.

Used to set the value to a macro.

Class

TMacro

Syntax

property Value: string;

Remarks

Use the Value property to set the value to a macro.

© 1997-2012 Devart. All Rights Reserved.

307Data Access Components for MySQL

17.10.1.18 DBAccess.TMacros Class

Controls a list of TMacro objects for the TCustomDASQL.Macros or TCustomDADataSet components.
For a list of all members of this type, see TMacros members.

Unit

DBAccess

Syntax

TMacros = class(TCollection);

Remarks

Use TMacros to manage a list of TMacro objects for the TCustomDASQL or TCustomDADataSet
components.

Inheritance Hierarchy

TObject
 TMacros

See Also

 TMacro

© 1997-2012 Devart. All Rights Reserved.

TMacros class overview.

Properties

Name Description

Items Used to iterate through all the
macros parameters.

Methods

Name Description

AssignValues Copies the macros values and
properties from the specified
source.

Expand Changes the macros in the passed
SQL statement to their values.

FindMacro Searches for a TMacro object by its
name.

IsEqual Compares itself with another
TMacro object.

MacroByName Used to search for a macro with the
specified name.

Scan Creates a macros from the passed
SQL statement.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMacros class.
For a complete list of the TMacros class members, see the TMacros Members topic.

Public

Name Description

Items Used to iterate through all the
macros parameters.

See Also
 TMacros Class

Data Access Components for MySQL308

 TMacros Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to iterate through all the macros parameters.

Class

TMacros

Syntax

property Items[Index: integer]: TMacro; default;
Parameters

Index
Holds the index in the range 0..Count - 1.

Remarks

Use the Items property to iterate through all macros parameters. Index identifies the index in the range
0..Count - 1.

© 1997-2012 Devart. All Rights Reserved.

Methods of the TMacros class.
For a complete list of the TMacros class members, see the TMacros Members topic.

Public

Name Description

AssignValues Copies the macros values and
properties from the specified
source.

Expand Changes the macros in the passed
SQL statement to their values.

FindMacro Searches for a TMacro object by its
name.

IsEqual Compares itself with another
TMacro object.

MacroByName Used to search for a macro with the
specified name.

Scan Creates a macros from the passed
SQL statement.

See Also
 TMacros Class
 TMacros Class Members

© 1997-2012 Devart. All Rights Reserved.

Copies the macros values and properties from the specified source.

Class

TMacros

Syntax

procedure AssignValues(Value: TMacros);
Parameters

Value
Holds the source to copy the macros values and properties from.

Remarks

The Assign method copies the macros values and properties from the specified source. Macros are not

309Data Access Components for MySQL

recreated. Only the values of macros with matching names are assigned.

© 1997-2012 Devart. All Rights Reserved.

Searches for a TMacro object by its name.

Class

TMacros

Syntax

function FindMacro(const Value: string): TMacro;
Parameters

Value
Holds the value of a macro to search for.

Return Value

TMacro object if a match was found, nil otherwise.

Remarks

Call the FindMacro method to find a macro with the name passed in Value. If a match is found,
FindMacro returns the macro. Otherwise, it returns nil. Use this method rather than a direct reference to
the Items property to avoid depending on the order of the entries.

© 1997-2012 Devart. All Rights Reserved.

Compares itself with another TMacro object.

Class

TMacros

Syntax

function IsEqual(Value: TMacros): boolean;
Parameters

Value
Holds the values of TMacro objects.

Return Value

True, if the number of TMacro objects and the values of all TMacro objects are equal.

Remarks

Call the IsEqual method to compare itself with another TMacro object. Returns True if the number of
TMacro objects and the values of all TMacro objects are equal.

© 1997-2012 Devart. All Rights Reserved.

Used to search for a macro with the specified name.

Class

TMacros

Syntax

function MacroByName(const Value: string): TMacro;
Parameters

Value
Holds a name of the macro to search for.

Return Value

Data Access Components for MySQL310

TMacro object, if a macro with specified name was found.

Remarks

Call the MacroByName method to find a Macro with the name passed in Value. If a match is found,
MacroByName returns the Macro. Otherwise, an exception is raised. Use this method rather than a direct
reference to the Items property to avoid depending on the order of the entries.
To locate a macro by name without raising an exception if the parameter is not found, use the FindMacro
method.

© 1997-2012 Devart. All Rights Reserved.

Creates a macros from the passed SQL statement.

Class

TMacros

Syntax

procedure Scan(SQL: string);
Parameters

SQL
Holds the passed SQL statement.

Remarks

Call the Scan method to create a macros from the passed SQL statement. On that all existing TMacro
objects are cleared.

© 1997-2012 Devart. All Rights Reserved.

17.10.1.19 DBAccess.TPoolingOptions Class

This class allows setting up the behaviour of the connection pool.
For a list of all members of this type, see TPoolingOptions members.

Unit

DBAccess

Syntax

TPoolingOptions = class(TPersistent);

Inheritance Hierarchy

TObject
 TPoolingOptions

© 1997-2012 Devart. All Rights Reserved.

TPoolingOptions class overview.

Properties

Name Description

ConnectionLifetime Used to specify the maximum time
during which an opened connection
can be used by connection pool.

MaxPoolSize Used to specify the maximum
number of connections that can be
opened in connection pool.

MinPoolSize Used to specify the minimum
number of connections that can be
opened in the connection pool.

311Data Access Components for MySQL

Validate Used for a connection to be
validated when it is returned from
the pool.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TPoolingOptions class.
For a complete list of the TPoolingOptions class members, see the TPoolingOptions Members topic.

Published

Name Description

ConnectionLifetime Used to specify the maximum time
during which an opened connection
can be used by connection pool.

MaxPoolSize Used to specify the maximum
number of connections that can be
opened in connection pool.

MinPoolSize Used to specify the minimum
number of connections that can be
opened in the connection pool.

Validate Used for a connection to be
validated when it is returned from
the pool.

See Also
 TPoolingOptions Class
 TPoolingOptions Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify the maximum time during which an opened connection can be used by connection pool.

Class

TPoolingOptions

Syntax

property ConnectionLifetime: integer default 0;

Remarks

Use the ConnectionLifeTime property to specify the maximum time during which an opened connection
can be used by connection pool. Measured in milliseconds. Pool deletes connections with exceeded
connection lifetime when TCustomDAConnection is about to close. If the ConnectionLifetime property is
set to 0 (by default), then the lifetime of connection is infinity. ConnectionLifetime concerns only inactive
connections in the pool.

© 1997-2012 Devart. All Rights Reserved.

Used to specify the maximum number of connections that can be opened in connection pool.

Class

TPoolingOptions

Syntax

property MaxPoolSize: integer default 100;

Remarks

Specifies the maximum number of connections that can be opened in connection pool. Once this value is
reached, no more connections are opened. The valid values are 1 and higher.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL312

Used to specify the minimum number of connections that can be opened in the connection pool.

Class

TPoolingOptions

Syntax

property MinPoolSize: integer default 0;

Remarks

Use the MinPoolSize property to specify the minimum number of connections that can be opened in the
connection pool.

© 1997-2012 Devart. All Rights Reserved.

Used for a connection to be validated when it is returned from the pool.

Class

TPoolingOptions

Syntax

property Validate: boolean default False;

Remarks

If the Validate property is set to True, connection will be validated when it is returned from the pool. By
default this option is set to False and pool does not validate connection when it is returned to be used by
a TCustomDAConnection component.

© 1997-2012 Devart. All Rights Reserved.

313Data Access Components for MySQL

17.10.2 Types

Types in the DBAccess unit.

Types

Name Description

TAfterExecuteEvent This type is used for the
TCustomDADataSet.AfterExecute
and TCustomDASQL.AfterExecute
events.

TAfterFetchEvent This type is used for the
TCustomDADataSet.AfterFetch
event.

TBeforeFetchEvent This type is used for the
TCustomDADataSet.BeforeFetch
event.

TConnectionLostEvent This type is used for the
TCustomDAConnection.
OnConnectionLost event.

TDAConnectionErrorEvent This type is used for the
TCustomDAConnection.OnError
event.

TDATransactionErrorEvent This type is used for the
TDATransaction.OnError event.

TRefreshOptions Represents the set of
TRefreshOption.

TUpdateExecuteEvent This type is used for the
TCustomDADataSet.
AfterUpdateExecute and
TCustomDADataSet.
BeforeUpdateExecute events.

© 1997-2012 Devart. All Rights Reserved.

17.10.2.1 DBAccess.TAfterExecuteEvent Procedure Reference

This type is used for the TCustomDADataSet.AfterExecute and TCustomDASQL.AfterExecute events.

Unit

DBAccess

Syntax

TAfterExecuteEvent = procedure (Sender: TObject; Result: boolean)
of object;
Parameters

Sender
An object that raised the event.

Result
The result is True if SQL statement is executed successfully. False otherwise.

© 1997-2012 Devart. All Rights Reserved.

17.10.2.2 DBAccess.TAfterFetchEvent Procedure Reference

This type is used for the TCustomDADataSet.AfterFetch event.

Unit

DBAccess

Syntax

Data Access Components for MySQL314

TAfterFetchEvent = procedure (DataSet: TCustomDADataSet) of object
;
Parameters

DataSet
Holds the TCustomDADataSet descendant to synchronize the record position with.

© 1997-2012 Devart. All Rights Reserved.

17.10.2.3 DBAccess.TBeforeFetchEvent Procedure Reference

This type is used for the TCustomDADataSet.BeforeFetch event.

Unit

DBAccess

Syntax

TBeforeFetchEvent = procedure (DataSet: TCustomDADataSet; var
Cancel: boolean) of object;
Parameters

DataSet
Holds the TCustomDADataSet descendant to synchronize the record position with.

Cancel
True, if the current fetch operation should be aborted.

© 1997-2012 Devart. All Rights Reserved.

17.10.2.4 DBAccess.TConnectionLostEvent Procedure Reference

This type is used for the TCustomDAConnection.OnConnectionLost event.

Unit

DBAccess

Syntax

TConnectionLostEvent = procedure (Sender: TObject; Component:
TComponent; ConnLostCause: TConnLostCause; var RetryMode:
TRetryMode) of object;
Parameters

Sender
An object that raised the event.

Component

ConnLostCause
The reason of the connection loss.

RetryMode
The application behavior when connection is lost.

© 1997-2012 Devart. All Rights Reserved.

17.10.2.5 DBAccess.TDAConnectionErrorEvent Procedure Reference

This type is used for the TCustomDAConnection.OnError event.

Unit

DBAccess

Syntax

TDAConnectionErrorEvent = procedure (Sender: TObject; E: EDAError;
var Fail: boolean) of object;

315Data Access Components for MySQL

Parameters

Sender
An object that raised the event.

E
The error information.

Fail
False, if an error dialog should be prevented from being displayed and EAbort exception should be
raised to cancel current operation .

© 1997-2012 Devart. All Rights Reserved.

17.10.2.6 DBAccess.TDATransactionErrorEvent Procedure Reference

This type is used for the TDATransaction.OnError event.

Unit

DBAccess

Syntax

TDATransactionErrorEvent = procedure (Sender: TObject; E: EDAError
; var Fail: boolean) of object;
Parameters

Sender
An object that raised the event.

E
The error code.

Fail
False, if an error dialog should be prevented from being displayed and EAbort exception to cancel the
current operation should be raised.

© 1997-2012 Devart. All Rights Reserved.

17.10.2.7 DBAccess.TRefreshOptions Set

Represents the set of TRefreshOption.

Unit

DBAccess

Syntax

TRefreshOptions = set of TRefreshOption;

© 1997-2012 Devart. All Rights Reserved.

17.10.2.8 DBAccess.TUpdateExecuteEvent Procedure Reference

This type is used for the TCustomDADataSet.AfterUpdateExecute and TCustomDADataSet.
BeforeUpdateExecute events.

Unit

DBAccess

Syntax

TUpdateExecuteEvent = procedure (Sender: TDataSet; StatementTypes:
TStatementTypes; Params: TDAParams) of object;
Parameters

Sender
An object that raised the event.

StatementTypes

Data Access Components for MySQL316

Holds the type of the SQL statement being executed.

Params
Holds the parameters with which the SQL statement will be executed.

© 1997-2012 Devart. All Rights Reserved.

317Data Access Components for MySQL

17.10.3 Enumerations

Enumerations in the DBAccess unit.

Enumerations

Name Description

TLabelSet Sets the languauge of labels in the
connect dialog.

TLockMode This enumeration defines a type of
an editing record locking.

TRefreshOption Indicates when the editing record
will be refreshed.

TRetryMode Specifies the application behavior
when connection is lost.

© 1997-2012 Devart. All Rights Reserved.

17.10.3.1 DBAccess.TLabelSet Enumeration

Sets the languauge of labels in the connect dialog.

Unit

DBAccess

Syntax

TLabelSet = (lsCustom, lsEnglish, lsFrench, lsGerman, lsItalian,
lsPolish, lsPortuguese, lsRussian, lsSpanish);

Values

Value Meaning

lsCustom Set the language of labels in the connect dialog manually.

lsEnglish Set English as the language of labels in the connect dialog.

lsFrench Set French as the language of labels in the connect dialog.

lsGerman Set German as the language of labels in the connect dialog.

lsItalian Set Italian as the language of labels in the connect dialog.

lsPolish Set Polish as the language of labels in the connect dialog.

lsPortuguese Set Portuguese as the language of labels in the connect dialog.

lsRussian Set Russian as the language of labels in the connect dialog.

lsSpanish Set Spanish as the language of labels in the connect dialog.

© 1997-2012 Devart. All Rights Reserved.

17.10.3.2 DBAccess.TLockMode Enumeration

This enumeration defines a type of an editing record locking.

Unit

DBAccess

Syntax

TLockMode = (lmNone, lmPessimistic, lmOptimistic);

Values

Value Meaning

lmNone No locking is performed. This should only be used in single user
applications. The default value.

lmOptimistic Locking is performed when user posts an edited record. After this the lock
is released. Locking is performed by the RefreshRecord method.

Data Access Components for MySQL318

lmPessimistic Locking is performed when the user starts editing a record. The lock
remains until the user posts or cancels the changes.

© 1997-2012 Devart. All Rights Reserved.

17.10.3.3 DBAccess.TRefreshOption Enumeration

Indicates when the editing record will be refreshed.

Unit

DBAccess

Syntax

TRefreshOption = (roAfterInsert, roAfterUpdate, roBeforeEdit);

Values

Value Meaning

roAfterInsert Refresh is performed after inserting.

roAfterUpdate Refresh is performed after updating.

roBeforeEdit Refresh is performed by Edit method.

© 1997-2012 Devart. All Rights Reserved.

17.10.3.4 DBAccess.TRetryMode Enumeration

Specifies the application behavior when connection is lost.

Unit

DBAccess

Syntax

TRetryMode = (rmRaise, rmReconnect, rmReconnectExecute);

Values

Value Meaning

rmRaise An exception is raised.

rmReconnect Reconnect is performed and then exception is raised.

rmReconnectExecute Reconnect is performed and abortive operation is reexecuted. Exception is
not raised.

© 1997-2012 Devart. All Rights Reserved.

319Data Access Components for MySQL

17.10.4 Variables

Variables in the DBAccess unit.

Variables

Name Description

BaseSQLOldBehavior After assigning SQL text and
modifying it by AddWhere,
DeleteWhere, and SetOrderBy, all
subsequent changes of the SQL
property will not be reflected in the
BaseSQL property.

ChangeCursor When set to True allows data access
components to change screen
cursor for the execution time.

MacroChar Determinates what character is
used for macros.

SQLGeneratorCompatibility The value of the
TCustomDADataSet.BaseSQL
property is used to complete the
refresh SQL statement, if the
manually assigned
TCustomDAUpdateSQL.RefreshSQL
property contains only WHERE
clause.

© 1997-2012 Devart. All Rights Reserved.

17.10.4.1 DBAccess.BaseSQLOldBehavior Variable

After assigning SQL text and modifying it by AddWhere, DeleteWhere, and SetOrderBy, all subsequent
changes of the SQL property will not be reflected in the BaseSQL property.

Unit

DBAccess

Syntax

BaseSQLOldBehavior: boolean;

Remarks

The BaseSQL property is similar to the SQL property, but it does not store changes made by the
AddWhere, DeleteWhere, and SetOrderBy methods. After assigning SQL text and modifying it by one of
these methods, all subsequent changes of the SQL property will not be reflected in the BaseSQL
property. This behavior was changed in MyDAC 4.00.2.8. To restore old behavior, set the
BaseSQLOldBehavior variable to True.

© 1997-2012 Devart. All Rights Reserved.

17.10.4.2 DBAccess.ChangeCursor Variable

When set to True allows data access components to change screen cursor for the execution time.

Unit

DBAccess

Syntax

ChangeCursor: boolean;

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL320

17.10.4.3 DBAccess.MacroChar Variable

Determinates what character is used for macros.

Unit

DBAccess

Syntax

MacroChar: _char;

© 1997-2012 Devart. All Rights Reserved.

17.10.4.4 DBAccess.SQLGeneratorCompatibility Variable

The value of the TCustomDADataSet.BaseSQL property is used to complete the refresh SQL statement, if
the manually assigned TCustomDAUpdateSQL.RefreshSQL property contains only WHERE clause.

Unit

DBAccess

Syntax

SQLGeneratorCompatibility: boolean;

Remarks

If the manually assigned TCustomDAUpdateSQL.RefreshSQL property contains only WHERE clause,
MyDAC uses the value of the TCustomDADataSet.BaseSQL property to complete the refresh SQL
statement. In this situation all modifications applied to the SELECT query by functions
TCustomDADataSet.AddWhere, TCustomDADataSet.DeleteWhere are not taken into account. This
behavior was changed in MyDAC 5.00.0.4. To restore the old behavior, set the BaseSQLOldBehavior
variable to True.

© 1997-2012 Devart. All Rights Reserved.

321Data Access Components for MySQL

17.11 Devart.Dac.DataAdapter

This unit contains implementation of the DADataAdapter class.

Classes

Name Description

DADataAdapter DataAdapter serves as a bridge
between a System.Data.DataSet
and a TDataSet component (data
source) for retrieving and saving
data.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL322

17.11.1 Classes

Classes in the Devart.Dac.DataAdapter unit.

Classes

Name Description

DADataAdapter DataAdapter serves as a bridge
between a System.Data.DataSet
and a TDataSet component (data
source) for retrieving and saving
data.

© 1997-2012 Devart. All Rights Reserved.

17.11.1.1 Devart.Dac.DataAdapter.DADataAdapter Class

DataAdapter serves as a bridge between a System.Data.DataSet and a TDataSet component (data
source) for retrieving and saving data.
For a list of all members of this type, see DADataAdapter members.

Unit

Devart.Dac.DataAdapter

Syntax

DADataAdapter = class(TComponent);

Remarks

DataAdapter serves as a bridge between a System.Data.DataSet and a TDataSet component (data
source) for retrieving and saving data. DataAdapter provides this bridge by mapping DADataAdapter.Fill,
which changes the data in the System.Data.DataSet to match the data in the data source, and
DADataAdapter.Update, which changes the data in the data source to match the data in the System.
Data.DataSet.

Inheritance Hierarchy

TObject
 DADataAdapter

© 1997-2012 Devart. All Rights Reserved.

DADataAdapter class overview.

Properties

Name Description

DataSet Used to specify a TDataSet object
which will be used as data source
for DADataAdapter component.

Methods

Name Description

Fill Adds or refreshes rows in the
System.Data.DataSet to match
those in the TDataSet and creates a
DataTable.

Update Performs Insert, Edit, Delete for
each inserted, updated, or deleted
row in the specified System.Data.
DataSet due to the ordering of the
rows in the DataTable.

© 1997-2012 Devart. All Rights Reserved.

323Data Access Components for MySQL

Properties of the DADataAdapter class.
For a complete list of the DADataAdapter class members, see the DADataAdapter Members topic.

Public

Name Description

DataSet Used to specify a TDataSet object
which will be used as data source
for DADataAdapter component.

See Also
 DADataAdapter Class
 DADataAdapter Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify a TDataSet object which will be used as data source for DADataAdapter component.

Class

DADataAdapter

Syntax

property DataSet: TDataSet;

Remarks

Specify a TDataSet object which will be used as data source for DADataAdapter component.

© 1997-2012 Devart. All Rights Reserved.

Methods of the DADataAdapter class.
For a complete list of the DADataAdapter class members, see the DADataAdapter Members topic.

Public

Name Description

Fill Adds or refreshes rows in the
System.Data.DataSet to match
those in the TDataSet and creates a
DataTable.

Update Performs Insert, Edit, Delete for
each inserted, updated, or deleted
row in the specified System.Data.
DataSet due to the ordering of the
rows in the DataTable.

See Also
 DADataAdapter Class
 DADataAdapter Class Members

© 1997-2012 Devart. All Rights Reserved.

Adds or refreshes rows in the System.Data.DataSet to match those in the TDataSet and creates a
DataTable.

Class

DADataAdapter

Syntax

function Fill(Data: DataSet; tableName: string): integer;
Parameters

Data
holds the dataset updates of which are to be commented to the database.

Data Access Components for MySQL324

tableName
holds the name of the DataTable.

Return Value

the number of rows successfully inserted into DataSet.

Remarks

Adds or refreshes rows in the System.Data.DataSet to match those in the TDataSet using the DataSet
parameter, and creates a DataTable named tableName. Function returns the number of rows
successfully inserted into DataSet.
TDataSet object associated with DADataAdapter must be valid, but it does not need to be opened. If
TDataSet is closed before Fill is called, it is opened to retrieve data, then closed. If TDataSet is opened
before Fill is called, it remains opened.
If an error is encountered while populating the dataset, rows added prior to the occurrence of the error
remain in the dataset. The remainder of the operation is aborted.
If TDataSet does not return any rows, fields are created and no rows are added to the DataSet, and no
exception is raised.

See Also

 Update

© 1997-2012 Devart. All Rights Reserved.

Performs Insert, Edit, Delete for each inserted, updated, or deleted row in the specified System.Data.
DataSet due to the ordering of the rows in the DataTable.

Class

DADataAdapter

Syntax

function Update(Data: DataSet; tableName: string): integer;
Parameters

Data
holds the dataset updates of which are to be commented to the database.

tableName
holds the name of the DataTable.

Return Value

the number of rows successfully updated from the DataSet.

Remarks

Performs Insert, Edit, Delete for each inserted, updated, or deleted row in the specified System.Data.
DataSet due to the ordering of the rows in the DataTable. It should be noted that these statements are
not performed as a batch process; each row is updated individually. Function returns the number of rows
successfully updated from the DataSet.

See Also

 Fill

© 1997-2012 Devart. All Rights Reserved.

325Data Access Components for MySQL

17.12 Devart.MyDac.DataAdapter

This unit contains implementation of the MyDataAdapter class.

Classes

Name Description

MyDataAdapter A class for using with
TCustomMyDataSet components
and as data source for retrieving
and saving data.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL326

17.12.1 Classes

Classes in the Devart.MyDac.DataAdapter unit.

Classes

Name Description

MyDataAdapter A class for using with
TCustomMyDataSet components
and as data source for retrieving
and saving data.

© 1997-2012 Devart. All Rights Reserved.

17.12.1.1 Devart.MyDac.DataAdapter.MyDataAdapter Class

A class for using with TCustomMyDataSet components and as data source for retrieving and saving data.
For a list of all members of this type, see MyDataAdapter members.

Unit

Devart.MyDac.DataAdapter

Syntax

MyDataAdapter = class(DADataAdapter);

Remarks

The MyDataAdapter class is designed for using with TCustomMyDataSet components and as data source
for retrieving and saving data. MyDataAdapter provides this bridge by mapping DADataAdapter.Fill,
which changes the data in the System.Data.DataSet to match the data in the data source, and
DADataAdapter.Update, which changes the data in the data source to match the data in the System.
Data.DataSet.

Inheritance Hierarchy

TObject
 DADataAdapter
 MyDataAdapter

See Also

 DADataAdapter

© 1997-2012 Devart. All Rights Reserved.

MyDataAdapter class overview.

Properties

Name Description

DataSet (inherited from DADataAdapter) Used to specify a TDataSet object
which will be used as data source
for DADataAdapter component.

Methods

Name Description

Fill (inherited from DADataAdapter) Adds or refreshes rows in the
System.Data.DataSet to match
those in the TDataSet and creates a
DataTable.

327Data Access Components for MySQL

Update (inherited from DADataAdapter) Performs Insert, Edit, Delete for
each inserted, updated, or deleted
row in the specified System.Data.
DataSet due to the ordering of the
rows in the DataTable.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL328

17.13 MemData

This unit contains classes for storing data in memory.

Classes

Name Description

TAttribute TAttribute is not used in MyDAC.

TBlob Holds large object value for field
and parameter dtBlob, dtMemo data
types.

TCompressedBlob Holds large object value for field
and parameter dtBlob, dtMemo data
types and can compress its data.

TDBObject A base class for classes that work
with user-defined data types that
have attributes.

TObjectType This class is not used.

TSharedObject A base class that allows to simplify
memory management for object
referenced by several other objects.

Types

Name Description

TLocateExOptions Represents the set of
TLocateExOption.

TUpdateRecKinds Represents the set of
TUpdateRecKind.

Enumerations

Name Description

TConnLostCause Specifies the cause of the
connection loss.

TDANumericType Specifies the format of storing and
representing of the NUMERIC
(DECIMAL) fields.

TLocateExOption Allows to set additional search
parameters which will be used by
the LocateEx method.

TSortType Specifies a sort type for string
fields.

TUpdateRecKind Indicates records for which the
ApplyUpdates method will be
performed.

© 1997-2012 Devart. All Rights Reserved.

329Data Access Components for MySQL

17.13.1 Classes

Classes in the MemData unit.

Classes

Name Description

TAttribute TAttribute is not used in MyDAC.

TBlob Holds large object value for field
and parameter dtBlob, dtMemo data
types.

TCompressedBlob Holds large object value for field
and parameter dtBlob, dtMemo data
types and can compress its data.

TDBObject A base class for classes that work
with user-defined data types that
have attributes.

TObjectType This class is not used.

TSharedObject A base class that allows to simplify
memory management for object
referenced by several other objects.

© 1997-2012 Devart. All Rights Reserved.

17.13.1.1 MemData.TAttribute Class

TAttribute is not used in MyDAC.
For a list of all members of this type, see TAttribute members.

Unit

MemData

Syntax

TAttribute = class(System.TObject);

Inheritance Hierarchy

TObject
 TAttribute

© 1997-2012 Devart. All Rights Reserved.

TAttribute class overview.

Properties

Name Description

AttributeNo Returns an attribute's ordinal
position in object.

DataSize Returns the size of an attribute
value in internal representation.

DataType Returns the type of data that was
assigned to the Attribute.

Length Returns the length of the string for
dtString attribute and precision for
dtInteger and dtFloat attribute.

ObjectType Returns a TObjectType object for an
object attribute.

Offset Returns an offset of the attribute
value in internal representation.

Owner Indicates TObjectType that uses the
attribute to represent one of its
attributes.

Data Access Components for MySQL330

Scale Returns the scale of dtFloat and
dtInteger attributes.

Size Returns the size of an attribute
value in external representation.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TAttribute class.
For a complete list of the TAttribute class members, see the TAttribute Members topic.

Public

Name Description

AttributeNo Returns an attribute's ordinal
position in object.

DataSize Returns the size of an attribute
value in internal representation.

DataType Returns the type of data that was
assigned to the Attribute.

Length Returns the length of the string for
dtString attribute and precision for
dtInteger and dtFloat attribute.

ObjectType Returns a TObjectType object for an
object attribute.

Offset Returns an offset of the attribute
value in internal representation.

Owner Indicates TObjectType that uses the
attribute to represent one of its
attributes.

Scale Returns the scale of dtFloat and
dtInteger attributes.

Size Returns the size of an attribute
value in external representation.

See Also
 TAttribute Class
 TAttribute Class Members

© 1997-2012 Devart. All Rights Reserved.

Returns an attribute's ordinal position in object.

Class

TAttribute

Syntax

property AttributeNo: Word;

Remarks

Use the AttributeNo property to learn an attribute's ordinal position in object, where 1 is the first field.

See Also

 TObjectType.Attributes

© 1997-2012 Devart. All Rights Reserved.

331Data Access Components for MySQL

Returns the size of an attribute value in internal representation.

Class

TAttribute

Syntax

property DataSize: Integer;

Remarks

Use the DataSize property to learn the size of an attribute value in internal representation.

© 1997-2012 Devart. All Rights Reserved.

Returns the type of data that was assigned to the Attribute.

Class

TAttribute

Syntax

property DataType: Word;

Remarks

Use the DataType property to discover the type of data that was assigned to the Attribute.
Possible values: dtDate, dtFloat, dtInteger, dtString, dtObject.

© 1997-2012 Devart. All Rights Reserved.

Returns the length of the string for dtString attribute and precision for dtInteger and dtFloat attribute.

Class

TAttribute

Syntax

property Length: Word;

Remarks

Use the Length property to learn the length of the string for dtString attribute and precision for dtInteger
and dtFloat attribute.

See Also

 Scale

© 1997-2012 Devart. All Rights Reserved.

Returns a TObjectType object for an object attribute.

Class

TAttribute

Syntax

property ObjectType: TObjectType;

Remarks

Use the ObjectType property to return a TObjectType object for an object attribute.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL332

Returns an offset of the attribute value in internal representation.

Class

TAttribute

Syntax

property Offset: Integer;

Remarks

Use the DataSize property to learn an offset of the attribute value in internal representation.

© 1997-2012 Devart. All Rights Reserved.

Indicates TObjectType that uses the attribute to represent one of its attributes.

Class

TAttribute

Syntax

property Owner: TObjectType;

Remarks

Check the value of the Owner property to determine TObjectType that uses the attribute to represent
one of its attributes. Applications should not assign the Owner property directly.

© 1997-2012 Devart. All Rights Reserved.

Returns the scale of dtFloat and dtInteger attributes.

Class

TAttribute

Syntax

property Scale: Word;

Remarks

Use the Scale property to learn the scale of dtFloat and dtInteger attributes.

See Also

 Length

© 1997-2012 Devart. All Rights Reserved.

Returns the size of an attribute value in external representation.

Class

TAttribute

Syntax

property Size: Integer;

Remarks

Read Size to learn the size of an attribute value in external representation.
For example:

dtDate
8 (sizeof
(TDateTime)

dtFloat 8 (sizeof(Double))

333Data Access Components for MySQL

dtInteger 4 (sizeof(Integer))

See Also

 DataSize

© 1997-2012 Devart. All Rights Reserved.

17.13.1.2 MemData.TBlob Class

Holds large object value for field and parameter dtBlob, dtMemo data types.
For a list of all members of this type, see TBlob members.

Unit

MemData

Syntax

TBlob = class(TSharedObject);

Remarks

Object TBlob holds large object value for the field and parameter dtBlob, dtMemo, dtWideMemo data
types.

Inheritance Hierarchy

TObject
 TSharedObject
 TBlob

See Also

 TBlob in Delphi Help
 TMemDataSet.GetBlob

© 1997-2012 Devart. All Rights Reserved.

TBlob class overview.

Properties

Name Description

AsString Used to manipulate BLOB value as
string.

AsWideString Used to manipulate BLOB value as
Unicode string.

IsUnicode Gives choice of making TBlob store
and process data in Unicode format
or not.

RefCount (inherited from TSharedObject) Used to return the count of
reference to a TSharedObject
object.

Size Used to learn the size of the TBlob
value in bytes.

Methods

Name Description

AddRef (inherited from TSharedObject) Increments the reference count for
the number of references
dependent on the TSharedObject
object.

Data Access Components for MySQL334

Assign Sets BLOB value from another
TBlob object.

Clear Deletes the current value in TBlob
object.

LoadFromFile Loads the contents of a file into a
TBlob object.

LoadFromStream Copies the contents of a stream into
the TBlob object.

Read Acquires a raw sequence of bytes
from the data stored in TBlob.

Release (inherited from TSharedObject) Decrements the reference count.

SaveToFile Saves the contents of the TBlob
object to a file.

SaveToStream Copies the contents of a TBlob
object to a stream.

Truncate Sets new TBlob size and discards all
data over it.

Write Stores a raw sequence of bytes into
a TBlob object.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TBlob class.
For a complete list of the TBlob class members, see the TBlob Members topic.

Public

Name Description

AddRef (inherited from TSharedObject) Increments the reference count for
the number of references
dependent on the TSharedObject
object.

AsString Used to manipulate BLOB value as
string.

AsWideString Used to manipulate BLOB value as
Unicode string.

IsUnicode Gives choice of making TBlob store
and process data in Unicode format
or not.

RefCount (inherited from TSharedObject) Used to return the count of
reference to a TSharedObject
object.

Release (inherited from TSharedObject) Decrements the reference count.

Size Used to learn the size of the TBlob
value in bytes.

See Also
 TBlob Class
 TBlob Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to manipulate BLOB value as string.

Class

TBlob

Syntax

property AsString: string;

Remarks

335Data Access Components for MySQL

Use the AsString property to manipulate BLOB value as string.

See Also

 Assign
 AsWideString

© 1997-2012 Devart. All Rights Reserved.

Used to manipulate BLOB value as Unicode string.

Class

TBlob

Syntax

property AsWideString: string;

Remarks

Use the AsWideString property to manipulate BLOB value as Unicode string.

See Also

 Assign
 AsString

© 1997-2012 Devart. All Rights Reserved.

Gives choice of making TBlob store and process data in Unicode format or not.

Class

TBlob

Syntax

property IsUnicode: boolean;

Remarks

Set IsUnicode to True if you want TBlob to store and process data in Unicode format.
Note: changing this property raises an exception if TBlob is not empty.

© 1997-2012 Devart. All Rights Reserved.

Used to learn the size of the TBlob value in bytes.

Class

TBlob

Syntax

property Size: Cardinal;

Remarks

Use the Size property to find out the size of the TBlob value in bytes.

© 1997-2012 Devart. All Rights Reserved.

Methods of the TBlob class.
For a complete list of the TBlob class members, see the TBlob Members topic.

Public

Data Access Components for MySQL336

Name Description

AddRef (inherited from TSharedObject) Increments the reference count for
the number of references
dependent on the TSharedObject
object.

Assign Sets BLOB value from another
TBlob object.

Clear Deletes the current value in TBlob
object.

LoadFromFile Loads the contents of a file into a
TBlob object.

LoadFromStream Copies the contents of a stream into
the TBlob object.

Read Acquires a raw sequence of bytes
from the data stored in TBlob.

RefCount (inherited from TSharedObject) Used to return the count of
reference to a TSharedObject
object.

Release (inherited from TSharedObject) Decrements the reference count.

SaveToFile Saves the contents of the TBlob
object to a file.

SaveToStream Copies the contents of a TBlob
object to a stream.

Truncate Sets new TBlob size and discards all
data over it.

Write Stores a raw sequence of bytes into
a TBlob object.

See Also
 TBlob Class
 TBlob Class Members

© 1997-2012 Devart. All Rights Reserved.

Sets BLOB value from another TBlob object.

Class

TBlob

Syntax

procedure Assign(Source: TBlob);
Parameters

Source
Holds the BLOB from which the value to the current object will be assigned.

Remarks

Call the Assign method to set BLOB value from another TBlob object.

See Also

 LoadFromStream
 AsString
 AsWideString

© 1997-2012 Devart. All Rights Reserved.

337Data Access Components for MySQL

Deletes the current value in TBlob object.

Class

TBlob

Syntax

procedure Clear; virtual;

Remarks

Call the Clear method to delete the current value in TBlob object.

© 1997-2012 Devart. All Rights Reserved.

Loads the contents of a file into a TBlob object.

Class

TBlob

Syntax

procedure LoadFromFile(const FileName: string);
Parameters

FileName
Holds the name of the file from which the TBlob value is loaded.

Remarks

Call the LoadFromFile method to load the contents of a file into a TBlob object. Specify the name of the
file to load into the field as the value of the FileName parameter.

See Also

 SaveToFile

© 1997-2012 Devart. All Rights Reserved.

Copies the contents of a stream into the TBlob object.

Class

TBlob

Syntax

procedure LoadFromStream(Stream: TStream); virtual;
Parameters

Stream
Holds the specified stream from which the field's value is copied.

Remarks

Call the LoadFromStream method to copy the contents of a stream into the TBlob object. Specify the
stream from which the field's value is copied as the value of the Stream parameter.

See Also

 SaveToStream

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL338

Acquires a raw sequence of bytes from the data stored in TBlob.

Class

TBlob

Syntax

function Read(Position: Cardinal; Count: Cardinal; Dest: IntPtr):
Cardinal; virtual;
Parameters

Position
Holds the starting point of the byte sequence.

Count
Holds the size of the sequence in bytes.

Dest
Holds a pointer to the memory area where to store the sequence.

Return Value

Actually read byte count if the sequence crosses object size limit.

Remarks

Call the Read method to acquire a raw sequence of bytes from the data stored in TBlob.
The Position parameter is the starting point of byte sequence which lasts Count number of bytes. The
Dest parameter is a pointer to the memory area where to store the sequence.
If the sequence crosses object size limit, function will return actually read byte count.

See Also

 Write

© 1997-2012 Devart. All Rights Reserved.

Saves the contents of the TBlob object to a file.

Class

TBlob

Syntax

procedure SaveToFile(const FileName: string);
Parameters

FileName
Holds a string that contains the name of the file.

Remarks

Call the SaveToFile method to save the contents of the TBlob object to a file. Specify the name of the file
as the value of the FileName parameter.

See Also

 LoadFromFile

© 1997-2012 Devart. All Rights Reserved.

Copies the contents of a TBlob object to a stream.

Class

TBlob

339Data Access Components for MySQL

Syntax

procedure SaveToStream(Stream: TStream); virtual;
Parameters

Stream
Holds the name of the stream.

Remarks

Call the SaveToStream method to copy the contents of a TBlob object to a stream. Specify the name of
the stream to which the field's value is saved as the value of the Stream parameter.

See Also

 LoadFromStream

© 1997-2012 Devart. All Rights Reserved.

Sets new TBlob size and discards all data over it.

Class

TBlob

Syntax

procedure Truncate(NewSize: Cardinal); virtual;
Parameters

NewSize
Holds the new size of TBlob.

Remarks

Call the Truncate method to set new TBlob size and discard all data over it. If NewSize is greater or
equal TBlob.Size, it does nothing.

© 1997-2012 Devart. All Rights Reserved.

Stores a raw sequence of bytes into a TBlob object.

Class

TBlob

Syntax

procedure Write(Position: Cardinal; Count: Cardinal; Source:
IntPtr); virtual;
Parameters

Position
Holds the starting point of the byte sequence.

Count
Holds the size of the sequence in bytes.

Source
Holds a pointer to a source memory area.

Remarks

Call the Write method to store a raw sequence of bytes into a TBlob object.
The Position parameter is the starting point of byte sequence which lasts Count number of bytes. The
Source parameter is a pointer to a source memory area.
If the value of the Position parameter crosses current size limit of TBlob object, source data will be
appended to the object data.

Data Access Components for MySQL340

See Also

 Read

© 1997-2012 Devart. All Rights Reserved.

17.13.1.3 MemData.TCompressedBlob Class

Holds large object value for field and parameter dtBlob, dtMemo data types and can compress its data.
For a list of all members of this type, see TCompressedBlob members.

Unit

MemData

Syntax

TCompressedBlob = class(TBlob);

Remarks

TCompressedBlob is a descendant of the TBlob class. It holds large object value for field and parameter
dtBlob, dtMemo data types and can compress its data. For more information about using BLOB
compression see TCustomDADataSet.Options.
Note: Internal compression functions are available in CodeGear Delphi 2007 for Win32, Borland
Developer Studio 2006, Borland Delphi 2005, Borland Delphi 8 (for .NET) and Borland Delphi 7. To use
BLOB compression under Borland Delphi 6, Borland Delphi 5 and Borland C++ Builder you should use
your own compression functions. To use them set the CompressProc and UncompressProc variables
declared in the MemUtils unit.

Example

type
 TCompressProc = function(dest: IntPtr; destLen: IntPtr; const source: IntPtr; sourceLen: longint): longint;
 TUncompressProc = function(dest: IntPtr; destlen: IntPtr; source: IntPtr; sourceLne: longint): longint;
var
 CompressProc: TCompressProc;
 UncompressProc: TUncompressProc;

Inheritance Hierarchy

TObject
 TSharedObject
 TBlob
 TCompressedBlob

See Also


TBlob

 TMemDataSet.GetBlob

 TCustomDADataSet.Options

© 1997-2012 Devart. All Rights Reserved.

TCompressedBlob class overview.

Properties

Name Description

AsString (inherited from TBlob) Used to manipulate BLOB value as
string.

AsWideString (inherited from TBlob) Used to manipulate BLOB value as
Unicode string.

341Data Access Components for MySQL

IsUnicode (inherited from TBlob) Gives choice of making TBlob store
and process data in Unicode format
or not.

RefCount (inherited from TSharedObject) Used to return the count of
reference to a TSharedObject
object.

Size (inherited from TBlob) Used to learn the size of the TBlob
value in bytes.

Methods

Name Description

AddRef (inherited from TSharedObject) Increments the reference count for
the number of references
dependent on the TSharedObject
object.

Assign (inherited from TBlob) Sets BLOB value from another
TBlob object.

Clear (inherited from TBlob) Deletes the current value in TBlob
object.

LoadFromFile (inherited from TBlob) Loads the contents of a file into a
TBlob object.

LoadFromStream (inherited from TBlob) Copies the contents of a stream into
the TBlob object.

Read (inherited from TBlob) Acquires a raw sequence of bytes
from the data stored in TBlob.

Release (inherited from TSharedObject) Decrements the reference count.

SaveToFile (inherited from TBlob) Saves the contents of the TBlob
object to a file.

SaveToStream (inherited from TBlob) Copies the contents of a TBlob
object to a stream.

Truncate (inherited from TBlob) Sets new TBlob size and discards all
data over it.

Write (inherited from TBlob) Stores a raw sequence of bytes into
a TBlob object.

© 1997-2012 Devart. All Rights Reserved.

17.13.1.4 MemData.TDBObject Class

A base class for classes that work with user-defined data types that have attributes.
For a list of all members of this type, see TDBObject members.

Unit

MemData

Syntax

TDBObject = class(TSharedObject);

Remarks

TDBObject is a base class for classes that work with user-defined data types that have attributes.

Inheritance Hierarchy

TObject
 TSharedObject
 TDBObject

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL342

TDBObject class overview.

Properties

Name Description

RefCount (inherited from TSharedObject) Used to return the count of
reference to a TSharedObject
object.

Methods

Name Description

AddRef (inherited from TSharedObject) Increments the reference count for
the number of references
dependent on the TSharedObject
object.

Release (inherited from TSharedObject) Decrements the reference count.

© 1997-2012 Devart. All Rights Reserved.

17.13.1.5 MemData.TObjectType Class

This class is not used.
For a list of all members of this type, see TObjectType members.

Unit

MemData

Syntax

TObjectType = class(TSharedObject);

Inheritance Hierarchy

TObject
 TSharedObject
 TObjectType

© 1997-2012 Devart. All Rights Reserved.

TObjectType class overview.

Properties

Name Description

AttributeCount Used to indicate the number of
attributes of type.

Attributes Used to access separate attributes.

DataType Used to indicate the type of object
dtObject, dtArray or dtTable.

RefCount (inherited from TSharedObject) Used to return the count of
reference to a TSharedObject
object.

Size Used to learn the size of an object
instance.

Methods

Name Description

AddRef (inherited from TSharedObject) Increments the reference count for
the number of references
dependent on the TSharedObject
object.

AttributeByName Retrieves attribute information for
an attribute when only the
attribute's name is known.

343Data Access Components for MySQL

FindAttribute Indicates whether a specified
Attribute component is referenced
in the TAttributes object.

Release (inherited from TSharedObject) Decrements the reference count.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TObjectType class.
For a complete list of the TObjectType class members, see the TObjectType Members topic.

Public

Name Description

AddRef (inherited from TSharedObject) Increments the reference count for
the number of references
dependent on the TSharedObject
object.

AttributeCount Used to indicate the number of
attributes of type.

Attributes Used to access separate attributes.

DataType Used to indicate the type of object
dtObject, dtArray or dtTable.

RefCount (inherited from TSharedObject) Used to return the count of
reference to a TSharedObject
object.

Release (inherited from TSharedObject) Decrements the reference count.

Size Used to learn the size of an object
instance.

See Also
 TObjectType Class
 TObjectType Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to indicate the number of attributes of type.

Class

TObjectType

Syntax

property AttributeCount: Integer;

Remarks

Use the AttributeCount property to determine the number of attributes of type.

© 1997-2012 Devart. All Rights Reserved.

Used to access separate attributes.

Class

TObjectType

Syntax

property Attributes[Index: integer]: TAttribute;
Parameters

Index
Holds the attribute's ordinal position.

Remarks

Data Access Components for MySQL344

Use the Attributes property to access individual attributes. The value of the Index parameter
corresponds to the AttributeNo property of TAttribute.

See Also

 TAttribute
 FindAttribute

© 1997-2012 Devart. All Rights Reserved.

Used to indicate the type of object dtObject, dtArray or dtTable.

Class

TObjectType

Syntax

property DataType: Word;

Remarks

Use the DataType property to determine the type of object dtObject, dtArray or dtTable.

See Also

 MemData

© 1997-2012 Devart. All Rights Reserved.

Used to learn the size of an object instance.

Class

TObjectType

Syntax

property Size: Integer;

Remarks

Use the Size property to find out the size of an object instance. Size is a sum of all attribute sizes.

See Also

 TAttribute.Size

© 1997-2012 Devart. All Rights Reserved.

Methods of the TObjectType class.
For a complete list of the TObjectType class members, see the TObjectType Members topic.

Public

Name Description

AddRef (inherited from TSharedObject) Increments the reference count for
the number of references
dependent on the TSharedObject
object.

AttributeByName Retrieves attribute information for
an attribute when only the
attribute's name is known.

345Data Access Components for MySQL

FindAttribute Indicates whether a specified
Attribute component is referenced
in the TAttributes object.

RefCount (inherited from TSharedObject) Used to return the count of
reference to a TSharedObject
object.

Release (inherited from TSharedObject) Decrements the reference count.

See Also
 TObjectType Class
 TObjectType Class Members

© 1997-2012 Devart. All Rights Reserved.

Retrieves attribute information for an attribute when only the attribute's name is known.

Class

TObjectType

Syntax

function AttributeByName(Name: string): TAttribute;
Parameters

Name
Holds the name of an existing attribute.

Return Value

a TAttibute object for the specified attribute. Otherwise an exception is raised.

Remarks

Call the AttributeByName method to retrieve attribute information for an attribute when only the
attribute's name is known. Name is the name of an existing Attribute. AttributeByName returns a
TAttibute object for the specified attribute. If the attribute can not be found, an exception is raised.

See Also

 TAttribute
 FindAttribute
 Attributes

© 1997-2012 Devart. All Rights Reserved.

Indicates whether a specified Attribute component is referenced in the TAttributes object.

Class

TObjectType

Syntax

function FindAttribute(Name: string): TAttribute;
Parameters

Name
Holds the name of the attribute to search for.

Return Value

TAttribute, if an attribute with a matching name was found. Nil Otherwise.

Remarks

Call FindAttribute to determine if a specified Attribute component is referenced in the TAttributes object.
Name is the name of the Attribute for which to search. If FindAttribute finds an Attribute with a matching

Data Access Components for MySQL346

name, it returns the TAttribute. Otherwise it returns nil.

See Also

 TAttribute
 AttributeByName
 Attributes

© 1997-2012 Devart. All Rights Reserved.

17.13.1.6 MemData.TSharedObject Class

A base class that allows to simplify memory management for object referenced by several other objects.
For a list of all members of this type, see TSharedObject members.

Unit

MemData

Syntax

TSharedObject = class(System.TObject);

Remarks

TSharedObject allows to simplify memory management for object referenced by several other objects.
TSharedObject holds a count of references to itself. When any object (referer object) is going to use
TSharedObject, it calls the TSharedObject.AddRef method. Referer object has to call the TSharedObject.
Release method after using TSharedObject.

Inheritance Hierarchy

TObject
 TSharedObject

See Also

 TBlob
 TObjectType

© 1997-2012 Devart. All Rights Reserved.

TSharedObject class overview.

Properties

Name Description

RefCount Used to return the count of
reference to a TSharedObject
object.

Methods

Name Description

AddRef Increments the reference count for
the number of references
dependent on the TSharedObject
object.

Release Decrements the reference count.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TSharedObject class.
For a complete list of the TSharedObject class members, see the TSharedObject Members topic.

Public

347Data Access Components for MySQL

Name Description

RefCount Used to return the count of
reference to a TSharedObject
object.

See Also
 TSharedObject Class
 TSharedObject Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to return the count of reference to a TSharedObject object.

Class

TSharedObject

Syntax

property RefCount: Integer;

Remarks

Returns the count of reference to a TSharedObject object.

© 1997-2012 Devart. All Rights Reserved.

Methods of the TSharedObject class.
For a complete list of the TSharedObject class members, see the TSharedObject Members topic.

Public

Name Description

AddRef Increments the reference count for
the number of references
dependent on the TSharedObject
object.

Release Decrements the reference count.

See Also
 TSharedObject Class
 TSharedObject Class Members

© 1997-2012 Devart. All Rights Reserved.

Increments the reference count for the number of references dependent on the TSharedObject object.

Class

TSharedObject

Syntax

procedure AddRef;

Remarks

Increments the reference count for the number of references dependent on the TSharedObject object.

See Also

 Release

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL348

Decrements the reference count.

Class

TSharedObject

Syntax

procedure Release;

Remarks

Call the Release method to decrement the reference count. When RefCount is 1, TSharedObject is
deleted from memory.

See Also

 AddRef

© 1997-2012 Devart. All Rights Reserved.

349Data Access Components for MySQL

17.13.2 Types

Types in the MemData unit.

Types

Name Description

TLocateExOptions Represents the set of
TLocateExOption.

TUpdateRecKinds Represents the set of
TUpdateRecKind.

© 1997-2012 Devart. All Rights Reserved.

17.13.2.1 MemData.TLocateExOptions Set

Represents the set of TLocateExOption.

Unit

MemData

Syntax

TLocateExOptions = set of TLocateExOption;

© 1997-2012 Devart. All Rights Reserved.

17.13.2.2 MemData.TUpdateRecKinds Set

Represents the set of TUpdateRecKind.

Unit

MemData

Syntax

TUpdateRecKinds = set of TUpdateRecKind;

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL350

17.13.3 Enumerations

Enumerations in the MemData unit.

Enumerations

Name Description

TConnLostCause Specifies the cause of the
connection loss.

TDANumericType Specifies the format of storing and
representing of the NUMERIC
(DECIMAL) fields.

TLocateExOption Allows to set additional search
parameters which will be used by
the LocateEx method.

TSortType Specifies a sort type for string
fields.

TUpdateRecKind Indicates records for which the
ApplyUpdates method will be
performed.

© 1997-2012 Devart. All Rights Reserved.

17.13.3.1 MemData.TConnLostCause Enumeration

Specifies the cause of the connection loss.

Unit

MemData

Syntax

TConnLostCause = (clUnknown, clExecute, clOpen, clRefresh,
clApply, clServiceQuery, clTransStart, clConnectionApply,
clConnect);

Values

Value Meaning

clApply Connection loss detected during DataSet.ApplyUpdates (Reconnect/
Reexecute possible).

clConnect Connection loss detected during connection establishing (Reconnect
possible).

clConnectionApply Connection loss detected during Connection.ApplyUpdates (Reconnect/
Reexecute possible).

clExecute Connection loss detected during SQL execution (Reconnect with exception
is possible).

clOpen Connection loss detected during execution of a SELECT statement
(Reconnect with exception possible).

clRefresh Connection loss detected during query opening (Reconnect/Reexecute
possible).

clServiceQuery Connection loss detected during service information request (Reconnect/
Reexecute possible).

clTransStart Connection loss detected during transaction start (Reconnect/Reexecute
possible). clTransStart has less priority then clConnectionApply.

clUnknown The connection loss reason is unknown.

© 1997-2012 Devart. All Rights Reserved.

351Data Access Components for MySQL

17.13.3.2 MemData.TDANumericType Enumeration

Specifies the format of storing and representing of the NUMERIC (DECIMAL) fields.

Unit

MemData

Syntax

TDANumericType = (ntFloat, ntBCD, ntFmtBCD);

Values

Value Meaning

ntBCD Data is stored on the client side as currency and represented as
TBCDField. This format allows storing data with precision up to 0,0001.

ntFloat Data stored on the client side is in double format and represented as
TFloatField. The default value.

ntFmtBCD Data on client is in TBCD format and is represented as TFMTBCDField.
Allows to reflect the whole range of possible values for the MySQL
NUMERIC type without accuracy losses. Fields of this type are processed
quite slowly. Not supported for Delphi 5 and C++Builder 5.

© 1997-2012 Devart. All Rights Reserved.

17.13.3.3 MemData.TLocateExOption Enumeration

Allows to set additional search parameters which will be used by the LocateEx method.

Unit

MemData

Syntax

TLocateExOption = (lxCaseInsensitive, lxPartialKey, lxNearest,
lxNext, lxUp, lxPartialCompare);

Values

Value Meaning

lxCaseInsensitive Similar to loCaseInsensitive. Key fields and key values are matched
without regard to the case.

lxNearest LocateEx moves the cursor to a specific record in a dataset or to the first
record in the dataset that is greater than the values specified in the
KeyValues parameter. For this option to work correctly dataset should be
sorted by the fields the search is performed in. If dataset is not sorted,
the function may return a line that is not connected with the search
condition.

lxNext LocateEx searches from the current record.

lxPartialCompare Similar to lxPartialKey, but the difference is that it can process value
entries in any position. For example, 'HAM' would match both 'HAMM',
'HAMMER.', and also 'MR HAMMER'.

lxPartialKey Similar to loPartialKey. Key values can include only a part of the matching
key field value. For example, 'HAM' would match both 'HAMM' and
'HAMMER.', but not 'MR HAMMER'.

lxUp LocateEx searches from the current record to the first record.

© 1997-2012 Devart. All Rights Reserved.

17.13.3.4 MemData.TSortType Enumeration

Specifies a sort type for string fields.

Unit

MemData

Syntax

Data Access Components for MySQL352

TSortType = (stCaseSensitive, stCaseInsensitive, stBinary);

Values

Value Meaning

stBinary Sorting by character ordinal values (this comparison is also case
sensitive).

stCaseInsensitive Sorting without case sensitivity.

stCaseSensitive Sorting with case sensitivity.

© 1997-2012 Devart. All Rights Reserved.

17.13.3.5 MemData.TUpdateRecKind Enumeration

Indicates records for which the ApplyUpdates method will be performed.

Unit

MemData

Syntax

TUpdateRecKind = (ukUpdate, ukInsert, ukDelete);

Values

Value Meaning

ukDelete ApplyUpdates will be performed for deleted records.

ukInsert ApplyUpdates will be performed for inserted records.

ukUpdate ApplyUpdates will be performed for updated records.

© 1997-2012 Devart. All Rights Reserved.

353Data Access Components for MySQL

17.14 MemDS

This unit contains implementation of the TMemDataSet class.

Classes

Name Description

TMemDataSet A base class for working with data
and manipulating data in memory.

Variables

Name Description

DoNotRaiseExcetionOnUaFail An exception will be raised if the
value of the UpdateAction
parameter is uaFail.

SendDataSetChangeEventAfterOpen The DataSetChange event is sent
after a dataset gets open. It was
necessary to fix a problem with
disappeared vertical scrollbar in
some types of DB-aware grids.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL354

17.14.1 Classes

Classes in the MemDS unit.

Classes

Name Description

TMemDataSet A base class for working with data
and manipulating data in memory.

© 1997-2012 Devart. All Rights Reserved.

17.14.1.1 MemDS.TMemDataSet Class

A base class for working with data and manipulating data in memory.
For a list of all members of this type, see TMemDataSet members.

Unit

MemDS

Syntax

TMemDataSet = class(TDataSet);

Remarks

TMemDataSet derives from the TDataSet database-engine independent set of properties, events, and
methods for working with data and introduces additional techniques to store and manipulate data in
memory.

Inheritance Hierarchy

TObject
 TMemDataSet

© 1997-2012 Devart. All Rights Reserved.

TMemDataSet class overview.

Properties

Name Description

CachedUpdates Used to enable or disable the use of
cached updates for a dataset.

IndexFieldNames Used to get or set the list of fields
on which the recordset is sorted.

LocalConstraints Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate Used to prevent implicit update of
rows on database server.

Prepared Determines whether a query is
prepared for execution or not.

UpdateRecordTypes Used to indicate the update status
for the current record when cached
updates are enabled.

UpdatesPending Used to check the status of the
cached updates buffer.

Methods

Name Description

ApplyUpdates Overloaded. Writes dataset's
pending cached updates to a
database.

355Data Access Components for MySQL

CancelUpdates Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommitUpdates Clears the cached updates buffer.

DeferredPost Makes permanent changes to the
database server.

GetBlob Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

Locate Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Prepare Allocates resources and creates
field components for a dataset.

RestoreUpdates Marks all records in the cache of
updates as unapplied.

RevertRecord Cancels changes made to the
current record when cached
updates are enabled.

SaveToXML Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

UnPrepare Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateResult Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdateStatus Indicates the current update status
for the dataset when cached
updates are enabled.

Events

Name Description

OnUpdateError Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord Occurs when a single update
component can not handle the
updates.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMemDataSet class.
For a complete list of the TMemDataSet class members, see the TMemDataSet Members topic.

Public

Name Description

CachedUpdates Used to enable or disable the use of
cached updates for a dataset.

IndexFieldNames Used to get or set the list of fields
on which the recordset is sorted.

Data Access Components for MySQL356

LocalConstraints Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate Used to prevent implicit update of
rows on database server.

Prepared Determines whether a query is
prepared for execution or not.

UpdateRecordTypes Used to indicate the update status
for the current record when cached
updates are enabled.

UpdatesPending Used to check the status of the
cached updates buffer.

See Also
 TMemDataSet Class
 TMemDataSet Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to enable or disable the use of cached updates for a dataset.

Class

TMemDataSet

Syntax

property CachedUpdates: boolean default False;

Remarks

Use the CachedUpdates property to enable or disable the use of cached updates for a dataset. Setting
CachedUpdates to True enables updates to a dataset (such as posting changes, inserting new records, or
deleting records) to be stored in an internal cache on the client side instead of being written directly to
the dataset's underlying database tables. When changes are completed, an application writes all cached
changes to the database in the context of a single transaction.
Cached updates are especially useful for client applications working with remote database servers.
Enabling cached updates brings up the following benefits:
 Fewer transactions and shorter transaction times.
 Minimized network traffic.

The potential drawbacks of enabling cached updates are:
 Other applications can access and change the actual data on the server while users are editing local

copies of data, resulting in an update conflict when cached updates are applied to the database.
 Other applications cannot access data changes made by an application until its cached updates are

applied to the database.
The default value is False.
Note: When establishing master/detail relationship the CachedUpdates property of detail dataset works
properly only when TCustomDADataSet.Options is set to True.

See Also

 UpdatesPending
 TMemDataSet.ApplyUpdates
 RestoreUpdates
 CommitUpdates
 CancelUpdates
 UpdateStatus
 TCustomDADataSet.Options

© 1997-2012 Devart. All Rights Reserved.

357Data Access Components for MySQL

Used to get or set the list of fields on which the recordset is sorted.

Class

TMemDataSet

Syntax

property IndexFieldNames: string;

Remarks

Use the IndexFieldNames property to get or set the list of fields on which the recordset is sorted. Specify
the name of each column in IndexFieldNames to use as an index for a table. Ordering of column names
is significant. Separate names with semicolon. The specified columns don't need to be indexed. Set
IndexFieldNames to an empty string to reset the recordset to the sort order originally used when the
recordset's data was first retrieved.
Each field may optionally be followed by the keyword ASC / DESC or CIS / CS / BIN.
Use ASC, DESC keywords to specify a sort direction for the field. If one of these keywords is not used,
the default sort direction for the field is ascending.
Use CIS, CS or BIN keywords to specify a sort type for string fields:
CIS - compare without case sensitivity;
CS - compare with case sensitivity;
BIN - compare by character ordinal values (this comparison is also case sensitive).
If a dataset uses a TCustomDAConnection component, the default value of sort type depends on the
TCustomDAConnection.Options option of the connection. If a dataset does not use a connection (
TVirtualTable dataset), the default is CS.
Read IndexFieldNames to determine the field (or fields) on which the recordset is sorted.
Ordering is processed locally.
Note: You cannot process ordering by BLOB fields.

Example

The following procedure illustrates how to set IndexFieldNames in response to a button click:

DataSet1.IndexFieldNames := 'LastName ASC CIS; DateDue DESC';

© 1997-2012 Devart. All Rights Reserved.

Used to avoid setting the Required property of a TField component for NOT NULL fields at the time of
opening TMemDataSet.

Class

TMemDataSet

Syntax

property LocalConstraints: boolean default True;

Remarks

Use the LocalConstraints property to avoid setting the Required property of a TField component for NOT
NULL fields at the time of opening TMemDataSet. When LocalConstrains is True, TMemDataSet ignores
NOT NULL server constraints. It is useful for tables that have fields updated by triggers.
LocalConstraints is obsolete, and is only included for backward compatibility.
The default value is True.

© 1997-2012 Devart. All Rights Reserved.

Used to prevent implicit update of rows on database server.

Class

TMemDataSet

Syntax

property LocalUpdate: boolean default False;

Data Access Components for MySQL358

Remarks

Set the LocalUpdate property to True to prevent implicit update of rows on database server. Data
changes are cached locally in client memory.

© 1997-2012 Devart. All Rights Reserved.

Determines whether a query is prepared for execution or not.

Class

TMemDataSet

Syntax

property Prepared: boolean;

Remarks

Determines whether a query is prepared for execution or not. The Prepared property currently is not
supported by MySQL and is always False.

See Also

 Prepare

© 1997-2012 Devart. All Rights Reserved.

Used to indicate the update status for the current record when cached updates are enabled.

Class

TMemDataSet

Syntax

property UpdateRecordTypes: TUpdateRecordTypes default
[rtModified, rtInserted, rtUnmodified];

Remarks

Use the UpdateRecordTypes property to determine the update status for the current record when cached
updates are enabled. Update status can change frequently as records are edited, inserted, or deleted.
UpdateRecordTypes offers a convenient method for applications to assess the current status before
undertaking or completing operations that depend on the update status of records.

See Also

 CachedUpdates

© 1997-2012 Devart. All Rights Reserved.

Used to check the status of the cached updates buffer.

Class

TMemDataSet

Syntax

property UpdatesPending: boolean;

Remarks

Use the UpdatesPending property to check the status of the cached updates buffer. If UpdatesPending is
True, then there are edited, deleted, or inserted records remaining in local cache and not yet applied to
the database. If UpdatesPending is False, there are no such records in the cache.

359Data Access Components for MySQL

See Also

 CachedUpdates

© 1997-2012 Devart. All Rights Reserved.

Methods of the TMemDataSet class.
For a complete list of the TMemDataSet class members, see the TMemDataSet Members topic.

Public

Name Description

ApplyUpdates Overloaded. Writes dataset's
pending cached updates to a
database.

CancelUpdates Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommitUpdates Clears the cached updates buffer.

DeferredPost Makes permanent changes to the
database server.

GetBlob Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

Locate Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Prepare Allocates resources and creates
field components for a dataset.

RestoreUpdates Marks all records in the cache of
updates as unapplied.

RevertRecord Cancels changes made to the
current record when cached
updates are enabled.

SaveToXML Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

UnPrepare Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateResult Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdateStatus Indicates the current update status
for the dataset when cached
updates are enabled.

See Also
 TMemDataSet Class
 TMemDataSet Class Members

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL360

Writes dataset's pending cached updates to a database.

Class

TMemDataSet

Overload List

Name Description

ApplyUpdates Writes dataset's pending cached updates to a
database.

ApplyUpdates(const UpdateRecKinds:
TUpdateRecKinds)

Writes dataset's pending cached updates of
specified records to a database.

© 1997-2012 Devart. All Rights Reserved.

Writes dataset's pending cached updates to a database.

Class

TMemDataSet

Syntax

procedure ApplyUpdates; overload; virtual

Remarks

Call the ApplyUpdates method to write a dataset's pending cached updates to a database. This method
passes cached data to the database, but the changes are not committed to the database if there is an
active transaction. An application must explicitly call the database component's Commit method to
commit the changes to the database if the write is successful, or call the database's Rollback method to
undo the changes if there is an error.
Following a successful write to the database, and following a successful call to a connection's Commit
method, an application should call the CommitUpdates method to clear the cached update buffer.
Note: The preferred method for updating datasets is to call a connection component's ApplyUpdates
method rather than to call each individual dataset's ApplyUpdates method. The connection component's
ApplyUpdates method takes care of committing and rolling back transactions and clearing the cache
when the operation is successful.

Example

The following procedure illustrates how to apply a dataset's cached updates to a database in response to
a button click:

procedure ApplyButtonClick(Sender: TObject);
begin
 with MyQuery do
 begin
 Session.StartTransaction;
 try
 ... {Modify data}
 ApplyUpdates; {try to write the updates to the database}
 Session.Commit; {on success, commit the changes}
 except
 RestoreUpdates; {restore update result for applied records}
 Session.Rollback; {on failure, undo the changes}
 raise; {raise the exception to prevent a call to CommitUpdates!}
 end;
 CommitUpdates; {on success, clear the cache}
 end;
end;

361Data Access Components for MySQL

See Also


TMemDataSet.CachedUpdates

 TMemDataSet.CancelUpdates

 TMemDataSet.CommitUpdates

 TMemDataSet.UpdateStatus

© 1997-2012 Devart. All Rights Reserved.

Writes dataset's pending cached updates of specified records to a database.

Class

TMemDataSet

Syntax

procedure ApplyUpdates(const UpdateRecKinds: TUpdateRecKinds);
overload; virtual
Parameters

UpdateRecKinds
Indicates records for which the ApplyUpdates method will be performed.

Remarks

Call the ApplyUpdates method to write a dataset's pending cached updates of specified records to a
database. This method passes cached data to the database, but the changes are not committed to the
database if there is an active transaction. An application must explicitly call the database component's
Commit method to commit the changes to the database if the write is successful, or call the database's
Rollback method to undo the changes if there is an error.
Following a successful write to the database, and following a successful call to a connection's Commit
method, an application should call the CommitUpdates method to clear the cached update buffer.
Note: The preferred method for updating datasets is to call a connection component's ApplyUpdates
method rather than to call each individual dataset's ApplyUpdates method. The connection component's
ApplyUpdates method takes care of committing and rolling back transactions and clearing the cache
when the operation is successful.

© 1997-2012 Devart. All Rights Reserved.

Clears all pending cached updates from cache and restores dataset in its prior state.

Class

TMemDataSet

Syntax

procedure CancelUpdates;

Remarks

Call the CancelUpdates method to clear all pending cached updates from cache and restore dataset in its
prior state.
It restores the dataset to the state it was in when the table was opened, cached updates were last
enabled, or updates were last successfully applied to the database.
When a dataset is closed, or the CachedUpdates property is set to False, CancelUpdates is called
automatically.

See Also

 CachedUpdates
 TMemDataSet.ApplyUpdates
 UpdateStatus

Data Access Components for MySQL362

© 1997-2012 Devart. All Rights Reserved.

Clears the cached updates buffer.

Class

TMemDataSet

Syntax

procedure CommitUpdates;

Remarks

Call the CommitUpdates method to clear the cached updates buffer after both a successful call to
ApplyUpdates and a database component's Commit method. Clearing the cache after applying updates
ensures that the cache is empty except for records that could not be processed and were skipped by the
OnUpdateRecord or OnUpdateError event handlers. An application can attempt to modify the records still
in cache.
CommitUpdates also checks wether there are pending updates in dataset. And if there are, it calls
ApplyUpdates.
Record modifications made after a call to CommitUpdates repopulate the cached update buffer and
require a subsequent call to ApplyUpdates to move them to the database.

See Also

 CachedUpdates
 TMemDataSet.ApplyUpdates
 UpdateStatus

© 1997-2012 Devart. All Rights Reserved.

Makes permanent changes to the database server.

Class

TMemDataSet

Syntax

procedure DeferredPost;

Remarks

Call DeferredPost to make permanent changes to the database server while retaining dataset in its state
whether it is dsEdit or dsInsert.
Explicit call to the Cancel method after DeferredPost has been applied does not abandon modifications to
a dataset already fixed in database.

© 1997-2012 Devart. All Rights Reserved.

Retrieves TBlob object for a field or current record when only its name or the field itself is known.

Class

TMemDataSet

Overload List

Name Description

GetBlob(Field: TField) Retrieves TBlob object for a field or current
record when the field itself is known.

GetBlob(const FieldName: string) Retrieves TBlob object for a field or current
record when its name is known.

© 1997-2012 Devart. All Rights Reserved.

363Data Access Components for MySQL

Retrieves TBlob object for a field or current record when the field itself is known.

Class

TMemDataSet

Syntax

function GetBlob(Field: TField): TBlob; overload
Parameters

Field
Holds an existing TField object.

Return Value

TBlob object that was retrieved.

Remarks

Call the GetBlob method to retrieve TBlob object for a field or current record when only its name or the
field itself is known. FieldName is the name of an existing field. The field should have MEMO or BLOB
type.

© 1997-2012 Devart. All Rights Reserved.

Retrieves TBlob object for a field or current record when its name is known.

Class

TMemDataSet

Syntax

function GetBlob(const FieldName: string): TBlob; overload
Parameters

FieldName
Holds the name of an existing field.

Return Value

TBlob object that was retrieved.

Example

MyQuery1.GetBlob('Comment').SaveToFile('Comment.txt');

See Also


TBlob

© 1997-2012 Devart. All Rights Reserved.

Searches a dataset for a specific record and positions the cursor on it.

Class

TMemDataSet

Overload List

Name Description

Locate(const KeyFields: array of TField; const
KeyValues: variant; Options: TLocateOptions)

Searches a dataset by the specified fields for a
specific record and positions cursor on it.

Data Access Components for MySQL364

Locate(const KeyFields: string; const
KeyValues: variant; Options: TLocateOptions)

Searches a dataset by the fields specified by
name for a specific record and positions the
cursor on it.

© 1997-2012 Devart. All Rights Reserved.

Searches a dataset by the specified fields for a specific record and positions cursor on it.

Class

TMemDataSet

Syntax

function Locate(const KeyFields: array of TField; const KeyValues:
variant; Options: TLocateOptions): boolean; reintroduce;
overload
Parameters

KeyFields
Holds TField objects in which to search.

KeyValues
Holds the variant that specifies the values to match in the key fields.

Options
Holds additional search latitude when searching in string fields.

Return Value

True if it finds a matching record, and makes this record the current one. Otherwise it returns False.

© 1997-2012 Devart. All Rights Reserved.

Searches a dataset by the fields specified by name for a specific record and positions the cursor on it.

Class

TMemDataSet

Syntax

function Locate(const KeyFields: string; const KeyValues: variant;
Options: TLocateOptions): boolean; overload; override
Parameters

KeyFields
Holds a semicolon-delimited list of field names in which to search.

KeyValues
Holds the variant that specifies the values to match in the key fields.

Options
Holds additional search latitude when searching in string fields.

Return Value

True if it finds a matching record, and makes this record the current one. Otherwise it returns False.

Remarks

Call the Locate method to search a dataset for a specific record and position cursor on it.
KeyFields is a string containing a semicolon-delimited list of field names on which to search.
KeyValues is a variant that specifies the values to match in the key fields. If KeyFields lists a single field,
KeyValues specifies the value for that field on the desired record. To specify multiple search values, pass
a variant array as KeyValues, or construct a variant array on the fly using the VarArrayOf routine. An
example is provided below.
Options is a set that optionally specifies additional search latitude when searching in string fields. If
Options contains the loCaseInsensitive setting, then Locate ignores case when matching fields. If Options
contains the loPartialKey setting, then Locate allows partial-string matching on strings in KeyValues. If

365Data Access Components for MySQL

Options is an empty set, or if KeyFields does not include any string fields, Options is ignored.
Locate returns True if it finds a matching record, and makes this record the current one. Otherwise it
returns False.
The Locate function works faster when dataset is locally sorted on the KeyFields fields. Local dataset
sorting can be set with the TMemDataSet.IndexFieldNames property.

Example

An example of specifying multiple search values:

with CustTable do
 Locate('Company;Contact;Phone', VarArrayOf(['Sight Diver', 'P',
 '408-431-1000']), [loPartialKey]);

See Also


TMemDataSet.IndexFieldNames

 TMemDataSet.LocateEx

© 1997-2012 Devart. All Rights Reserved.

Excludes features that don't need to be included to the TMemDataSet.Locate method of TDataSet.

Class

TMemDataSet

Overload List

Name Description

LocateEx(const KeyFields: array of TField;
const KeyValues: variant; Options:
TLocateExOptions)

Excludes features that don't need to be included
to the TMemDataSet.Locate method of TDataSet
by the specified fields.

LocateEx(const KeyFields: string; const
KeyValues: variant; Options: TLocateExOptions)

Excludes features that don't need to be included
to the TMemDataSet.Locate method of TDataSet
by the specified field names.

© 1997-2012 Devart. All Rights Reserved.

Excludes features that don't need to be included to the TMemDataSet.Locate method of TDataSet by the
specified fields.

Class

TMemDataSet

Syntax

function LocateEx(const KeyFields: array of TField; const
KeyValues: variant; Options: TLocateExOptions): boolean;
overload
Parameters

KeyFields
Holds TField objects to search in.

KeyValues
Holds the values of the fields to search for.

Options
Holds additional search parameters which will be used by the LocateEx method.

Return Value

True, if a matching record was found. Otherwise returns False.

Data Access Components for MySQL366

© 1997-2012 Devart. All Rights Reserved.

Excludes features that don't need to be included to the TMemDataSet.Locate method of TDataSet by the
specified field names.

Class

TMemDataSet

Syntax

function LocateEx(const KeyFields: string; const KeyValues:
variant; Options: TLocateExOptions): boolean; overload
Parameters

KeyFields
Holds the fields to search in.

KeyValues
Holds the values of the fields to search for.

Options
Holds additional search parameters which will be used by the LocateEx method.

Return Value

True, if a matching record was found. Otherwise returns False.

Remarks

Call the LocateEx method when you need some features not to be included to the TMemDataSet.Locate
method of TDataSet.
LocateEx returns True if it finds a matching record, and makes that record the current one. Otherwise
LocateEx returns False.
The LocateEx function works faster when dataset is locally sorted on the KeyFields fields. Local dataset
sorting can be set with the TMemDataSet.IndexFieldNames property.
Note: Please add the MemData unit to the "uses" list to use the TLocalExOption enumeration.

See Also

 TMemDataSet.IndexFieldNames
 TMemDataSet.Locate

© 1997-2012 Devart. All Rights Reserved.

Allocates resources and creates field components for a dataset.

Class

TMemDataSet

Syntax

procedure Prepare; virtual;

Remarks

Call the Prepare method to allocate resources and create field components for a dataset. To learn
whether dataset is prepared or not use the Prepared property.
The MySQL prepared protocol has certain server restrictions, and its work is not always stable. That is
why it is advisable to perform test before using preparation in production versions of applications.
The UnPrepare method unprepares a query.
Note: When you change the text of a query at runtime, the query is automatically closed and
unprepared.

See Also

367Data Access Components for MySQL

 Prepared
 UnPrepare

© 1997-2012 Devart. All Rights Reserved.

Marks all records in the cache of updates as unapplied.

Class

TMemDataSet

Syntax

procedure RestoreUpdates;

Remarks

Call the RestoreUpdates method to return the cache of updates to its state before calling ApplyUpdates.
RestoreUpdates marks all records in the cache of updates as unapplied. It is useful when ApplyUpdates
fails.

See Also

 CachedUpdates
 TMemDataSet.ApplyUpdates
 CancelUpdates
 UpdateStatus

© 1997-2012 Devart. All Rights Reserved.

Cancels changes made to the current record when cached updates are enabled.

Class

TMemDataSet

Syntax

procedure RevertRecord;

Remarks

Call the RevertRecord method to undo changes made to the current record when cached updates are
enabled.

See Also

 CachedUpdates
 CancelUpdates

© 1997-2012 Devart. All Rights Reserved.

Saves the current dataset data to a file or a stream in the XML format compatible with ADO format.

Class

TMemDataSet

Overload List

Name Description

SaveToXML(Destination: TStream) Saves the current dataset data to a stream in the
XML format compatible with ADO format.

SaveToXML(const FileName: string) Saves the current dataset data to a file in the
XML format compatible with ADO format.

Data Access Components for MySQL368

© 1997-2012 Devart. All Rights Reserved.

Saves the current dataset data to a stream in the XML format compatible with ADO format.

Class

TMemDataSet

Syntax

procedure SaveToXML(Destination: TStream); overload
Parameters

Destination
Holds a TStream object.

Remarks

Call the SaveToXML method to save the current dataset data to a file or a stream in the XML format
compatible with ADO format.
If the destination file already exists, it is overwritten. It remains open from the first call to SaveToXML
until the dataset is closed. This file can be read by other applications while it is opened, but they cannot
write to the file.
When saving data to a stream, a TStream object must be created and its position must be set in a
preferable value.

See Also

 TVirtualTable.LoadFromFile
 TVirtualTable.LoadFromStream

© 1997-2012 Devart. All Rights Reserved.

Saves the current dataset data to a file in the XML format compatible with ADO format.

Class

TMemDataSet

Syntax

procedure SaveToXML(const FileName: string); overload
Parameters

FileName
Holds the name of a destination file.

© 1997-2012 Devart. All Rights Reserved.

Frees the resources allocated for a previously prepared query on the server and client sides.

Class

TMemDataSet

Syntax

procedure UnPrepare; virtual;

Remarks

Call the UnPrepare method to free the resources allocated for a previously prepared query on the server
and client sides.
Note: When you change the text of a query at runtime, the query is automatically closed and
unprepared.

See Also

369Data Access Components for MySQL

 Prepare

© 1997-2012 Devart. All Rights Reserved.

Reads the status of the latest call to the ApplyUpdates method while cached updates are enabled.

Class

TMemDataSet

Syntax

function UpdateResult: TUpdateAction;
Return Value

a value of the TUpdateAction enumeration.

Remarks

Call the UpdateResult method to read the status of the latest call to the ApplyUpdates method while
cached updates are enabled. UpdateResult reflects updates made on the records that have been edited,
inserted, or deleted.
UpdateResult works on the record by record basis and is applicable to the current record only.

See Also

 CachedUpdates

© 1997-2012 Devart. All Rights Reserved.

Indicates the current update status for the dataset when cached updates are enabled.

Class

TMemDataSet

Syntax

function UpdateStatus: TUpdateStatus; override;
Return Value

a value of the TUpdateStatus enumeration.

Remarks

Call the UpdateStatus method to determine the current update status for the dataset when cached
updates are enabled. Update status can change frequently as records are edited, inserted, or deleted.
UpdateStatus offers a convenient method for applications to assess the current status before
undertaking or completing operations that depend on the update status of the dataset.

See Also

 CachedUpdates

© 1997-2012 Devart. All Rights Reserved.

Events of the TMemDataSet class.
For a complete list of the TMemDataSet class members, see the TMemDataSet Members topic.

Public

Name Description

OnUpdateError Occurs when an exception is
generated while cached updates are
applied to a database.

Data Access Components for MySQL370

OnUpdateRecord Occurs when a single update
component can not handle the
updates.

See Also
 TMemDataSet Class
 TMemDataSet Class Members

© 1997-2012 Devart. All Rights Reserved.

Occurs when an exception is generated while cached updates are applied to a database.

Class

TMemDataSet

Syntax

property OnUpdateError: TUpdateErrorEvent;

Remarks

Write the OnUpdateError event handler to respond to exceptions generated when cached updates are
applied to a database.
E is a pointer to an EDatabaseError object from which application can extract an error message and the
actual cause of the error condition. The OnUpdateError handler can use this information to determine
how to respond to the error condition.
UpdateKind describes the type of update that generated the error.
UpdateAction indicates the action to take when the OnUpdateError handler exits. On entry into the
handler, UpdateAction is always set to uaFail. If OnUpdateError can handle or correct the error, set
UpdateAction to uaRetry before exiting the error handler.
The error handler can use the TField.OldValue and TField.NewValue properties to evaluate error
conditions and set TField.NewValue to a new value to reapply. In this case, set UpdateAction to uaRetry
before exiting.
Note: If a call to ApplyUpdates raises an exception and ApplyUpdates is not called within the context of
a try...except block, an error message is displayed. If the OnUpdateError handler cannot correct the
error condition and leaves UpdateAction set to uaFail, the error message is displayed twice. To prevent
redisplay, set UpdateAction to uaAbort in the error handler.

See Also

 CachedUpdates

© 1997-2012 Devart. All Rights Reserved.

Occurs when a single update component can not handle the updates.

Class

TMemDataSet

Syntax

property OnUpdateRecord: TUpdateRecordEvent;

Remarks

Write the OnUpdateRecord event handler to process updates that cannot be handled by a single update
component, such as implementation of cascading updates, insertions, or deletions. This handler is also
useful for applications that require additional control over parameter substitution in update components.
UpdateKind describes the type of update to perform.
UpdateAction indicates the action taken by the OnUpdateRecord handler before it exits. On entry into the
handler, UpdateAction is always set to uaFail. If OnUpdateRecord is successful, it should set
UpdateAction to uaApplied before exiting.

See Also

371Data Access Components for MySQL

 CachedUpdates

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL372

17.14.2 Variables

Variables in the MemDS unit.

Variables

Name Description

DoNotRaiseExcetionOnUaFail An exception will be raised if the
value of the UpdateAction
parameter is uaFail.

SendDataSetChangeEventAfterOpen The DataSetChange event is sent
after a dataset gets open. It was
necessary to fix a problem with
disappeared vertical scrollbar in
some types of DB-aware grids.

© 1997-2012 Devart. All Rights Reserved.

17.14.2.1 MemDS.DoNotRaiseExcetionOnUaFail Variable

An exception will be raised if the value of the UpdateAction parameter is uaFail.

Unit

MemDS

Syntax

DoNotRaiseExcetionOnUaFail: boolean = False;

Remarks

Starting with MyDAC 5.20.0.12, if the OnUpdateRecord event handler sets the UpdateAction parameter
to uaFail, an exception is raised. The default value of UpdateAction is uaFail. So, the exception will be
raised when the value of this parameter is left unchanged.
To restore the old behaviour, set DoNotRaiseExcetionOnUaFail to True.

© 1997-2012 Devart. All Rights Reserved.

17.14.2.2 MemDS.SendDataSetChangeEventAfterOpen Variable

The DataSetChange event is sent after a dataset gets open. It was necessary to fix a problem with
disappeared vertical scrollbar in some types of DB-aware grids.

Unit

MemDS

Syntax

SendDataSetChangeEventAfterOpen: boolean = True;

Remarks

Starting with MyDAC 5.20.0.11, the DataSetChange event is sent after a dataset gets open. It was
necessary to fix a problem with disappeared vertical scrollbar in some types of DB-aware grids. This
problem appears only under Windows XP when visual styles are enabled.
To disable sending this event, change the value of this variable to False.

© 1997-2012 Devart. All Rights Reserved.

373Data Access Components for MySQL

17.15 MyAccess

This unit contains implementation of most public classes of MyDAC.

Classes

Name Description

TCustomMyConnection A base class for connecting to
MySQL server.

TCustomMyConnectionOptions This class allows setting up the
behaviour of the
TCustomMyConnection class.

TCustomMyDataSet A base class defining functionality
for the classes derived from it.

TCustomMyStoredProc A class implementing functionality
to access stored procedures on a
database server.

TCustomMyTable A base class that defines
functionality for descendant classes
which access data in a single table
without writing SQL statements.

TMyCommand A component for execution of SQL
statements and stored procedures
which do not return rowsets.

TMyConnection A component for setting up and
controlling connections to MySQL
database server.

TMyConnectionOptions This class allows setting up the
behaviour of the TMyConnection
class.

TMyConnectionSSLOptions This class allows setting up the
behaviour of the TMyConnection
class.

TMyDataSetOptions This class allows setting up the
behaviour of the TMyDataSet class.

TMyDataSource TMyDataSource provides an
interface between a MyDAC dataset
components and data-aware
controls on a form.

TMyEncryptor The class that performs encrypting
and decrypting of data.

TMyMetaData A component for obtaining
metainformation about database
objects from the server.

TMyQuery A component for executing queries
and operating record sets. It also
provides flexible way to update
data.

TMyStoredProc A component for accessing and
executing stored procedures and
functions.

TMyTable A component for retrieving and
updating data in a single table
without writing SQL statements.

TMyTableOptions This class allows setting up the
behaviour of the TMyTable class.

TMyTransaction A component for managing
transactions.

Data Access Components for MySQL374

TMyUpdateSQL A component for tuning update
operations for the DataSet
component.

Types

Name Description

TMyUpdateExecuteEvent This type is used for the E:Devart.
MyDac.TCustomMyDataSet.
AfterUpdateExecute and E:Devart.
MyDac.TCustomMyDataSet.
BeforeUpdateExecute events.

Enumerations

Name Description

TLockRecordType Specifies the type of the record
locking.

TLockType Specifies the type of the table
locking.

TMyIsolationLevel Specifies the xtent to which all
outside transactions interfere with
subsequent transactions of current
connection.

Routines

Name Description

GetServerList Returns the list of the MySQL
servers in LAN. MySQL server does
not provide usual ways of such list
getting, so it can be incomplete.

Constants

Name Description

MydacVersion Read this constant to get current
version number for MyDAC.

© 1997-2012 Devart. All Rights Reserved.

375Data Access Components for MySQL

17.15.1 Classes

Classes in the MyAccess unit.

Classes

Name Description

TCustomMyConnection A base class for connecting to
MySQL server.

TCustomMyConnectionOptions This class allows setting up the
behaviour of the
TCustomMyConnection class.

TCustomMyDataSet A base class defining functionality
for the classes derived from it.

TCustomMyStoredProc A class implementing functionality
to access stored procedures on a
database server.

TCustomMyTable A base class that defines
functionality for descendant classes
which access data in a single table
without writing SQL statements.

TMyCommand A component for execution of SQL
statements and stored procedures
which do not return rowsets.

TMyConnection A component for setting up and
controlling connections to MySQL
database server.

TMyConnectionOptions This class allows setting up the
behaviour of the TMyConnection
class.

TMyConnectionSSLOptions This class allows setting up the
behaviour of the TMyConnection
class.

TMyDataSetOptions This class allows setting up the
behaviour of the TMyDataSet class.

TMyDataSource TMyDataSource provides an
interface between a MyDAC dataset
components and data-aware
controls on a form.

TMyEncryptor The class that performs encrypting
and decrypting of data.

TMyMetaData A component for obtaining
metainformation about database
objects from the server.

TMyQuery A component for executing queries
and operating record sets. It also
provides flexible way to update
data.

TMyStoredProc A component for accessing and
executing stored procedures and
functions.

TMyTable A component for retrieving and
updating data in a single table
without writing SQL statements.

TMyTableOptions This class allows setting up the
behaviour of the TMyTable class.

TMyTransaction A component for managing
transactions.

TMyUpdateSQL A component for tuning update
operations for the DataSet
component.

Data Access Components for MySQL376

© 1997-2012 Devart. All Rights Reserved.

17.15.1.1 MyAccess.TCustomMyConnection Class

A base class for connecting to MySQL server.
For a list of all members of this type, see TCustomMyConnection members.

Unit

MyAccess

Syntax

TCustomMyConnection = class(TCustomDAConnection);

Remarks

The TCustomMyConnection component is used to establish connection to database server, provide
customized login support, and perform transaction control. TCustomMyConnection is the base
component for connecting to MySQL server.

Inheritance Hierarchy

TObject
 TCustomDAConnection
 TCustomMyConnection

See Also

 TMyConnection
 TMyEmbConnection

© 1997-2012 Devart. All Rights Reserved.

TCustomMyConnection class overview.

Properties

Name Description

ClientVersion Contains the version of the MySQL
Client library.

ConnectDialog (inherited from TCustomDAConnection) Allows to link a
TCustomConnectDialog component.

ConnectionTimeout Used to specify the amount of time
to attempt to establish a
connection.

ConvertEOL (inherited from TCustomDAConnection) Allows customizing line breaks in
string fields and parameters.

Database Used to specify a database name
that is a default source of data for
SQL queries once a connection is
established.

InTransaction (inherited from TCustomDAConnection) Indicates whether the transaction is
active.

IsolationLevel Used to specify extent to which all
outside transactions interfere with
subsequent transactions of current
connection.

LoginPrompt (inherited from TCustomDAConnection) Specifies whether a login dialog
appears immediately before
opening a new connection.

Options Specifies the behaviour of the
TMyConnectionOptions object.

Password (inherited from TCustomDAConnection) Serves to supply a password for
login.

377Data Access Components for MySQL

Pooling (inherited from TCustomDAConnection) Enables or disables using
connection pool.

PoolingOptions (inherited from TCustomDAConnection) Specifies the behaviour of
connection pool.

Server (inherited from TCustomDAConnection) Serves to supply the server name
for login.

ServerVersion Holds the version of MySQL server.

ThreadId Used to return the thread ID of the
current connection.

Username (inherited from TCustomDAConnection) Used to supply a user name for
login.

Methods

Name Description

ApplyUpdates (inherited from TCustomDAConnection) Overloaded. Applies changes in
datasets.

AssignConnect Shares database connection
between the TCustomMyConnection
components.

Commit (inherited from TCustomDAConnection) Commits current transaction.

Connect (inherited from TCustomDAConnection) Establishes a connection to the
server.

CreateDataSet Returns a new instance of
TCustomMyDataSet class and
associates it with this connection
object.

CreateSQL (inherited from TCustomDAConnection) Creates a component for queries
execution.

Disconnect (inherited from TCustomDAConnection) Performs disconnect.

ExecProc (inherited from TCustomDAConnection) Allows to execute stored procedure
or function providing its name and
parameters.

ExecProcEx (inherited from TCustomDAConnection) Allows to execute a stored
procedure or function.

ExecSQL Executes any SQL statement
outside TMyQuery or TMyCommand
components.

ExecSQLEx (inherited from TCustomDAConnection) Executes any SQL statement
outside the TQuery or TSQL
components.

GetCharsetNames Populates a string list with the
names of available charsets.

GetDatabaseNames (inherited from TCustomDAConnection) Returns a database list from the
server.

GetExecuteInfo Returns the result of the last query
execution.

GetStoredProcNames (inherited from
TCustomDAConnection)

Returns a list of stored procedures
from the server.

GetTriggerNames Returns a list of triggers from the
server.

MonitorMessage (inherited from TCustomDAConnection) Sends a specified message through
the TCustomDASQLMonitor
component.

Ping Allows to avoid automatic
disconnection of the client by the
server.

ReleaseSavepoint Releases the specified savepoint
without affecting any work that has
been performed after its creation.

Data Access Components for MySQL378

RemoveFromPool (inherited from TCustomDAConnection) Marks the connection that should
not be returned to the pool after
disconnect.

Rollback (inherited from TCustomDAConnection) Discards all current data changes
and ends transaction.

RollbackToSavepoint Cancels all updates for the current
transaction.

Savepoint Defines a point in the transaction to
which you can roll back later.

StartTransaction (inherited from TCustomDAConnection) Begins a new user transaction.

Events

Name Description

OnConnectionLost (inherited from TCustomDAConnection) This event occurs when connection
was lost.

OnError (inherited from TCustomDAConnection) This event occurs when an error has
arisen in the connection.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TCustomMyConnection class.
For a complete list of the TCustomMyConnection class members, see the TCustomMyConnection
Members topic.

Public

Name Description

ApplyUpdates (inherited from TCustomDAConnection) Overloaded. Applies changes in
datasets.

ClientVersion Contains the version of the MySQL
Client library.

Commit (inherited from TCustomDAConnection) Commits current transaction.

Connect (inherited from TCustomDAConnection) Establishes a connection to the
server.

ConnectDialog (inherited from TCustomDAConnection) Allows to link a
TCustomConnectDialog component.

ConnectionTimeout Used to specify the amount of time
to attempt to establish a
connection.

ConvertEOL (inherited from TCustomDAConnection) Allows customizing line breaks in
string fields and parameters.

CreateDataSet (inherited from TCustomDAConnection) Creates a dataset component.

CreateSQL (inherited from TCustomDAConnection) Creates a component for queries
execution.

Database Used to specify a database name
that is a default source of data for
SQL queries once a connection is
established.

Disconnect (inherited from TCustomDAConnection) Performs disconnect.

ExecProc (inherited from TCustomDAConnection) Allows to execute stored procedure
or function providing its name and
parameters.

ExecProcEx (inherited from TCustomDAConnection) Allows to execute a stored
procedure or function.

ExecSQL (inherited from TCustomDAConnection) Executes a SQL statement with
parameters.

ExecSQLEx (inherited from TCustomDAConnection) Executes any SQL statement
outside the TQuery or TSQL
components.

379Data Access Components for MySQL

GetDatabaseNames (inherited from TCustomDAConnection) Returns a database list from the
server.

GetStoredProcNames (inherited from
TCustomDAConnection)

Returns a list of stored procedures
from the server.

InTransaction (inherited from TCustomDAConnection) Indicates whether the transaction is
active.

IsolationLevel Used to specify extent to which all
outside transactions interfere with
subsequent transactions of current
connection.

LoginPrompt (inherited from TCustomDAConnection) Specifies whether a login dialog
appears immediately before
opening a new connection.

MonitorMessage (inherited from TCustomDAConnection) Sends a specified message through
the TCustomDASQLMonitor
component.

OnConnectionLost (inherited from TCustomDAConnection) This event occurs when connection
was lost.

OnError (inherited from TCustomDAConnection) This event occurs when an error has
arisen in the connection.

Options Specifies the behaviour of the
TMyConnectionOptions object.

Password (inherited from TCustomDAConnection) Serves to supply a password for
login.

Pooling (inherited from TCustomDAConnection) Enables or disables using
connection pool.

PoolingOptions (inherited from TCustomDAConnection) Specifies the behaviour of
connection pool.

RemoveFromPool (inherited from TCustomDAConnection) Marks the connection that should
not be returned to the pool after
disconnect.

Rollback (inherited from TCustomDAConnection) Discards all current data changes
and ends transaction.

Server (inherited from TCustomDAConnection) Serves to supply the server name
for login.

ServerVersion Holds the version of MySQL server.

StartTransaction (inherited from TCustomDAConnection) Begins a new user transaction.

ThreadId Used to return the thread ID of the
current connection.

Username (inherited from TCustomDAConnection) Used to supply a user name for
login.

See Also
 TCustomMyConnection Class
 TCustomMyConnection Class Members

© 1997-2012 Devart. All Rights Reserved.

Contains the version of the MySQL Client library.

Class

TCustomMyConnection

Syntax

property ClientVersion: string;

Remarks

Contains the version of the MySQL Client library (libmysql.dll or libmysqld.dll).

Data Access Components for MySQL380

See Also

 TCustomDAConnection.Connect

© 1997-2012 Devart. All Rights Reserved.

Used to specify the amount of time to attempt to establish a connection.

Class

TCustomMyConnection

Syntax

property ConnectionTimeout: integer default 15;

Remarks

Use the ConnectionTimeout property to specify the amount of time to attempt to establish a connection.
Use ConnectionTimeout property to specify the amount of time, in seconds, that can be expired before
an attempt to make a connection is considered unsuccessful.
The default value is 15 seconds.

See Also

 TCustomDAConnection.Connect
 TCustomMyDataSet.CommandTimeout
 TMyCommand.CommandTimeout

© 1997-2012 Devart. All Rights Reserved.

Used to specify a database name that is a default source of data for SQL queries once a connection is
established.

Class

TCustomMyConnection

Syntax

property Database: string;

Remarks

Use the Database property to specify a database name that is a default source of data for SQL queries
once a connection is established.
Altering Database property makes new database name take effect immediately.
Setting Database='mysql' allows you to omit database specifier in SELECT statements. That is, instead of
SELECT * FROM mysql.user;

you may just write
SELECT * FROM user

See Also

 TCustomDAConnection.Server
 TMyConnection.Port
 TCustomDAConnection.Username
 TCustomDAConnection.Password
 TCustomDAConnection.GetDatabaseNames

© 1997-2012 Devart. All Rights Reserved.

Used to specify extent to which all outside transactions interfere with subsequent transactions of current
connection.

Class

381Data Access Components for MySQL

TCustomMyConnection

Syntax

property IsolationLevel: TMyIsolationLevel default
ilReadCommitted;

Remarks

Use the IsolationLevel property to specify the extent to which all outside transactions interfere with
subsequent transactions of current connection.
Changes to IsolationLevel take effect at a time of starting new transaction or opening new connection.

See Also

 TCustomDAConnection.StartTransaction

© 1997-2012 Devart. All Rights Reserved.

Specifies the behaviour of the TMyConnectionOptions object.

Class

TCustomMyConnection

Syntax

property Options: TCustomMyConnectionOptions;

Remarks

Set the properties of Options to specify the behaviour of a TMyConnectionOptions object.
Descriptions of all options are in the table below.

Option Name Description

Charset Used to set a character set used by the client.

NullForZeroDelphiDate Used to hide the '30-12-1899' dates.

NumericType Used to specify the format of storing and
representation of the NUMERIC (DECIMAL) fields
for all TCustomMyDataSets, associated with the
given connection.

OptimizedBigInt Used to convert all fields with field length less
than 11 of TLargeIntField type into TIntegerField.

UseUnicode Used to inform server that all data between client
and server sides will be passed in Utf8 coding.

See Also


TCustomDAConnection.Server


Database


National Characters

©

 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL382

Holds the version of MySQL server.

Class

TCustomMyConnection

Syntax

property ServerVersion: string;

Remarks

The version of MySQL server.

See Also

 TCustomDAConnection.Connect

© 1997-2012 Devart. All Rights Reserved.

Used to return the thread ID of the current connection.

Class

TCustomMyConnection

Syntax

property ThreadId: longword;

Remarks

Use the ThreadId property to return the thread ID of the current connection. This value can be used as
an argument to TMyServerControl.KillProcess to kill the thread.

See Also

 TMyServerControl.KillProcess

© 1997-2012 Devart. All Rights Reserved.

Methods of the TCustomMyConnection class.
For a complete list of the TCustomMyConnection class members, see the TCustomMyConnection
Members topic.

Public

Name Description

ApplyUpdates (inherited from TCustomDAConnection) Overloaded. Applies changes in
datasets.

AssignConnect Shares database connection
between the TCustomMyConnection
components.

Commit (inherited from TCustomDAConnection) Commits current transaction.

Connect (inherited from TCustomDAConnection) Establishes a connection to the
server.

ConnectDialog (inherited from TCustomDAConnection) Allows to link a
TCustomConnectDialog component.

ConvertEOL (inherited from TCustomDAConnection) Allows customizing line breaks in
string fields and parameters.

CreateDataSet Returns a new instance of
TCustomMyDataSet class and
associates it with this connection
object.

383Data Access Components for MySQL

CreateSQL (inherited from TCustomDAConnection) Creates a component for queries
execution.

Disconnect (inherited from TCustomDAConnection) Performs disconnect.

ExecProc (inherited from TCustomDAConnection) Allows to execute stored procedure
or function providing its name and
parameters.

ExecProcEx (inherited from TCustomDAConnection) Allows to execute a stored
procedure or function.

ExecSQL Executes any SQL statement
outside TMyQuery or TMyCommand
components.

ExecSQLEx (inherited from TCustomDAConnection) Executes any SQL statement
outside the TQuery or TSQL
components.

GetCharsetNames Populates a string list with the
names of available charsets.

GetDatabaseNames (inherited from TCustomDAConnection) Returns a database list from the
server.

GetExecuteInfo Returns the result of the last query
execution.

GetStoredProcNames (inherited from
TCustomDAConnection)

Returns a list of stored procedures
from the server.

GetTriggerNames Returns a list of triggers from the
server.

InTransaction (inherited from TCustomDAConnection) Indicates whether the transaction is
active.

LoginPrompt (inherited from TCustomDAConnection) Specifies whether a login dialog
appears immediately before
opening a new connection.

MonitorMessage (inherited from TCustomDAConnection) Sends a specified message through
the TCustomDASQLMonitor
component.

OnConnectionLost (inherited from TCustomDAConnection) This event occurs when connection
was lost.

OnError (inherited from TCustomDAConnection) This event occurs when an error has
arisen in the connection.

Options (inherited from TCustomDAConnection) Specifies the connection behavior.

Password (inherited from TCustomDAConnection) Serves to supply a password for
login.

Ping Allows to avoid automatic
disconnection of the client by the
server.

Pooling (inherited from TCustomDAConnection) Enables or disables using
connection pool.

PoolingOptions (inherited from TCustomDAConnection) Specifies the behaviour of
connection pool.

ReleaseSavepoint Releases the specified savepoint
without affecting any work that has
been performed after its creation.

RemoveFromPool (inherited from TCustomDAConnection) Marks the connection that should
not be returned to the pool after
disconnect.

Rollback (inherited from TCustomDAConnection) Discards all current data changes
and ends transaction.

RollbackToSavepoint Cancels all updates for the current
transaction.

Savepoint Defines a point in the transaction to
which you can roll back later.

Data Access Components for MySQL384

Server (inherited from TCustomDAConnection) Serves to supply the server name
for login.

StartTransaction (inherited from TCustomDAConnection) Begins a new user transaction.

Username (inherited from TCustomDAConnection) Used to supply a user name for
login.

See Also
 TCustomMyConnection Class
 TCustomMyConnection Class Members

© 1997-2012 Devart. All Rights Reserved.

Shares database connection between the TCustomMyConnection components.

Class

TCustomMyConnection

Syntax

procedure AssignConnect(Source: TCustomMyConnection); virtual;
Parameters

Source
Preconnected TCustomMyConnection component which connection is to be shared with the current
TCustomMyConnection component.

Remarks

Use the AssignConnect method to share database connection between the TCustomMyConnection
components.
AssignConnect assumes that the Source parameter points to a preconnected TCustomMyConnection
component which connection is to be shared with the current TCustomMyConnection component. Note
that AssignConnect doesn't make any references to the Source TCustomMyConnection component. So
before disconnecting parent TCustomMyConnection component call AssignConnect(Nil) or the Disconnect
method for all assigned connections.

© 1997-2012 Devart. All Rights Reserved.

Returns a new instance of TCustomMyDataSet class and associates it with this connection object.

Class

TCustomMyConnection

Syntax

function CreateDataSet: TCustomDADataSet; override;
Return Value

a new instance of TCustomMyDataSet class.

Remarks

The CreateDataSet method returns a new instance of TCustomMyDataSet class and associates it with
this connection object.

See Also

 CreateCommand

© 1997-2012 Devart. All Rights Reserved.

385Data Access Components for MySQL

Executes any SQL statement outside TMyQuery or TMyCommand components.

Class

TCustomMyConnection

Syntax

function ExecSQL(Text: string; const Params: array of variant):
variant; override;
Parameters

Text
Holds the SQL statement.

Params
Holds the array of the parameters values arranged in the same order as they appear in the SQL
statement.

Return Value

Null.

Remarks

Call the ExecSQL method to execute any SQL statement outside TMyQuery or TMyCommand
components. Supply the Params array with values of parameters arranged in the same order as they
appear in SQL statement that is passed in Text string parameter.
Note: If a query doesn't have parameters (Params.Count = 0), this query will be executed faster.

© 1997-2012 Devart. All Rights Reserved.

Populates a string list with the names of available charsets.

Class

TCustomMyConnection

Syntax

procedure GetCharsetNames(List: _TStrings);
Parameters

List
Holds the string list to populate.

Remarks

Call the GetCharsetName method to populate a string list with the names of available charsets.
Note: Any contents already in the target string list object are eliminated and overwritten by the data
produces by GetCharsetNames.

See Also

 Options

© 1997-2012 Devart. All Rights Reserved.

Returns the result of the last query execution.

Class

TCustomMyConnection

Syntax

function GetExecuteInfo: string;
Return Value

the result of the last query execution.

Data Access Components for MySQL386

Remarks

Call the GetExecuteInfo method to returns the result of the last query execution.
The description of the result format you can see at MySQL Reference Manual mysql_info
Note: If you execute a query at TCustomDADataSet.Execute with TCustomMyDataSet.FetchAll set to
False, a result cannot be retrieved.

Example

The method makes sense for the following SQL statements:

INSERT INTO ... SELECT ...
INSERT INTO ... VALUES (...),(...),(...)...
LOAD DATA INFILE ...
ALTER TABLE
UPDATE

See Also


TCustomDADataSet.Execute

 TCustomDASQL.Execute

© 1997-2012 Devart. All Rights Reserved.

Returns a list of triggers from the server.

Class

TCustomMyConnection

Syntax

procedure GetTriggerNames(List: _TStrings; AllTriggers: boolean =
False);
Parameters

List
A TStrings descendant that will be filled with the names of triggers in the database.

AllTriggers
True, if triggers from all databases are returned. False is only for the current database.

Remarks

Call the GetTriggerNames method to get the names of triggers. GetTriggerNames populates a string list
with the names of triggers in the database. If AllProcs = True, the procedure returns to the List
parameter the names of the triggers that belong to all databases; otherwise, List will contain the names
of triggers that belong to the current database.
Note: Any contents already in the target string list object are eliminated and overwritten by data
produced by GetTriggerNames.

See Also

 TCustomDAConnection.GetDatabaseNames
 M:Devart.Dac.TCustomDAConnection.GetTableNames(Borland.Vcl.TStrings,System.Boolean)
 TCustomDAConnection.GetStoredProcNames

© 1997-2012 Devart. All Rights Reserved.

387Data Access Components for MySQL

Allows to avoid automatic disconnection of the client by the server.

Class

TCustomMyConnection

Syntax

procedure Ping;

Remarks

Call the Ping method if your application has a long time intervals between accessing the server. Ping
allows to avoid automatic disconnection of the client by the server. You can read the details at MySQL
Reference Manual (mysql_ping and wait_timeout)

© 1997-2012 Devart. All Rights Reserved.

Releases the specified savepoint without affecting any work that has been performed after its creation.

Class

TCustomMyConnection

Syntax

procedure ReleaseSavepoint(const Name: string);
Parameters

Name
Holds the savepoint name.

Remarks

Call the ReleaseSavepoint method to release the specified savepoint without affecting any work that has
been performed after its creation.

See Also

 RollbackToSavepoint
 Savepoint

© 1997-2012 Devart. All Rights Reserved.

Cancels all updates for the current transaction.

Class

TCustomMyConnection

Syntax

procedure RollbackToSavepoint(const Name: string);
Parameters

Name
Holds the name identifying the last defined savepoint.

Remarks

Call the RollbackToSavepoint method to cancel all updates for the current transaction and restore its
state up to the moment of the last defined savepoint.

See Also

 Savepoint
 TCustomDAConnection.Rollback
 ReleaseSavepoint

Data Access Components for MySQL388

© 1997-2012 Devart. All Rights Reserved.

Defines a point in the transaction to which you can roll back later.

Class

TCustomMyConnection

Syntax

procedure Savepoint(const Name: string);
Parameters

Name
Holds the name of the savepoint.

Remarks

Call the Savepoint method to define a point in the transaction to which you can roll back later. As the
parameter, you can pass any valid name to identify the savepoint.
To roll back to the last savepoint call RollbackToSavepoint.

See Also

 RollbackToSavepoint
 ReleaseSavepoint

© 1997-2012 Devart. All Rights Reserved.

17.15.1.2 MyAccess.TCustomMyConnectionOptions Class

This class allows setting up the behaviour of the TCustomMyConnection class.
For a list of all members of this type, see TCustomMyConnectionOptions members.

Unit

MyAccess

Syntax

TCustomMyConnectionOptions = class(TDAConnectionOptions);

Inheritance Hierarchy

TObject
 TDAConnectionOptions
 TCustomMyConnectionOptions

© 1997-2012 Devart. All Rights Reserved.

TCustomMyConnectionOptions class overview.

Properties

Name Description

Charset Used to set a character set used by
the client.

DefaultSortType (inherited from TDAConnectionOptions) Used to determine the default type
of local sorting for string fields. It is
used when a sort type is not
specified explicitly after the field
name in the TMemDataSet.
IndexFieldNames property of a
dataset.

DisconnectedMode (inherited from TDAConnectionOptions) Used to open a connection only
when needed for performing a
server call and closes after
performing the operation.

389Data Access Components for MySQL

KeepDesignConnected (inherited from
TDAConnectionOptions)

Used to prevent an application from
establishing a connection at the
time of startup.

LocalFailover (inherited from TDAConnectionOptions) If True, the TCustomDAConnection.
OnConnectionLost event occurs and
a failover operation can be
performed after connection breaks.

NullForZeroDelphiDate Used to hide the '30-12-1899'
dates.

NumericType Used to specify the format of
storing and representation of the
NUMERIC (DECIMAL) fields for all
TCustomMyDataSets, associated
with the given connection.

OptimizedBigInt Used to convert all fields with field
length less than 11 of
TLargeIntField type into
TIntegerField.

UseUnicode Used to inform server that all data
between client and server sides will
be passed in Utf8 coding.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TCustomMyConnectionOptions class.
For a complete list of the TCustomMyConnectionOptions class members, see the
TCustomMyConnectionOptions Members topic.

Public

Name Description

Charset Used to set a character set used by
the client.

DefaultSortType (inherited from TDAConnectionOptions) Used to determine the default type
of local sorting for string fields. It is
used when a sort type is not
specified explicitly after the field
name in the TMemDataSet.
IndexFieldNames property of a
dataset.

DisconnectedMode (inherited from TDAConnectionOptions) Used to open a connection only
when needed for performing a
server call and closes after
performing the operation.

KeepDesignConnected (inherited from
TDAConnectionOptions)

Used to prevent an application from
establishing a connection at the
time of startup.

LocalFailover (inherited from TDAConnectionOptions) If True, the TCustomDAConnection.
OnConnectionLost event occurs and
a failover operation can be
performed after connection breaks.

NullForZeroDelphiDate Used to hide the '30-12-1899'
dates.

NumericType Used to specify the format of
storing and representation of the
NUMERIC (DECIMAL) fields for all
TCustomMyDataSets, associated
with the given connection.

OptimizedBigInt Used to convert all fields with field
length less than 11 of
TLargeIntField type into
TIntegerField.

Data Access Components for MySQL390

UseUnicode Used to inform server that all data
between client and server sides will
be passed in Utf8 coding.

See Also
 TCustomMyConnectionOptions Class
 TCustomMyConnectionOptions Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to set a character set used by the client.

Class

TCustomMyConnectionOptions

Syntax

property Charset: string;

Remarks

Use the Charset property to set a character set used by the client. Actually, if this property is enabled,
then the "SET NAMES <Charset>" query is executed on establishing a connection. If the UseUnicode
property is set, the Charset property will be ignored. The list of available character sets you can see by
executing the TCustomMyConnection.GetCharsetNames method.

© 1997-2012 Devart. All Rights Reserved.

Used to hide the '30-12-1899' dates.

Class

TCustomMyConnectionOptions

Syntax

property NullForZeroDelphiDate: boolean default False;

Remarks

Use the NullForZeroDelphiDate property to hide the '30-12-1899' dates.
If NullForZeroDelphiDate is set to True, the values of all datetime fields will be changed to Null. If the
property is set to False, the '30-12-1899' value will be used as an ordinary date. The default value is
False.

© 1997-2012 Devart. All Rights Reserved.

Used to specify the format of storing and representation of the NUMERIC (DECIMAL) fields for all
TCustomMyDataSets, associated with the given connection.

Class

TCustomMyConnectionOptions

Syntax

property NumericType: TDANumericType default ntFloat;

Remarks

Use the NumericType property to specify the format of storing and representation of the NUMERIC
(DECIMAL) fields for all TCustomMyDataSets, associated with the given connection.

© 1997-2012 Devart. All Rights Reserved.

391Data Access Components for MySQL

Used to convert all fields with field length less than 11 of TLargeIntField type into TIntegerField.

Class

TCustomMyConnectionOptions

Syntax

property OptimizedBigInt: boolean default False;

Remarks

Setting this option converts all fields with field length less than 11 of TLargeIntField type into
TIntegerField. This allows to process fields that are results of numeric function or cast values as usual
Integer fields. The default value is False.

© 1997-2012 Devart. All Rights Reserved.

Used to inform server that all data between client and server sides will be passed in Utf8 coding.

Class

TCustomMyConnectionOptions

Syntax

property UseUnicode: boolean default False;

Remarks

Informs server that all data between client and server sides will be passed in Utf8 coding. Setting this
option converts all fields of the TStringField type into TWideStringField that allows to work correctly with
symbols of almost all languages simultaneously. On the other hand, it causes a delay in working. If the
UseUnicode property is enabled, the Charset property will be ignored. The default value is False.

© 1997-2012 Devart. All Rights Reserved.

17.15.1.3 MyAccess.TCustomMyDataSet Class

A base class defining functionality for the classes derived from it.
For a list of all members of this type, see TCustomMyDataSet members.

Unit

MyAccess

Syntax

TCustomMyDataSet = class(TCustomDADataSet);

Remarks

TCustomMyDataSet is a base dataset component that defines functionality for classes derived from it.
Applications never use TCustomMyDataSet objects directly. Instead they use descendants of
TCustomMyDataSet, such as TMyQuery and TMyTable that inherit its dataset-related properties and
methods.

Inheritance Hierarchy

TObject
 TMemDataSet
 TCustomDADataSet
 TCustomMyDataSet

See Also

 TMyQuery
 TCustomMyTable
 Master/Detail Relationships

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL392

TCustomMyDataSet class overview.

Properties

Name Description

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CommandTimeout Used to specify the amount of time
to attempt execution of a
command.

Connection Used to specify a connection object
that will be used to connect to a
data store.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its parameters'
values, and the type of parameters.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet) Used to keep dataset opened after
connection is closed.

Encryption (inherited from TCustomDADataSet) Used to specify the options of the
data encryption in a dataset.

FetchAll Description is not available at the
moment.

FetchRows (inherited from TCustomDADataSet) Used to define the number of rows
to be transferred across the
network at the same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE clause
of SELECT statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

InsertId Returns the ID generated for an
AUTO_INCREMENT column by the
previous query.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

LockMode Specifies when to perform locking
of an editing record.

MacroCount (inherited from TCustomDADataSet) Used to get the number of macros
associated with the Macros
property.

393Data Access Components for MySQL

Macros (inherited from TCustomDADataSet) Makes it possible to change SQL
queries easily.

MasterFields (inherited from TCustomDADataSet) Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

MasterSource (inherited from TCustomDADataSet) Used to specify the data source
component which binds current
dataset to the master one.

Options Specifies the behaviour of
TCustomMyDataSet object.

ParamCheck (inherited from TCustomDADataSet) Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

ParamCount (inherited from TCustomDADataSet) Used to indicate how many
parameters are there in the Params
property.

Params (inherited from TCustomDADataSet) Used to view and set parameter
names, values, and data types
dynamically.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or deleting data
in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the editing
record is refreshed.

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SQL (inherited from TCustomDADataSet) Used to provide a SQL statement
that a query component executes
when its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying a
deletion to a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to perform a
record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying an
update to a dataset.

UniDirectional (inherited from TCustomDADataSet) Used if an application does not need
bidirectional access to records in
the result set.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

Data Access Components for MySQL394

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

Methods

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

CreateBlobStream (inherited from TCustomDADataSet) Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteWhere (inherited from TCustomDADataSet) Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

Execute (inherited from TCustomDADataSet) Executes a SQL statement on the
server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL statement is
still being executed.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has already
fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still fetching
rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a specified macro
exists in a dataset.

FindNearest (inherited from TCustomDADataSet) Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomDADataSet) Determines if a parameter with the
specified name exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet) Returns internal field types defined
in the MemData and accompanying
modules.

GetFieldEnum Retrieve the list of acceptable
values for a specified field given by
the FieldName parameter.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference shared
object from field.

395Data Access Components for MySQL

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a number
field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a number
field.

GetOrderBy (inherited from TCustomDADataSet) Retrieves an ORDER BY clause from
a SQL statement.

GotoCurrent (inherited from TCustomDADataSet) Sets the current record in this
dataset similar to the current record
in another dataset.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Lock Overloaded. Locks the current
record for the current connection.

LockTable Locks table for the current
connection.

MacroByName (inherited from TCustomDADataSet) Finds a Macro with the name passed
in Name.

ParamByName (inherited from TCustomDADataSet) Sets or uses parameter information
for a specific parameter based on
its name.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses cursor
for a query.

RefreshQuick Retrieves changes posted to the
server by another clients on the
client side quickly.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for the
current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property modified
by AddWhere and SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property value to
BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause of a
SELECT statement.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL property
value was saved to the BaseSQL
property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnLockTable Releases a table locked by the
TCustomMyDataSet.LockTable
method.

Data Access Components for MySQL396

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

Events

Name Description

AfterExecute (inherited from TCustomDADataSet) Occurs after a component has
executed a query to database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from TCustomDADataSet) Occurs after executing insert,
delete, update, lock and refresh
operations.

BeforeFetch (inherited from TCustomDADataSet) Occurs before dataset is going to
fetch block of records from the
server.

BeforeUpdateExecute (inherited from TCustomDADataSet) Occurs before executing insert,
delete, update, lock, and refresh
operations.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TCustomMyDataSet class.
For a complete list of the TCustomMyDataSet class members, see the TCustomMyDataSet Members
topic.

Public

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

AfterExecute (inherited from TCustomDADataSet) Occurs after a component has
executed a query to database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from TCustomDADataSet) Occurs after executing insert,
delete, update, lock and refresh
operations.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

BeforeFetch (inherited from TCustomDADataSet) Occurs before dataset is going to
fetch block of records from the
server.

397Data Access Components for MySQL

BeforeUpdateExecute (inherited from TCustomDADataSet) Occurs before executing insert,
delete, update, lock, and refresh
operations.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommandTimeout Used to specify the amount of time
to attempt execution of a
command.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

Connection Used to specify a connection object
that will be used to connect to a
data store.

CreateBlobStream (inherited from TCustomDADataSet) Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its parameters'
values, and the type of parameters.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteWhere (inherited from TCustomDADataSet) Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet) Used to keep dataset opened after
connection is closed.

Encryption (inherited from TCustomDADataSet) Used to specify the options of the
data encryption in a dataset.

Execute (inherited from TCustomDADataSet) Executes a SQL statement on the
server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL statement is
still being executed.

FetchAll Description is not available at the
moment.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has already
fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still fetching
rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

FetchRows (inherited from TCustomDADataSet) Used to define the number of rows
to be transferred across the
network at the same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE clause
of SELECT statement and reopen a
query.

Data Access Components for MySQL398

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a specified macro
exists in a dataset.

FindNearest (inherited from TCustomDADataSet) Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomDADataSet) Determines if a parameter with the
specified name exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet) Returns internal field types defined
in the MemData and accompanying
modules.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference shared
object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a number
field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a number
field.

GetOrderBy (inherited from TCustomDADataSet) Retrieves an ORDER BY clause from
a SQL statement.

GotoCurrent (inherited from TCustomDADataSet) Sets the current record in this
dataset similar to the current record
in another dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

InsertId Returns the ID generated for an
AUTO_INCREMENT column by the
previous query.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

399Data Access Components for MySQL

LockMode Specifies when to perform locking
of an editing record.

MacroByName (inherited from TCustomDADataSet) Finds a Macro with the name passed
in Name.

MacroCount (inherited from TCustomDADataSet) Used to get the number of macros
associated with the Macros
property.

Macros (inherited from TCustomDADataSet) Makes it possible to change SQL
queries easily.

MasterFields (inherited from TCustomDADataSet) Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

MasterSource (inherited from TCustomDADataSet) Used to specify the data source
component which binds current
dataset to the master one.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

Options Specifies the behaviour of
TCustomMyDataSet object.

ParamByName (inherited from TCustomDADataSet) Sets or uses parameter information
for a specific parameter based on
its name.

ParamCheck (inherited from TCustomDADataSet) Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

ParamCount (inherited from TCustomDADataSet) Used to indicate how many
parameters are there in the Params
property.

Params (inherited from TCustomDADataSet) Used to view and set parameter
names, values, and data types
dynamically.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses cursor
for a query.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or deleting data
in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the editing
record is refreshed.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for the
current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property modified
by AddWhere and SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

Data Access Components for MySQL400

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property value to
BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause of a
SELECT statement.

SQL (inherited from TCustomDADataSet) Used to provide a SQL statement
that a query component executes
when its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying a
deletion to a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to perform a
record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL property
value was saved to the BaseSQL
property.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying an
update to a dataset.

UniDirectional (inherited from TCustomDADataSet) Used if an application does not need
bidirectional access to records in
the result set.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

See Also
 TCustomMyDataSet Class
 TCustomMyDataSet Class Members

401Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Used to specify the amount of time to attempt execution of a command.

Class

TCustomMyDataSet

Syntax

property CommandTimeout: integer default 0;

Remarks

Use the CommandTimeoutr property to specify the amount of time to attempt execution of a command.
Use CommandTimeout to specify the amount of time that expires before an attempt to execute a
command is considered unsuccessful. Is measured in seconds.
If a command is successfully executed prior to the expiration of the seconds specified, CommandTimeout
has no effect.
In the case of exceeding waiting time error CR_SERVER_LOST 'Lost connection to MySQL server during
query' raises.
The default value is 0 (infinite).

See Also

 TCustomMyConnection.ConnectionTimeout
 TMyCommand.CommandTimeout

© 1997-2012 Devart. All Rights Reserved.

Used to specify a connection object that will be used to connect to a data store.

Class

TCustomMyDataSet

Syntax

property Connection: TCustomMyConnection;

Remarks

Use the Connection property to specify a connection object that will be used to connect to a data store.
Set at design-time by selecting from the list of provided TCustomMyConnection objects.
At runtime, set the Connection property to reference an existing TCustomMyConnection object.

See Also

 TCustomMyConnection

© 1997-2012 Devart. All Rights Reserved.

Class

TCustomMyDataSet

Syntax

property FetchAll: boolean default True;

Remarks

The default value is True.
Note: When setting TCustomMyDataSet.FetchAll = False you should keep in mind that execution of such
queries blocks current session. By default MyDAC will create additional session if it is necessary. But this
can cause the following problems:
 Each additional session runs outside the transaction context thus TMyConnection.

Data Access Components for MySQL402

TCustomDAConnection.Commit and TMyConnection.TCustomDAConnection.Rollback operations in
main session won't apply changes made in additional sessions.

 Temporary tables created in one session are not accessible from other sessions, therefore
simultaneous using of FetchAll = False and temporary tables is impossible.

 TCustomMyDataSet.Lock cannot be used
 LockTable cannot be used

In order to avoid creating additional connection you can set Options to False.

© 1997-2012 Devart. All Rights Reserved.

Returns the ID generated for an AUTO_INCREMENT column by the previous query.

Class

TCustomMyDataSet

Syntax

property InsertId: int64;

Remarks

Use the InsertId property to return the ID generated for an AUTO_INCREMENT column by the previous
query. Use this function after you have performed an INSERT query into a table that contains an
AUTO_INCREMENT field.
If the query does not perform an insertion into a table that contains an AUTO_INCREMENT field the
value of InsertId won't be defined.
InsertId property has sense only if SQL includes INSERT statement within itself. In case of SELECT
statements, the value of auto-increment field can be obtained from corresponding table fields.

See Also

 TCustomDADataSet.Execute

© 1997-2012 Devart. All Rights Reserved.

Specifies when to perform locking of an editing record.

Class

TCustomMyDataSet

Syntax

property LockMode: TLockMode;

Remarks

Use the LockMode property to define what kind of lock will be performed when editing a record. Locking
a record is useful in creating multi-user applications. It prevents modification of a record by several
users at the same time.

© 1997-2012 Devart. All Rights Reserved.

Specifies the behaviour of TCustomMyDataSet object.

Class

TCustomMyDataSet

Syntax

property Options: TMyDataSetOptions;

Remarks

Set the properties of Options to specify the behaviour of a TCustomMyDataSet object.
Descriptions of all options are in the table below.

Option Name Description

403Data Access Components for MySQL

AutoPrepare Used to execute automatic TCustomDADataSet.
Prepare on a query execution.

AutoRefresh Used to automatically refresh dataset every
AutoRefreshInterval seconds.

AutoRefreshInterval Used to define in what time interval in seconds
the Refresh or RefreshQuick method of a DataSet
is called.

BinaryAsString Used to specify a method of representation of
the BINARY and VARBINARY fields.

CheckRowVersion Used to determine whether a dataset checks for
rows modifications made by another user on
automatic generation of SQL statement for
update or delete data.

CreateConnection Used to specify if an additional connection to a
server should be established to execute an
additional query in the FetchAll=False mode.

DefaultValues Used to fill the DefaultExpression property of
TField objects with appropriate value.

EnableBoolean Used to specify the method of representation of
the TINYINT(1) fields.

FieldsAsString Used to store all non-BLOB fields as string
(native MySQL format).

FieldsOrigin Used to fill the Origin property of TField objects
with appropriate value.

FullRefresh Used to specify the fields to include in
automatically generated SQL statement when
calling the TCustomDADataSet.RefreshRecord
method. Default value is false.

NullForZeroDate Used for MySQL server to represent the value for
for datetime fields with invalid values as Null or
'0001-01-01' ('0100-01-01' for CLR).

NumberRange Used to set the MaxValue and MinValue
properties of TIntegerField and TFloatField to
appropriate values.

QueryRecCount Used for TCustomDADataSet to perform
additional query to get record count for this
SELECT so the RecordCount property reflects the
actual number of records.

QuoteNames Used for TCustomMyDataSet to quote all field
names in autogenerated SQL statements.

RemoveOnRefresh Used for dataset to remove a record locally if the
RefreshRecord procedure can't find necessary
record on the server.

RequiredFields Used for TCustomDADataSet to set the Required
property of TField objects for NOT NULL fields.

ReturnParams Used to return the new value of the fields to
dataset after insert or update.

SetFieldsReadOnly Used to specify whether fields not belonging to
the current updating table get read-only
attribute.

StrictUpdate Used for TCustomDADataSet to raise an
exception when the number of updated or
deleted records does not equal 1.

TrimFixedChar Used to specify whether to discard all trailing
spaces in string fields of the dataset.

©

Data Access Components for MySQL404

 1997-2012 Devart. All Rights Reserved.

Methods of the TCustomMyDataSet class.
For a complete list of the TCustomMyDataSet class members, see the TCustomMyDataSet Members
topic.

Public

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

AfterExecute (inherited from TCustomDADataSet) Occurs after a component has
executed a query to database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from TCustomDADataSet) Occurs after executing insert,
delete, update, lock and refresh
operations.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

BeforeFetch (inherited from TCustomDADataSet) Occurs before dataset is going to
fetch block of records from the
server.

BeforeUpdateExecute (inherited from TCustomDADataSet) Occurs before executing insert,
delete, update, lock, and refresh
operations.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

Connection (inherited from TCustomDADataSet) Used to specify a connection object
to use to connect to a data store.

CreateBlobStream (inherited from TCustomDADataSet) Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its parameters'
values, and the type of parameters.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteWhere (inherited from TCustomDADataSet) Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet) Used to keep dataset opened after
connection is closed.

Encryption (inherited from TCustomDADataSet) Used to specify the options of the
data encryption in a dataset.

405Data Access Components for MySQL

Execute (inherited from TCustomDADataSet) Executes a SQL statement on the
server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL statement is
still being executed.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has already
fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still fetching
rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

FetchRows (inherited from TCustomDADataSet) Used to define the number of rows
to be transferred across the
network at the same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE clause
of SELECT statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a specified macro
exists in a dataset.

FindNearest (inherited from TCustomDADataSet) Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomDADataSet) Determines if a parameter with the
specified name exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet) Returns internal field types defined
in the MemData and accompanying
modules.

GetFieldEnum Retrieve the list of acceptable
values for a specified field given by
the FieldName parameter.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference shared
object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a number
field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a number
field.

GetOrderBy (inherited from TCustomDADataSet) Retrieves an ORDER BY clause from
a SQL statement.

GotoCurrent (inherited from TCustomDADataSet) Sets the current record in this
dataset similar to the current record
in another dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

Data Access Components for MySQL406

KeyFields (inherited from TCustomDADataSet) Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Lock Overloaded. Locks the current
record for the current connection.

LockTable Locks table for the current
connection.

MacroByName (inherited from TCustomDADataSet) Finds a Macro with the name passed
in Name.

MacroCount (inherited from TCustomDADataSet) Used to get the number of macros
associated with the Macros
property.

Macros (inherited from TCustomDADataSet) Makes it possible to change SQL
queries easily.

MasterFields (inherited from TCustomDADataSet) Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

MasterSource (inherited from TCustomDADataSet) Used to specify the data source
component which binds current
dataset to the master one.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

Options (inherited from TCustomDADataSet) Used to specify the behaviour of
TCustomDADataSet object.

ParamByName (inherited from TCustomDADataSet) Sets or uses parameter information
for a specific parameter based on
its name.

ParamCheck (inherited from TCustomDADataSet) Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

ParamCount (inherited from TCustomDADataSet) Used to indicate how many
parameters are there in the Params
property.

Params (inherited from TCustomDADataSet) Used to view and set parameter
names, values, and data types
dynamically.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses cursor
for a query.

407Data Access Components for MySQL

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or deleting data
in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the editing
record is refreshed.

RefreshQuick Retrieves changes posted to the
server by another clients on the
client side quickly.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for the
current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property modified
by AddWhere and SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property value to
BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause of a
SELECT statement.

SQL (inherited from TCustomDADataSet) Used to provide a SQL statement
that a query component executes
when its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying a
deletion to a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to perform a
record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL property
value was saved to the BaseSQL
property.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying an
update to a dataset.

UniDirectional (inherited from TCustomDADataSet) Used if an application does not need
bidirectional access to records in
the result set.

Data Access Components for MySQL408

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnLockTable Releases a table locked by the
TCustomMyDataSet.LockTable
method.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

See Also
 TCustomMyDataSet Class
 TCustomMyDataSet Class Members

© 1997-2012 Devart. All Rights Reserved.

Retrieve the list of acceptable values for a specified field given by the FieldName parameter.

Class

TCustomMyDataSet

Syntax

procedure GetFieldEnum(List: _TStrings; FieldName: string;
TableName: string = '');
Parameters

List
holds the list of acceptable values for a specified field.

FieldName
Holds the field name.

TableName
Holds the table name.

Remarks

Call the GetFieldEnum method to retrieve the list of acceptable values for a specified field given by the
FieldName parameter. Field should be of the ENUM or the SET type. If GetFieldEnum is called with the
TableName parameter empty, TCustomMyDataSet tries to determine table name searching
corresponding field name in the fields requested from server.

Example

The code presented in Example 1) demonstrates the usage of the GetFieldEnum method. This code can
be tested on the sample table presented in Example 2). The result output in memo is shown in Example
3).

Example 1)
MyQuery.SQL.Text := 'SELECT `id`, `SET_column` FROM tb_with_set_column';
MyQuery.Open;
MyQuery.GetFieldEnum(Memo.Lines, 'SET_column');
Example 2)

409Data Access Components for MySQL

DROP TABLE if EXISTS tb_enum;
CREATE TABLE `tb_enum` (
`uid` INT(11) not NULL PRIMARY KEY AUTO_INCREMENT,
`c_enum` ENUM('value1','value2','value3') DEFAULT NULL
);
Example 3)
value1
value2
value3

© 1997-2012 Devart. All Rights Reserved.

Locks the current record for the current connection.

Class

TCustomMyDataSet

Overload List

Name Description

Lock Locks the current record for the current
connection.

Lock(LockType: TLockRecordType) Locks the current record for the current
connection.

© 1997-2012 Devart. All Rights Reserved.

Locks the current record for the current connection.

Class

TCustomMyDataSet

Syntax

procedure Lock; overload; override

Remarks

Locks the current record for the current connection. Serves to prevent simultaneous editing of the same
record by several users. Makes sense only for InnoDB tables and can be called only inside transaction
context.
If any other connection tries to modify the locked record, it will wait for the time specified by
innodb_lock_wait_timeout server variable, by default 50 seconds.If during this time the record will not
be unlocked, an exception raises.
The record is unlocked on finishing transaction (Commit or Rollback).
Note: This method is uncompatible with the TCustomMyDataSet.FetchAll property set to False.
Lock can be used only with queries returning resultset.

See Also

 TCustomDAConnection.StartTransaction
 TCustomDAConnection.Commit
 TCustomDAConnection.Rollback
 TCustomMyDataSet.LockTable

© 1997-2012 Devart. All Rights Reserved.

Locks the current record for the current connection.

Class

TCustomMyDataSet

Data Access Components for MySQL410

Syntax

procedure Lock(LockType: TLockRecordType); reintroduce; overload
Parameters

LockType
Holds the type of the record locking.

© 1997-2012 Devart. All Rights Reserved.

Locks table for the current connection.

Class

TCustomMyDataSet

Syntax

procedure LockTable(LockType: TLockType);
Parameters

LockType
Specifies the type of the table locking.

Remarks

Call the LockTable method to lock table for the current connection. The main purpose of this method is
to speed up working with the table.
Table can be released on:
 calling UnlockTable;
 closing connection;
 calling LockTable once more for the same connection.

If a query has several tables then a table specified in TMyQuery.UpdatingTable is used.
Note: This method is uncompatible with the FetchAll property set to False.

See Also

 UnLockTable
 TCustomMyDataSet.Lock

© 1997-2012 Devart. All Rights Reserved.

Retrieves changes posted to the server by another clients on the client side quickly.

Class

TCustomMyDataSet

Syntax

procedure RefreshQuick(const CheckDeleted: boolean);
Parameters

CheckDeleted
True, if records deleted by another clients will be checked additionally.

Remarks

Call the RefreshQuick method to retrieve changes posted to the server by another clients on the client
side quickly. The main difference from the Refresh method is that not all data corresponding to the
query is retrieved on the client, but only the rows which were added or modified at the moment of the
last update. A necessity of data inquiry for each row is defined by TIMESTAMP field.
If CheckDeleted parameter set to True records deleted by another clients will be checked additionally.
For RefreshQuick to work it is necessary that a query includes unique key fields and TIMESTAMP field.
This method is especially effective for queries with huge data level in the single row.
Note: If RefreshQuick is called for a dataset which is ordered on the server (query includes the ORDER
BY clause), dataset records ordering can be violated because not all records will be retrieved by this
method. You can use local ordering to solve this problem. For more information about local ordering, see

411Data Access Components for MySQL

the TMemDataSet.IndexFieldNames property description.

© 1997-2012 Devart. All Rights Reserved.

Releases a table locked by the LockTable method.

Class

TCustomMyDataSet

Syntax

procedure UnLockTable;

Remarks

Call the UnLockTable method to release a table locked by LockTable.

See Also

 LockTable
 TCustomMyDataSet.Lock

© 1997-2012 Devart. All Rights Reserved.

17.15.1.4 MyAccess.TCustomMyStoredProc Class

A class implementing functionality to access stored procedures on a database server.
For a list of all members of this type, see TCustomMyStoredProc members.

Unit

MyAccess

Syntax

TCustomMyStoredProc = class(TCustomMyDataSet);

Remarks

TCustomMyStoredProc implements functionality to access stored procedures on a database server.
You need only to define the StoredProcName property, while not bothering about writing a SQL
statement manually.
Use the Execute method at runtime to generate a request that instructs server to execute procedure and
return parameters in the Params property.

Stored procedures are supported only for MySQL 5.0.

Inheritance Hierarchy

TObject
 TMemDataSet
 TCustomDADataSet
 TCustomMyDataSet
 TCustomMyStoredProc

See Also

 TCustomMyDataSet
 TMyStoredProc

© 1997-2012 Devart. All Rights Reserved.

TCustomMyStoredProc class overview.

Properties

Name Description

Data Access Components for MySQL412

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CommandTimeout (inherited from TCustomMyDataSet) Used to specify the amount of time
to attempt execution of a
command.

Connection (inherited from TCustomMyDataSet) Used to specify a connection object
that will be used to connect to a
data store.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its parameters'
values, and the type of parameters.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet) Used to keep dataset opened after
connection is closed.

Encryption (inherited from TCustomDADataSet) Used to specify the options of the
data encryption in a dataset.

FetchAll (inherited from TCustomMyDataSet) Description is not available at the
moment.

FetchRows (inherited from TCustomDADataSet) Used to define the number of rows
to be transferred across the
network at the same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE clause
of SELECT statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

InsertId (inherited from TCustomMyDataSet) Returns the ID generated for an
AUTO_INCREMENT column by the
previous query.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

LockMode (inherited from TCustomMyDataSet) Specifies when to perform locking
of an editing record.

MacroCount (inherited from TCustomDADataSet) Used to get the number of macros
associated with the Macros
property.

Macros (inherited from TCustomDADataSet) Makes it possible to change SQL
queries easily.

413Data Access Components for MySQL

MasterFields (inherited from TCustomDADataSet) Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

MasterSource (inherited from TCustomDADataSet) Used to specify the data source
component which binds current
dataset to the master one.

Options (inherited from TCustomMyDataSet) Specifies the behaviour of
TCustomMyDataSet object.

ParamCheck (inherited from TCustomDADataSet) Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

ParamCount (inherited from TCustomDADataSet) Used to indicate how many
parameters are there in the Params
property.

Params (inherited from TCustomDADataSet) Used to view and set parameter
names, values, and data types
dynamically.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or deleting data
in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the editing
record is refreshed.

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SQL (inherited from TCustomDADataSet) Used to provide a SQL statement
that a query component executes
when its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying a
deletion to a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to perform a
record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying an
update to a dataset.

StoredProcName Used to specify the name of the
stored procedure to call on the
server.

UniDirectional (inherited from TCustomDADataSet) Used if an application does not need
bidirectional access to records in
the result set.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

Data Access Components for MySQL414

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

Methods

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

CreateBlobStream (inherited from TCustomDADataSet) Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteWhere (inherited from TCustomDADataSet) Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

ExecProc Executes a SQL statement on the
server.

Execute (inherited from TCustomDADataSet) Executes a SQL statement on the
server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL statement is
still being executed.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has already
fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still fetching
rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a specified macro
exists in a dataset.

FindNearest (inherited from TCustomDADataSet) Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomDADataSet) Determines if a parameter with the
specified name exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet) Returns internal field types defined
in the MemData and accompanying
modules.

GetFieldEnum (inherited from TCustomMyDataSet) Retrieve the list of acceptable
values for a specified field given by
the FieldName parameter.

415Data Access Components for MySQL

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference shared
object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a number
field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a number
field.

GetOrderBy (inherited from TCustomDADataSet) Retrieves an ORDER BY clause from
a SQL statement.

GotoCurrent (inherited from TCustomDADataSet) Sets the current record in this
dataset similar to the current record
in another dataset.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Lock (inherited from TCustomMyDataSet) Overloaded. Locks the current
record for the current connection.

LockTable (inherited from TCustomMyDataSet) Locks table for the current
connection.

MacroByName (inherited from TCustomDADataSet) Finds a Macro with the name passed
in Name.

ParamByName (inherited from TCustomDADataSet) Sets or uses parameter information
for a specific parameter based on
its name.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses cursor
for a query.

PrepareSQL Builds a query for
TCustomMyStoredProc based on the
Params and StoredProcName
properties, and assigns it to the
SQL property.

RefreshQuick (inherited from TCustomMyDataSet) Retrieves changes posted to the
server by another clients on the
client side quickly.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for the
current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property modified
by AddWhere and SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property value to
BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause of a
SELECT statement.

Data Access Components for MySQL416

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL property
value was saved to the BaseSQL
property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnLockTable (inherited from TCustomMyDataSet) Releases a table locked by the
TCustomMyDataSet.LockTable
method.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

Events

Name Description

AfterExecute (inherited from TCustomDADataSet) Occurs after a component has
executed a query to database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from TCustomDADataSet) Occurs after executing insert,
delete, update, lock and refresh
operations.

BeforeFetch (inherited from TCustomDADataSet) Occurs before dataset is going to
fetch block of records from the
server.

BeforeUpdateExecute (inherited from TCustomDADataSet) Occurs before executing insert,
delete, update, lock, and refresh
operations.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TCustomMyStoredProc class.
For a complete list of the TCustomMyStoredProc class members, see the TCustomMyStoredProc
Members topic.

Public

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

AfterExecute (inherited from TCustomDADataSet) Occurs after a component has
executed a query to database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from TCustomDADataSet) Occurs after executing insert,
delete, update, lock and refresh
operations.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

417Data Access Components for MySQL

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

BeforeFetch (inherited from TCustomDADataSet) Occurs before dataset is going to
fetch block of records from the
server.

BeforeUpdateExecute (inherited from TCustomDADataSet) Occurs before executing insert,
delete, update, lock, and refresh
operations.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommandTimeout (inherited from TCustomMyDataSet) Used to specify the amount of time
to attempt execution of a
command.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

Connection (inherited from TCustomMyDataSet) Used to specify a connection object
that will be used to connect to a
data store.

CreateBlobStream (inherited from TCustomDADataSet) Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its parameters'
values, and the type of parameters.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteWhere (inherited from TCustomDADataSet) Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet) Used to keep dataset opened after
connection is closed.

Encryption (inherited from TCustomDADataSet) Used to specify the options of the
data encryption in a dataset.

Execute (inherited from TCustomDADataSet) Executes a SQL statement on the
server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL statement is
still being executed.

FetchAll (inherited from TCustomMyDataSet) Description is not available at the
moment.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has already
fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still fetching
rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

FetchRows (inherited from TCustomDADataSet) Used to define the number of rows
to be transferred across the
network at the same time.

Data Access Components for MySQL418

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE clause
of SELECT statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a specified macro
exists in a dataset.

FindNearest (inherited from TCustomDADataSet) Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomDADataSet) Determines if a parameter with the
specified name exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet) Returns internal field types defined
in the MemData and accompanying
modules.

GetFieldEnum (inherited from TCustomMyDataSet) Retrieve the list of acceptable
values for a specified field given by
the FieldName parameter.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference shared
object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a number
field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a number
field.

GetOrderBy (inherited from TCustomDADataSet) Retrieves an ORDER BY clause from
a SQL statement.

GotoCurrent (inherited from TCustomDADataSet) Sets the current record in this
dataset similar to the current record
in another dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

InsertId (inherited from TCustomMyDataSet) Returns the ID generated for an
AUTO_INCREMENT column by the
previous query.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

419Data Access Components for MySQL

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Lock (inherited from TCustomMyDataSet) Overloaded. Locks the current
record for the current connection.

LockMode (inherited from TCustomMyDataSet) Specifies when to perform locking
of an editing record.

LockTable (inherited from TCustomMyDataSet) Locks table for the current
connection.

MacroByName (inherited from TCustomDADataSet) Finds a Macro with the name passed
in Name.

MacroCount (inherited from TCustomDADataSet) Used to get the number of macros
associated with the Macros
property.

Macros (inherited from TCustomDADataSet) Makes it possible to change SQL
queries easily.

MasterFields (inherited from TCustomDADataSet) Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

MasterSource (inherited from TCustomDADataSet) Used to specify the data source
component which binds current
dataset to the master one.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

Options (inherited from TCustomMyDataSet) Specifies the behaviour of
TCustomMyDataSet object.

ParamByName (inherited from TCustomDADataSet) Sets or uses parameter information
for a specific parameter based on
its name.

ParamCheck (inherited from TCustomDADataSet) Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

ParamCount (inherited from TCustomDADataSet) Used to indicate how many
parameters are there in the Params
property.

Params (inherited from TCustomDADataSet) Used to view and set parameter
names, values, and data types
dynamically.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses cursor
for a query.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or deleting data
in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the editing
record is refreshed.

RefreshQuick (inherited from TCustomMyDataSet) Retrieves changes posted to the
server by another clients on the
client side quickly.

Data Access Components for MySQL420

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for the
current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property modified
by AddWhere and SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property value to
BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause of a
SELECT statement.

SQL (inherited from TCustomDADataSet) Used to provide a SQL statement
that a query component executes
when its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying a
deletion to a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to perform a
record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL property
value was saved to the BaseSQL
property.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying an
update to a dataset.

StoredProcName Used to specify the name of the
stored procedure to call on the
server.

UniDirectional (inherited from TCustomDADataSet) Used if an application does not need
bidirectional access to records in
the result set.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnLockTable (inherited from TCustomMyDataSet) Releases a table locked by the
TCustomMyDataSet.LockTable
method.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

421Data Access Components for MySQL

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

See Also
 TCustomMyStoredProc Class
 TCustomMyStoredProc Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify the name of the stored procedure to call on the server.

Class

TCustomMyStoredProc

Syntax

property StoredProcName: string;

Remarks

Use the StoredProcName property to specify the name of the stored procedure to call on the server. If
StoredProcName does not match the name of an existing stored procedure on the server, then when the
application attempts to prepare the procedure prior to execution, an exception is raised.

© 1997-2012 Devart. All Rights Reserved.

Methods of the TCustomMyStoredProc class.
For a complete list of the TCustomMyStoredProc class members, see the TCustomMyStoredProc
Members topic.

Public

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

AfterExecute (inherited from TCustomDADataSet) Occurs after a component has
executed a query to database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from TCustomDADataSet) Occurs after executing insert,
delete, update, lock and refresh
operations.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

BeforeFetch (inherited from TCustomDADataSet) Occurs before dataset is going to
fetch block of records from the
server.

BeforeUpdateExecute (inherited from TCustomDADataSet) Occurs before executing insert,
delete, update, lock, and refresh
operations.

Data Access Components for MySQL422

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommandTimeout (inherited from TCustomMyDataSet) Used to specify the amount of time
to attempt execution of a
command.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

Connection (inherited from TCustomMyDataSet) Used to specify a connection object
that will be used to connect to a
data store.

CreateBlobStream (inherited from TCustomDADataSet) Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its parameters'
values, and the type of parameters.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteWhere (inherited from TCustomDADataSet) Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet) Used to keep dataset opened after
connection is closed.

Encryption (inherited from TCustomDADataSet) Used to specify the options of the
data encryption in a dataset.

ExecProc Executes a SQL statement on the
server.

Execute (inherited from TCustomDADataSet) Executes a SQL statement on the
server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL statement is
still being executed.

FetchAll (inherited from TCustomMyDataSet) Description is not available at the
moment.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has already
fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still fetching
rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

FetchRows (inherited from TCustomDADataSet) Used to define the number of rows
to be transferred across the
network at the same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE clause
of SELECT statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

423Data Access Components for MySQL

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a specified macro
exists in a dataset.

FindNearest (inherited from TCustomDADataSet) Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomDADataSet) Determines if a parameter with the
specified name exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet) Returns internal field types defined
in the MemData and accompanying
modules.

GetFieldEnum (inherited from TCustomMyDataSet) Retrieve the list of acceptable
values for a specified field given by
the FieldName parameter.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference shared
object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a number
field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a number
field.

GetOrderBy (inherited from TCustomDADataSet) Retrieves an ORDER BY clause from
a SQL statement.

GotoCurrent (inherited from TCustomDADataSet) Sets the current record in this
dataset similar to the current record
in another dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

InsertId (inherited from TCustomMyDataSet) Returns the ID generated for an
AUTO_INCREMENT column by the
previous query.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Lock (inherited from TCustomMyDataSet) Overloaded. Locks the current
record for the current connection.

Data Access Components for MySQL424

LockMode (inherited from TCustomMyDataSet) Specifies when to perform locking
of an editing record.

LockTable (inherited from TCustomMyDataSet) Locks table for the current
connection.

MacroByName (inherited from TCustomDADataSet) Finds a Macro with the name passed
in Name.

MacroCount (inherited from TCustomDADataSet) Used to get the number of macros
associated with the Macros
property.

Macros (inherited from TCustomDADataSet) Makes it possible to change SQL
queries easily.

MasterFields (inherited from TCustomDADataSet) Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

MasterSource (inherited from TCustomDADataSet) Used to specify the data source
component which binds current
dataset to the master one.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

Options (inherited from TCustomMyDataSet) Specifies the behaviour of
TCustomMyDataSet object.

ParamByName (inherited from TCustomDADataSet) Sets or uses parameter information
for a specific parameter based on
its name.

ParamCheck (inherited from TCustomDADataSet) Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

ParamCount (inherited from TCustomDADataSet) Used to indicate how many
parameters are there in the Params
property.

Params (inherited from TCustomDADataSet) Used to view and set parameter
names, values, and data types
dynamically.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses cursor
for a query.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

PrepareSQL Builds a query for
TCustomMyStoredProc based on the
Params and StoredProcName
properties, and assigns it to the
SQL property.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or deleting data
in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the editing
record is refreshed.

RefreshQuick (inherited from TCustomMyDataSet) Retrieves changes posted to the
server by another clients on the
client side quickly.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for the
current record.

425Data Access Components for MySQL

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property modified
by AddWhere and SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property value to
BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause of a
SELECT statement.

SQL (inherited from TCustomDADataSet) Used to provide a SQL statement
that a query component executes
when its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying a
deletion to a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to perform a
record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL property
value was saved to the BaseSQL
property.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying an
update to a dataset.

UniDirectional (inherited from TCustomDADataSet) Used if an application does not need
bidirectional access to records in
the result set.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnLockTable (inherited from TCustomMyDataSet) Releases a table locked by the
TCustomMyDataSet.LockTable
method.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

Data Access Components for MySQL426

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

See Also
 TCustomMyStoredProc Class
 TCustomMyStoredProc Class Members

© 1997-2012 Devart. All Rights Reserved.

Executes a SQL statement on the server.

Class

TCustomMyStoredProc

Syntax

procedure ExecProc;

Remarks

Call the ExecProc method to execute a SQL statement on the server. If SQL statement is a query,
ExecProc calls the Open method.
Internally ExecProc calls inherited TCustomDADataSet.Execute method and is only included for
compatibility with BDE.

See Also

 TCustomDADataSet.Execute

© 1997-2012 Devart. All Rights Reserved.

Builds a query for TCustomMyStoredProc based on the Params and StoredProcName properties, and
assigns it to the SQL property.

Class

TCustomMyStoredProc

Syntax

procedure PrepareSQL;

Remarks

Call the PrepareSQL method to build a query for TCustomMyStoredProc based on the Params and
StoredProcName properties, and assign it to the SQL property. Then the generated query is verified to
be valid and, if necessary, the list of parameters is modified.
PrepareSQL is called implicitly when TCustomMyStoredProc is executed.

See Also

 TCustomDADataSet.Params
 StoredProcName
 ExecProc

© 1997-2012 Devart. All Rights Reserved.

427Data Access Components for MySQL

17.15.1.5 MyAccess.TCustomMyTable Class

A base class that defines functionality for descendant classes which access data in a single table without
writing SQL statements.
For a list of all members of this type, see TCustomMyTable members.

Unit

MyAccess

Syntax

TCustomMyTable = class(TCustomMyDataSet);

Remarks

TCustomMyTable implements functionality to access data in a table. Use TCustomMyTable properties and
methods to gain direct access to records and fields in an underlying server database without writing SQL
statements.

Inheritance Hierarchy

TObject
 TMemDataSet
 TCustomDADataSet
 TCustomMyDataSet
 TCustomMyTable

See Also

 TMyTable
 TCustomMyDataSet
 TMyQuery
 Master/Detail Relationships

© 1997-2012 Devart. All Rights Reserved.

TCustomMyTable class overview.

Properties

Name Description

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CommandTimeout (inherited from TCustomMyDataSet) Used to specify the amount of time
to attempt execution of a
command.

Connection (inherited from TCustomMyDataSet) Used to specify a connection object
that will be used to connect to a
data store.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its parameters'
values, and the type of parameters.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet) Used to keep dataset opened after
connection is closed.

Encryption (inherited from TCustomDADataSet) Used to specify the options of the
data encryption in a dataset.

FetchAll (inherited from TCustomMyDataSet) Description is not available at the
moment.

Data Access Components for MySQL428

FetchRows (inherited from TCustomDADataSet) Used to define the number of rows
to be transferred across the
network at the same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE clause
of SELECT statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

IndexDefs Contains information about the
indexes for a table.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

InsertId (inherited from TCustomMyDataSet) Returns the ID generated for an
AUTO_INCREMENT column by the
previous query.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

Limit Used to set the number of rows
retrieved from the query.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

LockMode (inherited from TCustomMyDataSet) Specifies when to perform locking
of an editing record.

MacroCount (inherited from TCustomDADataSet) Used to get the number of macros
associated with the Macros
property.

Macros (inherited from TCustomDADataSet) Makes it possible to change SQL
queries easily.

MasterFields (inherited from TCustomDADataSet) Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

MasterSource (inherited from TCustomDADataSet) Used to specify the data source
component which binds current
dataset to the master one.

Offset Used to allow retrieving data from
the server starting from the
specified row.

Options Specifies the behaviour of the
TMyTable object.

ParamCheck (inherited from TCustomDADataSet) Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

ParamCount (inherited from TCustomDADataSet) Used to indicate how many
parameters are there in the Params
property.

429Data Access Components for MySQL

Params (inherited from TCustomDADataSet) Used to view and set parameter
names, values, and data types
dynamically.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or deleting data
in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the editing
record is refreshed.

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SQL (inherited from TCustomDADataSet) Used to provide a SQL statement
that a query component executes
when its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying a
deletion to a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to perform a
record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying an
update to a dataset.

UniDirectional (inherited from TCustomDADataSet) Used if an application does not need
bidirectional access to records in
the result set.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

Methods

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

CreateBlobStream (inherited from TCustomDADataSet) Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

Data Access Components for MySQL430

DeleteWhere (inherited from TCustomDADataSet) Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

EmptyTable Deletes all records from the
database table specified by the
TableName property.

Execute (inherited from TCustomDADataSet) Executes a SQL statement on the
server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL statement is
still being executed.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has already
fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still fetching
rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a specified macro
exists in a dataset.

FindNearest (inherited from TCustomDADataSet) Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomDADataSet) Determines if a parameter with the
specified name exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet) Returns internal field types defined
in the MemData and accompanying
modules.

GetFieldEnum (inherited from TCustomMyDataSet) Retrieve the list of acceptable
values for a specified field given by
the FieldName parameter.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference shared
object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a number
field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a number
field.

GetOrderBy (inherited from TCustomDADataSet) Retrieves an ORDER BY clause from
a SQL statement.

GotoCurrent (inherited from TCustomDADataSet) Sets the current record in this
dataset similar to the current record
in another dataset.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Lock (inherited from TCustomMyDataSet) Overloaded. Locks the current
record for the current connection.

431Data Access Components for MySQL

LockTable (inherited from TCustomMyDataSet) Locks table for the current
connection.

MacroByName (inherited from TCustomDADataSet) Finds a Macro with the name passed
in Name.

ParamByName (inherited from TCustomDADataSet) Sets or uses parameter information
for a specific parameter based on
its name.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses cursor
for a query.

RefreshQuick (inherited from TCustomMyDataSet) Retrieves changes posted to the
server by another clients on the
client side quickly.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for the
current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property modified
by AddWhere and SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property value to
BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause of a
SELECT statement.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL property
value was saved to the BaseSQL
property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnLockTable (inherited from TCustomMyDataSet) Releases a table locked by the
TCustomMyDataSet.LockTable
method.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

Events

Name Description

AfterExecute (inherited from TCustomDADataSet) Occurs after a component has
executed a query to database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from TCustomDADataSet) Occurs after executing insert,
delete, update, lock and refresh
operations.

Data Access Components for MySQL432

BeforeFetch (inherited from TCustomDADataSet) Occurs before dataset is going to
fetch block of records from the
server.

BeforeUpdateExecute (inherited from TCustomDADataSet) Occurs before executing insert,
delete, update, lock, and refresh
operations.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TCustomMyTable class.
For a complete list of the TCustomMyTable class members, see the TCustomMyTable Members topic.

Public

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

AfterExecute (inherited from TCustomDADataSet) Occurs after a component has
executed a query to database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from TCustomDADataSet) Occurs after executing insert,
delete, update, lock and refresh
operations.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

BeforeFetch (inherited from TCustomDADataSet) Occurs before dataset is going to
fetch block of records from the
server.

BeforeUpdateExecute (inherited from TCustomDADataSet) Occurs before executing insert,
delete, update, lock, and refresh
operations.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommandTimeout (inherited from TCustomMyDataSet) Used to specify the amount of time
to attempt execution of a
command.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

Connection (inherited from TCustomMyDataSet) Used to specify a connection object
that will be used to connect to a
data store.

CreateBlobStream (inherited from TCustomDADataSet) Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

433Data Access Components for MySQL

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its parameters'
values, and the type of parameters.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteWhere (inherited from TCustomDADataSet) Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet) Used to keep dataset opened after
connection is closed.

Encryption (inherited from TCustomDADataSet) Used to specify the options of the
data encryption in a dataset.

Execute (inherited from TCustomDADataSet) Executes a SQL statement on the
server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL statement is
still being executed.

FetchAll (inherited from TCustomMyDataSet) Description is not available at the
moment.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has already
fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still fetching
rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

FetchRows (inherited from TCustomDADataSet) Used to define the number of rows
to be transferred across the
network at the same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE clause
of SELECT statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a specified macro
exists in a dataset.

FindNearest (inherited from TCustomDADataSet) Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomDADataSet) Determines if a parameter with the
specified name exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet) Returns internal field types defined
in the MemData and accompanying
modules.

Data Access Components for MySQL434

GetFieldEnum (inherited from TCustomMyDataSet) Retrieve the list of acceptable
values for a specified field given by
the FieldName parameter.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference shared
object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a number
field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a number
field.

GetOrderBy (inherited from TCustomDADataSet) Retrieves an ORDER BY clause from
a SQL statement.

GotoCurrent (inherited from TCustomDADataSet) Sets the current record in this
dataset similar to the current record
in another dataset.

IndexDefs Contains information about the
indexes for a table.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

InsertId (inherited from TCustomMyDataSet) Returns the ID generated for an
AUTO_INCREMENT column by the
previous query.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

Limit Used to set the number of rows
retrieved from the query.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Lock (inherited from TCustomMyDataSet) Overloaded. Locks the current
record for the current connection.

LockMode (inherited from TCustomMyDataSet) Specifies when to perform locking
of an editing record.

LockTable (inherited from TCustomMyDataSet) Locks table for the current
connection.

MacroByName (inherited from TCustomDADataSet) Finds a Macro with the name passed
in Name.

MacroCount (inherited from TCustomDADataSet) Used to get the number of macros
associated with the Macros
property.

Macros (inherited from TCustomDADataSet) Makes it possible to change SQL
queries easily.

435Data Access Components for MySQL

MasterFields (inherited from TCustomDADataSet) Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

MasterSource (inherited from TCustomDADataSet) Used to specify the data source
component which binds current
dataset to the master one.

Offset Used to allow retrieving data from
the server starting from the
specified row.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

Options Specifies the behaviour of the
TMyTable object.

ParamByName (inherited from TCustomDADataSet) Sets or uses parameter information
for a specific parameter based on
its name.

ParamCheck (inherited from TCustomDADataSet) Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

ParamCount (inherited from TCustomDADataSet) Used to indicate how many
parameters are there in the Params
property.

Params (inherited from TCustomDADataSet) Used to view and set parameter
names, values, and data types
dynamically.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses cursor
for a query.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or deleting data
in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the editing
record is refreshed.

RefreshQuick (inherited from TCustomMyDataSet) Retrieves changes posted to the
server by another clients on the
client side quickly.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for the
current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property modified
by AddWhere and SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

Data Access Components for MySQL436

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property value to
BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause of a
SELECT statement.

SQL (inherited from TCustomDADataSet) Used to provide a SQL statement
that a query component executes
when its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying a
deletion to a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to perform a
record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL property
value was saved to the BaseSQL
property.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying an
update to a dataset.

UniDirectional (inherited from TCustomDADataSet) Used if an application does not need
bidirectional access to records in
the result set.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnLockTable (inherited from TCustomMyDataSet) Releases a table locked by the
TCustomMyDataSet.LockTable
method.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

See Also
 TCustomMyTable Class
 TCustomMyTable Class Members

437Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Contains information about the indexes for a table.

Class

TCustomMyTable

Syntax

property IndexDefs: TIndexDefs;

Remarks

The IndexDefs property is used to contain information about the indexes for a table.
IndexDefs is a collection of index definitions, each of which describes an available index for the table.
In contrast to BDE, can be used only for viewing the list of indexes already created for the table.
As an additional request for the server is required to fill it, IndexDefs is filled on the first call.

© 1997-2012 Devart. All Rights Reserved.

Used to set the number of rows retrieved from the query.

Class

TCustomMyTable

Syntax

property Limit: integer default - 1;

Remarks

Use the Limit property to set the number of rows retrieved from the query. If Limit is -1, all records will
be obtained.

See Also

 Offset

© 1997-2012 Devart. All Rights Reserved.

Used to allow retrieving data from the server starting from the specified row.

Class

TCustomMyTable

Syntax

property Offset: integer default 0;

Remarks

Use the Offset property to allow retrieving data from the server starting from the specified row. The
default value is 0.

See Also

 Limit

© 1997-2012 Devart. All Rights Reserved.

Specifies the behaviour of the TMyTable object.

Class

TCustomMyTable

Data Access Components for MySQL438

Syntax

property Options: TMyTableOptions;

Remarks

Set the properties of Options to specify the behaviour of a TMyTable object.
Descriptions of all options are in the table below.

Option Name Description

HandlerIndex Used to assign an index and a value that this
index should satisfy.

UseHandler Used for the HANDLER statement to be used
instead of the SELECT statement.

©

 1997-2012 Devart. All Rights Reserved.

Methods of the TCustomMyTable class.
For a complete list of the TCustomMyTable class members, see the TCustomMyTable Members topic.

Public

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

AfterExecute (inherited from TCustomDADataSet) Occurs after a component has
executed a query to database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from TCustomDADataSet) Occurs after executing insert,
delete, update, lock and refresh
operations.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

BeforeFetch (inherited from TCustomDADataSet) Occurs before dataset is going to
fetch block of records from the
server.

BeforeUpdateExecute (inherited from TCustomDADataSet) Occurs before executing insert,
delete, update, lock, and refresh
operations.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommandTimeout (inherited from TCustomMyDataSet) Used to specify the amount of time
to attempt execution of a
command.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

Connection (inherited from TCustomMyDataSet) Used to specify a connection object
that will be used to connect to a
data store.

439Data Access Components for MySQL

CreateBlobStream (inherited from TCustomDADataSet) Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its parameters'
values, and the type of parameters.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteWhere (inherited from TCustomDADataSet) Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet) Used to keep dataset opened after
connection is closed.

EmptyTable Deletes all records from the
database table specified by the
TableName property.

Encryption (inherited from TCustomDADataSet) Used to specify the options of the
data encryption in a dataset.

Execute (inherited from TCustomDADataSet) Executes a SQL statement on the
server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL statement is
still being executed.

FetchAll (inherited from TCustomMyDataSet) Description is not available at the
moment.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has already
fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still fetching
rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

FetchRows (inherited from TCustomDADataSet) Used to define the number of rows
to be transferred across the
network at the same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE clause
of SELECT statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a specified macro
exists in a dataset.

FindNearest (inherited from TCustomDADataSet) Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomDADataSet) Determines if a parameter with the
specified name exists in a dataset.

Data Access Components for MySQL440

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet) Returns internal field types defined
in the MemData and accompanying
modules.

GetFieldEnum (inherited from TCustomMyDataSet) Retrieve the list of acceptable
values for a specified field given by
the FieldName parameter.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference shared
object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a number
field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a number
field.

GetOrderBy (inherited from TCustomDADataSet) Retrieves an ORDER BY clause from
a SQL statement.

GotoCurrent (inherited from TCustomDADataSet) Sets the current record in this
dataset similar to the current record
in another dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

InsertId (inherited from TCustomMyDataSet) Returns the ID generated for an
AUTO_INCREMENT column by the
previous query.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Lock (inherited from TCustomMyDataSet) Overloaded. Locks the current
record for the current connection.

LockMode (inherited from TCustomMyDataSet) Specifies when to perform locking
of an editing record.

LockTable (inherited from TCustomMyDataSet) Locks table for the current
connection.

MacroByName (inherited from TCustomDADataSet) Finds a Macro with the name passed
in Name.

MacroCount (inherited from TCustomDADataSet) Used to get the number of macros
associated with the Macros
property.

Macros (inherited from TCustomDADataSet) Makes it possible to change SQL
queries easily.

441Data Access Components for MySQL

MasterFields (inherited from TCustomDADataSet) Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

MasterSource (inherited from TCustomDADataSet) Used to specify the data source
component which binds current
dataset to the master one.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

Options (inherited from TCustomMyDataSet) Specifies the behaviour of
TCustomMyDataSet object.

ParamByName (inherited from TCustomDADataSet) Sets or uses parameter information
for a specific parameter based on
its name.

ParamCheck (inherited from TCustomDADataSet) Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

ParamCount (inherited from TCustomDADataSet) Used to indicate how many
parameters are there in the Params
property.

Params (inherited from TCustomDADataSet) Used to view and set parameter
names, values, and data types
dynamically.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses cursor
for a query.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or deleting data
in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the editing
record is refreshed.

RefreshQuick (inherited from TCustomMyDataSet) Retrieves changes posted to the
server by another clients on the
client side quickly.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for the
current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property modified
by AddWhere and SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property value to
BaseSQL.

Data Access Components for MySQL442

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause of a
SELECT statement.

SQL (inherited from TCustomDADataSet) Used to provide a SQL statement
that a query component executes
when its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying a
deletion to a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to perform a
record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL property
value was saved to the BaseSQL
property.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying an
update to a dataset.

UniDirectional (inherited from TCustomDADataSet) Used if an application does not need
bidirectional access to records in
the result set.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnLockTable (inherited from TCustomMyDataSet) Releases a table locked by the
TCustomMyDataSet.LockTable
method.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

See Also
 TCustomMyTable Class
 TCustomMyTable Class Members

© 1997-2012 Devart. All Rights Reserved.

Deletes all records from the database table specified by the TableName property.

Class

TCustomMyTable

443Data Access Components for MySQL

Syntax

procedure EmptyTable;

Remarks

Call the EmptyTable method to delete all records from the database table specified by the TableName
property.

See Also

 P:Devart.MyDac.TCustomMyTable.TableName

© 1997-2012 Devart. All Rights Reserved.

17.15.1.6 MyAccess.TMyCommand Class

A component for execution of SQL statements and stored procedures which do not return rowsets.
For a list of all members of this type, see TMyCommand members.

Unit

MyAccess

Syntax

TMyCommand = class(TCustomDASQL);

Remarks

Use TMyCommand to access database server using SQL statements.
TMyCommand object in a client application is used mainly to execute SQL statements on database
server. SQL statement should not retrieve records from a database since TMyCommand does not provide
storage for returned data.

Inheritance Hierarchy

TObject
 TCustomDASQL
 TMyCommand

See Also

 TMyQuery

© 1997-2012 Devart. All Rights Reserved.

TMyCommand class overview.

Properties

Name Description

ChangeCursor (inherited from TCustomDASQL) Enables or disables changing screen
cursor when executing commands
in the NonBlocking mode.

CommandTimeout Used to specify the amount of time
to attempt to execute a command.

Connection Used to specify a connection object
that will be used to connect to a
data store.

Debug (inherited from TCustomDASQL) Used to display executing
statement, all its parameters'
values, and the type of parameters.

FinalSQL (inherited from TCustomDASQL) Used to return a SQL statement
with expanded macros.

Data Access Components for MySQL444

InsertId Returns the ID generated for an
AUTO_INCREMENT column by the
previous query.

MacroCount (inherited from TCustomDASQL) Used to get the number of macros
associated with the Macros
property.

Macros (inherited from TCustomDASQL) Makes it possible to change SQL
queries easily.

ParamCheck (inherited from TCustomDASQL) Used to specify whether parameters
for the Params property are
implicitly generated when the SQL
property is being changed.

ParamCount (inherited from TCustomDASQL) Indicates the number of parameters
in the Params property.

Params (inherited from TCustomDASQL) Used to contain parameters for a
SQL statement.

ParamValues (inherited from TCustomDASQL) Used to get or set the values of
individual field parameters that are
identified by name.

Prepared (inherited from TCustomDASQL) Used to indicate whether a query is
prepared for execution.

RowsAffected (inherited from TCustomDASQL) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SQL (inherited from TCustomDASQL) Used to provide a SQL statement
that a TCustomDASQL component
executes when the Execute method
is called.

Methods

Name Description

BreakExec Breaks execution of the SQL
statement on the server.

Execute (inherited from TCustomDASQL) Overloaded. Executes SQL
commands.

Executing (inherited from TCustomDASQL) Checks whether TCustomDASQL still
executes a SQL statement.

FindMacro (inherited from TCustomDASQL) Searches for a macro with the
specified name.

FindParam (inherited from TCustomDASQL) Finds a parameter with the specified
name.

MacroByName (inherited from TCustomDASQL) Finds a Macro with the name passed
in Name.

ParamByName (inherited from TCustomDASQL) Finds a parameter with the specified
name.

Prepare (inherited from TCustomDASQL) Allocates, opens, and parses cursor
for a query.

UnPrepare (inherited from TCustomDASQL) Frees the resources allocated for a
previously prepared query on the
server and client sides.

WaitExecuting (inherited from TCustomDASQL) Waits until TCustomDASQL
executes a SQL statement.

Events

Name Description

AfterExecute (inherited from TCustomDASQL) Occurs after a SQL statement has
been executed.

445Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMyCommand class.
For a complete list of the TMyCommand class members, see the TMyCommand Members topic.

Public

Name Description

AfterExecute (inherited from TCustomDASQL) Occurs after a SQL statement has
been executed.

ChangeCursor (inherited from TCustomDASQL) Enables or disables changing screen
cursor when executing commands
in the NonBlocking mode.

Debug (inherited from TCustomDASQL) Used to display executing
statement, all its parameters'
values, and the type of parameters.

Execute (inherited from TCustomDASQL) Overloaded. Executes SQL
commands.

Executing (inherited from TCustomDASQL) Checks whether TCustomDASQL still
executes a SQL statement.

FinalSQL (inherited from TCustomDASQL) Used to return a SQL statement
with expanded macros.

FindMacro (inherited from TCustomDASQL) Searches for a macro with the
specified name.

FindParam (inherited from TCustomDASQL) Finds a parameter with the specified
name.

InsertId Returns the ID generated for an
AUTO_INCREMENT column by the
previous query.

MacroByName (inherited from TCustomDASQL) Finds a Macro with the name passed
in Name.

MacroCount (inherited from TCustomDASQL) Used to get the number of macros
associated with the Macros
property.

Macros (inherited from TCustomDASQL) Makes it possible to change SQL
queries easily.

ParamByName (inherited from TCustomDASQL) Finds a parameter with the specified
name.

ParamCheck (inherited from TCustomDASQL) Used to specify whether parameters
for the Params property are
implicitly generated when the SQL
property is being changed.

ParamCount (inherited from TCustomDASQL) Indicates the number of parameters
in the Params property.

Params (inherited from TCustomDASQL) Used to contain parameters for a
SQL statement.

ParamValues (inherited from TCustomDASQL) Used to get or set the values of
individual field parameters that are
identified by name.

Prepare (inherited from TCustomDASQL) Allocates, opens, and parses cursor
for a query.

Prepared (inherited from TCustomDASQL) Used to indicate whether a query is
prepared for execution.

RowsAffected (inherited from TCustomDASQL) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SQL (inherited from TCustomDASQL) Used to provide a SQL statement
that a TCustomDASQL component
executes when the Execute method
is called.

Data Access Components for MySQL446

UnPrepare (inherited from TCustomDASQL) Frees the resources allocated for a
previously prepared query on the
server and client sides.

WaitExecuting (inherited from TCustomDASQL) Waits until TCustomDASQL
executes a SQL statement.

Published

Name Description

CommandTimeout Used to specify the amount of time
to attempt to execute a command.

Connection Used to specify a connection object
that will be used to connect to a
data store.

See Also
 TMyCommand Class
 TMyCommand Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify the amount of time to attempt to execute a command.

Class

TMyCommand

Syntax

property CommandTimeout: integer default 0;

Remarks

Use the CommandTimeout property to specify the amount of time to attempt to execute a command.
Use CommandTimeout to specify the amount of time that expires before an attempt to execute a
command is considered unsuccessful. Measured in seconds.
If a command executed successfully prior to the expiration of the seconds specified, CommandTimeout
has no effect.
In the case of exceeding waiting time error CR_SERVER_LOST 'Lost connection to MySQL server during
query' raises.
The default value is 0 (infinite).

See Also

 TCustomMyConnection.ConnectionTimeout
 TCustomMyDataSet.CommandTimeout

© 1997-2012 Devart. All Rights Reserved.

Used to specify a connection object that will be used to connect to a data store.

Class

TMyCommand

Syntax

property Connection: TCustomMyConnection;

Remarks

Use the Connection property to specify a connection object that will be used to connect to a data store.
Set at design-time by selecting from the list of provided TMyConnection objects.
At run-time, set the Connection property to reference an existing TMyConnection object.

See Also

447Data Access Components for MySQL

 TCustomMyConnection

© 1997-2012 Devart. All Rights Reserved.

Returns the ID generated for an AUTO_INCREMENT column by the previous query.

Class

TMyCommand

Syntax

property InsertId: int64;

Remarks

Use the InsertId to return the ID generated for an AUTO_INCREMENT column by the previous query.
Use this function after you have performed an INSERT query into a table that contains an
AUTO_INCREMENT field.
If the query does not perform an insertion into a table that contains an AUTO_INCREMENT field the
value of InsertId won't be defined.

See Also

 TCustomDASQL.Execute

© 1997-2012 Devart. All Rights Reserved.

Methods of the TMyCommand class.
For a complete list of the TMyCommand class members, see the TMyCommand Members topic.

Public

Name Description

AfterExecute (inherited from TCustomDASQL) Occurs after a SQL statement has
been executed.

BreakExec Breaks execution of the SQL
statement on the server.

ChangeCursor (inherited from TCustomDASQL) Enables or disables changing screen
cursor when executing commands
in the NonBlocking mode.

Connection (inherited from TCustomDASQL) Used to specify a connection object
to use to connect to a data store.

Debug (inherited from TCustomDASQL) Used to display executing
statement, all its parameters'
values, and the type of parameters.

Execute (inherited from TCustomDASQL) Overloaded. Executes SQL
commands.

Executing (inherited from TCustomDASQL) Checks whether TCustomDASQL still
executes a SQL statement.

FinalSQL (inherited from TCustomDASQL) Used to return a SQL statement
with expanded macros.

FindMacro (inherited from TCustomDASQL) Searches for a macro with the
specified name.

FindParam (inherited from TCustomDASQL) Finds a parameter with the specified
name.

MacroByName (inherited from TCustomDASQL) Finds a Macro with the name passed
in Name.

MacroCount (inherited from TCustomDASQL) Used to get the number of macros
associated with the Macros
property.

Data Access Components for MySQL448

Macros (inherited from TCustomDASQL) Makes it possible to change SQL
queries easily.

ParamByName (inherited from TCustomDASQL) Finds a parameter with the specified
name.

ParamCheck (inherited from TCustomDASQL) Used to specify whether parameters
for the Params property are
implicitly generated when the SQL
property is being changed.

ParamCount (inherited from TCustomDASQL) Indicates the number of parameters
in the Params property.

Params (inherited from TCustomDASQL) Used to contain parameters for a
SQL statement.

ParamValues (inherited from TCustomDASQL) Used to get or set the values of
individual field parameters that are
identified by name.

Prepare (inherited from TCustomDASQL) Allocates, opens, and parses cursor
for a query.

Prepared (inherited from TCustomDASQL) Used to indicate whether a query is
prepared for execution.

RowsAffected (inherited from TCustomDASQL) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SQL (inherited from TCustomDASQL) Used to provide a SQL statement
that a TCustomDASQL component
executes when the Execute method
is called.

UnPrepare (inherited from TCustomDASQL) Frees the resources allocated for a
previously prepared query on the
server and client sides.

WaitExecuting (inherited from TCustomDASQL) Waits until TCustomDASQL
executes a SQL statement.

See Also
 TMyCommand Class
 TMyCommand Class Members

© 1997-2012 Devart. All Rights Reserved.

Breaks execution of the SQL statement on the server.

Class

TMyCommand

Syntax

procedure BreakExec;

Remarks

Call the BreakExec method to break execution of the SQL statement on the server. Execution is broken
by the KILL operator execution on server. It makes sense to call BreakExec only from another thread.

See Also

 TCustomDASQL.Execute
 TCustomMyDataSet.BreakExec

© 1997-2012 Devart. All Rights Reserved.

449Data Access Components for MySQL

17.15.1.7 MyAccess.TMyConnection Class

A component for setting up and controlling connections to MySQL database server.
For a list of all members of this type, see TMyConnection members.

Unit

MyAccess

Syntax

TMyConnection = class(TCustomMyConnection);

Remarks

TMyConnection component is used to establish connection to database server, provide customized login
support, and perform transaction control. TMyConnection publishes connection-related properties
derived from its ancestor class TCustomMyConnection and introduces specific properties.

Inheritance Hierarchy

TObject
 TCustomDAConnection
 TCustomMyConnection
 TMyConnection

See Also

 TCustomMyConnection
 TMyEmbConnection

© 1997-2012 Devart. All Rights Reserved.

TMyConnection class overview.

Properties

Name Description

ClientVersion (inherited from TCustomMyConnection) Contains the version of the MySQL
Client library.

ConnectDialog (inherited from TCustomDAConnection) Allows to link a
TCustomConnectDialog component.

ConnectionTimeout (inherited from TCustomMyConnection) Used to specify the amount of time
to attempt to establish a
connection.

ConvertEOL (inherited from TCustomDAConnection) Allows customizing line breaks in
string fields and parameters.

Database (inherited from TCustomMyConnection) Used to specify a database name
that is a default source of data for
SQL queries once a connection is
established.

HttpOptions Holds a THttpOptions object that
contains settings for HTTP
connection.

InTransaction (inherited from TCustomDAConnection) Indicates whether the transaction is
active.

IOHandler Used to assign an external
component for communication
between MyDAC and MySQL server.

IsolationLevel (inherited from TCustomMyConnection) Used to specify extent to which all
outside transactions interfere with
subsequent transactions of current
connection.

LoginPrompt (inherited from TCustomDAConnection) Specifies whether a login dialog
appears immediately before
opening a new connection.

Data Access Components for MySQL450

Options Specifies the behaviour of
TMyConnection object.

Password (inherited from TCustomDAConnection) Serves to supply a password for
login.

Pooling (inherited from TCustomDAConnection) Enables or disables using
connection pool.

PoolingOptions (inherited from TCustomDAConnection) Specifies the behaviour of
connection pool.

Port Used to specify the port number for
TCP/IP connection.

Server (inherited from TCustomDAConnection) Serves to supply the server name
for login.

ServerVersion (inherited from TCustomMyConnection) Holds the version of MySQL server.

SSLOptions Used to set the properties required
for protected SSL connection with
the server.

ThreadId (inherited from TCustomMyConnection) Used to return the thread ID of the
current connection.

Username (inherited from TCustomDAConnection) Used to supply a user name for
login.

Methods

Name Description

ApplyUpdates (inherited from TCustomDAConnection) Overloaded. Applies changes in
datasets.

AssignConnect (inherited from TCustomMyConnection) Shares database connection
between the TCustomMyConnection
components.

Commit (inherited from TCustomDAConnection) Commits current transaction.

Connect (inherited from TCustomDAConnection) Establishes a connection to the
server.

CreateDataSet (inherited from TCustomMyConnection) Returns a new instance of
TCustomMyDataSet class and
associates it with this connection
object.

CreateSQL (inherited from TCustomDAConnection) Creates a component for queries
execution.

Disconnect (inherited from TCustomDAConnection) Performs disconnect.

ExecProc (inherited from TCustomDAConnection) Allows to execute stored procedure
or function providing its name and
parameters.

ExecProcEx (inherited from TCustomDAConnection) Allows to execute a stored
procedure or function.

ExecSQL (inherited from TCustomMyConnection) Executes any SQL statement
outside TMyQuery or TMyCommand
components.

ExecSQLEx (inherited from TCustomDAConnection) Executes any SQL statement
outside the TQuery or TSQL
components.

GetCharsetNames (inherited from TCustomMyConnection) Populates a string list with the
names of available charsets.

GetDatabaseNames (inherited from TCustomDAConnection) Returns a database list from the
server.

GetExecuteInfo (inherited from TCustomMyConnection) Returns the result of the last query
execution.

GetStoredProcNames (inherited from
TCustomDAConnection)

Returns a list of stored procedures
from the server.

GetTriggerNames (inherited from TCustomMyConnection) Returns a list of triggers from the
server.

451Data Access Components for MySQL

MonitorMessage (inherited from TCustomDAConnection) Sends a specified message through
the TCustomDASQLMonitor
component.

Ping (inherited from TCustomMyConnection) Allows to avoid automatic
disconnection of the client by the
server.

ReleaseSavepoint (inherited from TCustomMyConnection) Releases the specified savepoint
without affecting any work that has
been performed after its creation.

RemoveFromPool (inherited from TCustomDAConnection) Marks the connection that should
not be returned to the pool after
disconnect.

Rollback (inherited from TCustomDAConnection) Discards all current data changes
and ends transaction.

RollbackToSavepoint (inherited from TCustomMyConnection
)

Cancels all updates for the current
transaction.

Savepoint (inherited from TCustomMyConnection) Defines a point in the transaction to
which you can roll back later.

StartTransaction (inherited from TCustomDAConnection) Begins a new user transaction.

Events

Name Description

OnConnectionLost (inherited from TCustomDAConnection) This event occurs when connection
was lost.

OnError (inherited from TCustomDAConnection) This event occurs when an error has
arisen in the connection.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMyConnection class.
For a complete list of the TMyConnection class members, see the TMyConnection Members topic.

Public

Name Description

ApplyUpdates (inherited from TCustomDAConnection) Overloaded. Applies changes in
datasets.

AssignConnect (inherited from TCustomMyConnection) Shares database connection
between the TCustomMyConnection
components.

ClientVersion (inherited from TCustomMyConnection) Contains the version of the MySQL
Client library.

Commit (inherited from TCustomDAConnection) Commits current transaction.

Connect (inherited from TCustomDAConnection) Establishes a connection to the
server.

ConnectDialog (inherited from TCustomDAConnection) Allows to link a
TCustomConnectDialog component.

ConnectionTimeout (inherited from TCustomMyConnection) Used to specify the amount of time
to attempt to establish a
connection.

ConvertEOL (inherited from TCustomDAConnection) Allows customizing line breaks in
string fields and parameters.

CreateDataSet (inherited from TCustomMyConnection) Returns a new instance of
TCustomMyDataSet class and
associates it with this connection
object.

CreateSQL (inherited from TCustomDAConnection) Creates a component for queries
execution.

Data Access Components for MySQL452

Database (inherited from TCustomMyConnection) Used to specify a database name
that is a default source of data for
SQL queries once a connection is
established.

Disconnect (inherited from TCustomDAConnection) Performs disconnect.

ExecProc (inherited from TCustomDAConnection) Allows to execute stored procedure
or function providing its name and
parameters.

ExecProcEx (inherited from TCustomDAConnection) Allows to execute a stored
procedure or function.

ExecSQL (inherited from TCustomMyConnection) Executes any SQL statement
outside TMyQuery or TMyCommand
components.

ExecSQLEx (inherited from TCustomDAConnection) Executes any SQL statement
outside the TQuery or TSQL
components.

GetCharsetNames (inherited from TCustomMyConnection) Populates a string list with the
names of available charsets.

GetDatabaseNames (inherited from TCustomDAConnection) Returns a database list from the
server.

GetExecuteInfo (inherited from TCustomMyConnection) Returns the result of the last query
execution.

GetStoredProcNames (inherited from
TCustomDAConnection)

Returns a list of stored procedures
from the server.

GetTriggerNames (inherited from TCustomMyConnection) Returns a list of triggers from the
server.

InTransaction (inherited from TCustomDAConnection) Indicates whether the transaction is
active.

IsolationLevel (inherited from TCustomMyConnection) Used to specify extent to which all
outside transactions interfere with
subsequent transactions of current
connection.

LoginPrompt (inherited from TCustomDAConnection) Specifies whether a login dialog
appears immediately before
opening a new connection.

MonitorMessage (inherited from TCustomDAConnection) Sends a specified message through
the TCustomDASQLMonitor
component.

OnConnectionLost (inherited from TCustomDAConnection) This event occurs when connection
was lost.

OnError (inherited from TCustomDAConnection) This event occurs when an error has
arisen in the connection.

Password (inherited from TCustomDAConnection) Serves to supply a password for
login.

Ping (inherited from TCustomMyConnection) Allows to avoid automatic
disconnection of the client by the
server.

Pooling (inherited from TCustomDAConnection) Enables or disables using
connection pool.

PoolingOptions (inherited from TCustomDAConnection) Specifies the behaviour of
connection pool.

ReleaseSavepoint (inherited from TCustomMyConnection) Releases the specified savepoint
without affecting any work that has
been performed after its creation.

RemoveFromPool (inherited from TCustomDAConnection) Marks the connection that should
not be returned to the pool after
disconnect.

Rollback (inherited from TCustomDAConnection) Discards all current data changes
and ends transaction.

453Data Access Components for MySQL

RollbackToSavepoint (inherited from TCustomMyConnection
)

Cancels all updates for the current
transaction.

Savepoint (inherited from TCustomMyConnection) Defines a point in the transaction to
which you can roll back later.

Server (inherited from TCustomDAConnection) Serves to supply the server name
for login.

ServerVersion (inherited from TCustomMyConnection) Holds the version of MySQL server.

StartTransaction (inherited from TCustomDAConnection) Begins a new user transaction.

ThreadId (inherited from TCustomMyConnection) Used to return the thread ID of the
current connection.

Username (inherited from TCustomDAConnection) Used to supply a user name for
login.

Published

Name Description

HttpOptions Holds a THttpOptions object that
contains settings for HTTP
connection.

IOHandler Used to assign an external
component for communication
between MyDAC and MySQL server.

Options Specifies the behaviour of
TMyConnection object.

Port Used to specify the port number for
TCP/IP connection.

SSLOptions Used to set the properties required
for protected SSL connection with
the server.

See Also
 TMyConnection Class
 TMyConnection Class Members

© 1997-2012 Devart. All Rights Reserved.

Holds a THttpOptions object that contains settings for HTTP connection.

Class

TMyConnection

Syntax

property HttpOptions: THttpOptions;

Remarks

The HttpOptions property holds a THttpOptions object that contains settings for HTTP connection.
For more information on HTTP tunneling refer to the Network Tunneling article.

© 1997-2012 Devart. All Rights Reserved.

Used to assign an external component for communication between MyDAC and MySQL server.

Class

TMyConnection

Syntax

property IOHandler: TCRIOHandler;

Remarks

Use the IOHandler property to assign an external component for communication between MyDAC and

Data Access Components for MySQL454

MySQL server. The component must be a descendant of the TMyIOHandler abstract class.
There is an example of implementation and usage of such component in the SecureBridge demo. This
component provides integration with the SecureBridge library, so SecureBridge should be also installed
to build and install it. You can read more about this demo in the Demo Projects topic, and in the
Readme.html file located in the the SecureBridge demo directory.
SecureBridge is a library that can be used for ensuring protection of important data transferred between
MySQL server and MyDAC based applications through public networks.

See Also

 TMyIOHandler

© 1997-2012 Devart. All Rights Reserved.

Specifies the behaviour of TMyConnection object.

Class

TMyConnection

Syntax

property Options: TMyConnectionOptions;

Remarks

Set the properties of Options to specify the behaviour of a TMyConnection object.
Descriptions of all options are in the table below.

Option Name Description

CheckBackslashes Used to check the value of the
NO_BACKSLASH_ESCAPES server variable.

Compress Used to apply compression on transferring data.

Direct Used to work without using MySQL client library
(libmysql.dll).

Embedded Used to specify the server that will be used to
connect.

Interactive Used to make a connection interactive.

Protocol Used to specify the protocol to use when
connecting to server.

See Also


TCustomDAConnection.Server


TCustomMyConnection.Database


TCustomMyConnection.Options


Embedded Server

©

 1997-2012 Devart. All Rights Reserved.

http://www.devart.com/sbridge/
http://www.devart.com/sbridge/
http://www.devart.com/sbridge/

455Data Access Components for MySQL

Used to specify the port number for TCP/IP connection.

Class

TMyConnection

Syntax

property Port: integer default MYSQL_PORT;

Remarks

Use the Port property to specify the port number for TCP/IP connection. Note that
TCustomDAConnection.Server property determines the type of the connection.
The default value is 3306.
The Port property can be used only if TCustomMyConnection.Options is set to False.

See Also

 TCustomDAConnection.Server
 TCustomMyConnection.Database

© 1997-2012 Devart. All Rights Reserved.

Used to set the properties required for protected SSL connection with the server.

Class

TMyConnection

Syntax

property SSLOptions: TMyConnectionSSLOptions;

Remarks

Use the SSLOptions property to set the properties required for protected SSL connection with the server.
These properties can be used only for Options = mpSSL.
For using ssleay32.dll and libeay32.dll files are needed.
The detailed description of these properties you can find in MySQL Reference Manual
Descriptions of all options are in the table below.

Option Name Description

CACert Holds the pathname to the certificate authority
file.

Cert Holds the pathname to the certificate file.

ChipherList Holds the list of allowed ciphers to use for SSL
encryption.

Key Holds the pathname to the key file.

See Also


Options

©

 1997-2012 Devart. All Rights Reserved.

17.15.1.8 MyAccess.TMyConnectionOptions Class

This class allows setting up the behaviour of the TMyConnection class.
For a list of all members of this type, see TMyConnectionOptions members.

Unit

Data Access Components for MySQL456

MyAccess

Syntax

TMyConnectionOptions = class(TCustomMyConnectionOptions);

Inheritance Hierarchy

TObject
 TDAConnectionOptions
 TCustomMyConnectionOptions
 TMyConnectionOptions

© 1997-2012 Devart. All Rights Reserved.

TMyConnectionOptions class overview.

Properties

Name Description

Charset (inherited from TCustomMyConnectionOptions) Used to set a character set used by
the client.

CheckBackslashes Used to check the value of the
NO_BACKSLASH_ESCAPES server
variable.

Compress Used to apply compression on
transferring data.

DefaultSortType (inherited from TDAConnectionOptions) Used to determine the default type
of local sorting for string fields. It is
used when a sort type is not
specified explicitly after the field
name in the TMemDataSet.
IndexFieldNames property of a
dataset.

Direct Used to work without using MySQL
client library (libmysql.dll).

DisconnectedMode (inherited from TDAConnectionOptions) Used to open a connection only
when needed for performing a
server call and closes after
performing the operation.

Embedded Used to specify the server that will
be used to connect.

Interactive Used to make a connection
interactive.

KeepDesignConnected (inherited from
TDAConnectionOptions)

Used to prevent an application from
establishing a connection at the
time of startup.

LocalFailover (inherited from TDAConnectionOptions) If True, the TCustomDAConnection.
OnConnectionLost event occurs and
a failover operation can be
performed after connection breaks.

NullForZeroDelphiDate (inherited from
TCustomMyConnectionOptions)

Used to hide the '30-12-1899'
dates.

NumericType (inherited from
TCustomMyConnectionOptions)

Used to specify the format of
storing and representation of the
NUMERIC (DECIMAL) fields for all
TCustomMyDataSets, associated
with the given connection.

OptimizedBigInt (inherited from
TCustomMyConnectionOptions)

Used to convert all fields with field
length less than 11 of
TLargeIntField type into
TIntegerField.

457Data Access Components for MySQL

Protocol Used to specify the protocol to use
when connecting to server.

UseUnicode (inherited from TCustomMyConnectionOptions
)

Used to inform server that all data
between client and server sides will
be passed in Utf8 coding.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMyConnectionOptions class.
For a complete list of the TMyConnectionOptions class members, see the TMyConnectionOptions
Members topic.

Public

Name Description

Charset (inherited from TCustomMyConnectionOptions) Used to set a character set used by
the client.

DefaultSortType (inherited from TDAConnectionOptions) Used to determine the default type
of local sorting for string fields. It is
used when a sort type is not
specified explicitly after the field
name in the TMemDataSet.
IndexFieldNames property of a
dataset.

DisconnectedMode (inherited from TDAConnectionOptions) Used to open a connection only
when needed for performing a
server call and closes after
performing the operation.

KeepDesignConnected (inherited from
TDAConnectionOptions)

Used to prevent an application from
establishing a connection at the
time of startup.

LocalFailover (inherited from TDAConnectionOptions) If True, the TCustomDAConnection.
OnConnectionLost event occurs and
a failover operation can be
performed after connection breaks.

NullForZeroDelphiDate (inherited from
TCustomMyConnectionOptions)

Used to hide the '30-12-1899'
dates.

NumericType (inherited from
TCustomMyConnectionOptions)

Used to specify the format of
storing and representation of the
NUMERIC (DECIMAL) fields for all
TCustomMyDataSets, associated
with the given connection.

OptimizedBigInt (inherited from
TCustomMyConnectionOptions)

Used to convert all fields with field
length less than 11 of
TLargeIntField type into
TIntegerField.

UseUnicode (inherited from TCustomMyConnectionOptions
)

Used to inform server that all data
between client and server sides will
be passed in Utf8 coding.

Published

Name Description

CheckBackslashes Used to check the value of the
NO_BACKSLASH_ESCAPES server
variable.

Compress Used to apply compression on
transferring data.

Direct Used to work without using MySQL
client library (libmysql.dll).

Embedded Used to specify the server that will
be used to connect.

Data Access Components for MySQL458

Interactive Used to make a connection
interactive.

Protocol Used to specify the protocol to use
when connecting to server.

See Also
 TMyConnectionOptions Class
 TMyConnectionOptions Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to check the value of the NO_BACKSLASH_ESCAPES server variable.

Class

TMyConnectionOptions

Syntax

property CheckBackslashes: boolean default False;

Remarks

Use the CheckBackslashes property to check the value of the NO_BACKSLASH_ESCAPES server variable.
It enables or disables the usage of the backslash character ('\') as an escape character within strings.
The backslash character is used when transferring parameters in a query and when dumping a database
to a SQL script with the TMyDump component.
If the CheckBackslashes property is set to True, the value of the NO_BACKSLASH_ESCAPES variable is
read from the server when establishing a connection. The received value will determine if the backslash
character is used as an escape character within strings.
If the CheckBackslashes property is set to False, the backslash character will be used in any case. The
default value is False.

© 1997-2012 Devart. All Rights Reserved.

Used to apply compression on transferring data.

Class

TMyConnectionOptions

Syntax

property Compress: boolean default False;

Remarks

Use the Compress property to use compression on transferring data. Setting this property to True is
quite effective on transferring big volumes of data through slow connection. Pay attention that each row
is compressed separately. Be careful when setting this option as in some cases it may decrease fetch
speed instead of increasing. This property is ignored under CLR. The default value is False.

© 1997-2012 Devart. All Rights Reserved.

Used to work without using MySQL client library (libmysql.dll).

Class

TMyConnectionOptions

Syntax

property Direct: boolean default True;

Remarks

Use the Direct property to work without using MySQL client library (libmysql.dll). Used only if Embedded
is disabled.

459Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Used to specify the server that will be used to connect.

Class

TMyConnectionOptions

Syntax

property Embedded: boolean default False;

Remarks

Use the Embedded property to specify what server will be used to connect - MySQL server or Embedded
MySQL server. You can read about the features and using Embedded server at the Embedded Server. In
most cases, you should use TMyEmbConnection instead of this option.

© 1997-2012 Devart. All Rights Reserved.

Used to make a connection interactive.

Class

TMyConnectionOptions

Syntax

property Interactive: boolean default False;

Remarks

If a connection is interactive, MySQL uses the interactive_timeout MySQL system variable for the
number of seconds the server waits for activity on the connection before closing it. Otherwise, MySQL
uses the wait_timeout MySQL system variable for the same purpose.

© 1997-2012 Devart. All Rights Reserved.

Used to specify the protocol to use when connecting to server.

Class

TMyConnectionOptions

Syntax

property Protocol: TMyProtocol default mpDefault;

Remarks

Use the Protocol property to specify which protocol to use when connecting to server. To use these
constants you should add MyClasses unit to uses clause.

© 1997-2012 Devart. All Rights Reserved.

17.15.1.9 MyAccess.TMyConnectionSSLOptions Class

This class allows setting up the behaviour of the TMyConnection class.
For a list of all members of this type, see TMyConnectionSSLOptions members.

Unit

MyAccess

Syntax

TMyConnectionSSLOptions = class(TPersistent);

Inheritance Hierarchy

TObject
 TMyConnectionSSLOptions

Data Access Components for MySQL460

© 1997-2012 Devart. All Rights Reserved.

TMyConnectionSSLOptions class overview.

Properties

Name Description

CACert Holds the pathname to the
certificate authority file.

Cert Holds the pathname to the
certificate file.

ChipherList Holds the list of allowed ciphers to
use for SSL encryption.

Key Holds the pathname to the key file.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMyConnectionSSLOptions class.
For a complete list of the TMyConnectionSSLOptions class members, see the
TMyConnectionSSLOptions Members topic.

Published

Name Description

CACert Holds the pathname to the
certificate authority file.

Cert Holds the pathname to the
certificate file.

ChipherList Holds the list of allowed ciphers to
use for SSL encryption.

Key Holds the pathname to the key file.

See Also
 TMyConnectionSSLOptions Class
 TMyConnectionSSLOptions Class Members

© 1997-2012 Devart. All Rights Reserved.

Holds the pathname to the certificate authority file.

Class

TMyConnectionSSLOptions

Syntax

property CACert: string;

Remarks

CACert is the pathname to the certificate authority file.

© 1997-2012 Devart. All Rights Reserved.

Holds the pathname to the certificate file.

Class

TMyConnectionSSLOptions

Syntax

property Cert: string;

Remarks

Cert is the pathname to the certificate file.

461Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Holds the list of allowed ciphers to use for SSL encryption.

Class

TMyConnectionSSLOptions

Syntax

property ChipherList: string;

Remarks

ChipherList is the list of allowed ciphers to use for SSL encryption.

© 1997-2012 Devart. All Rights Reserved.

Holds the pathname to the key file.

Class

TMyConnectionSSLOptions

Syntax

property Key: string;

Remarks

Key is the pathname to the key file.

© 1997-2012 Devart. All Rights Reserved.

17.15.1.10 MyAccess.TMyDataSetOptions Class

This class allows setting up the behaviour of the TMyDataSet class.
For a list of all members of this type, see TMyDataSetOptions members.

Unit

MyAccess

Syntax

TMyDataSetOptions = class(TDADataSetOptions);

Inheritance Hierarchy

TObject
 TDADataSetOptions
 TMyDataSetOptions

© 1997-2012 Devart. All Rights Reserved.

TMyDataSetOptions class overview.

Properties

Name Description

AutoPrepare Used to execute automatic
TCustomDADataSet.Prepare on a
query execution.

AutoRefresh Used to automatically refresh
dataset every AutoRefreshInterval
seconds.

AutoRefreshInterval Used to define in what time interval
in seconds the Refresh or
TCustomMyDataSet.RefreshQuick
method of a DataSet is called.

Data Access Components for MySQL462

BinaryAsString Used to specify a method of
representation of the BINARY and
VARBINARY fields.

CacheCalcFields (inherited from TDADataSetOptions) Used to enable caching of the
TField.Calculated and TField.Lookup
fields.

CheckRowVersion Used to determine whether a
dataset checks for rows
modifications made by another user
on automatic generation of SQL
statement for update or delete
data.

CreateConnection Used to specify if an additional
connection to a server should be
established to execute an additional
query in the TCustomMyDataSet.
FetchAll=False mode.

DefaultValues Used to fill the DefaultExpression
property of TField objects with
appropriate value.

DetailDelay (inherited from TDADataSetOptions) Used to get or set a delay in
milliseconds before refreshing detail
dataset while navigating master
dataset.

EnableBoolean Used to specify the method of
representation of the TINYINT(1)
fields.

FieldsAsString Used to store all non-BLOB fields as
string (native MySQL format).

FieldsOrigin Used to fill the Origin property of
TField objects with appropriate
value.

FlatBuffers (inherited from TDADataSetOptions) Used to control how a dataset
treats data of the ftString and
ftVarBytes fields.

FullRefresh Used to specify the fields to include
in automatically generated SQL
statement when calling the
TCustomDADataSet.RefreshRecord
method. Default value is false.

LocalMasterDetail (inherited from TDADataSetOptions) Used for TCustomDADataSet to use
local filtering to establish master/
detail relationship for detail dataset
and does not refer to the server.

LongStrings (inherited from TDADataSetOptions) Used to represent string fields with
the length that is greater than 255
as TStringField.

NullForZeroDate Used for MySQL server to represent
the value for for datetime fields
with invalid values as Null or '0001-
01-01' ('0100-01-01' for CLR).

NumberRange Used to set the MaxValue and
MinValue properties of TIntegerField
and TFloatField to appropriate
values.

QueryRecCount Used for TCustomDADataSet to
perform additional query to get
record count for this SELECT so the
RecordCount property reflects the
actual number of records.

463Data Access Components for MySQL

QuoteNames Used for TCustomMyDataSet to
quote all field names in
autogenerated SQL statements.

RemoveOnRefresh Used for dataset to remove a record
locally if the RefreshRecord
procedure can't find necessary
record on the server.

RequiredFields Used for TCustomDADataSet to set
the Required property of TField
objects for NOT NULL fields.

ReturnParams Used to return the new value of the
fields to dataset after insert or
update.

SetFieldsReadOnly Used to specify whether fields not
belonging to the current updating
table get read-only attribute.

StrictUpdate Used for TCustomDADataSet to
raise an exception when the
number of updated or deleted
records does not equal 1.

TrimFixedChar Used to specify whether to discard
all trailing spaces in string fields of
the dataset.

UpdateAllFields (inherited from TDADataSetOptions) Used to include all dataset fields in
the generated UPDATE and INSERT
statements.

UpdateBatchSize (inherited from TDADataSetOptions) Used to get or set a value that
enables or disables batch
processing support, and specifies
the number of commands that can
be executed in a batch.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMyDataSetOptions class.
For a complete list of the TMyDataSetOptions class members, see the TMyDataSetOptions Members
topic.

Public

Name Description

CacheCalcFields (inherited from TDADataSetOptions) Used to enable caching of the
TField.Calculated and TField.Lookup
fields.

DetailDelay (inherited from TDADataSetOptions) Used to get or set a delay in
milliseconds before refreshing detail
dataset while navigating master
dataset.

FlatBuffers (inherited from TDADataSetOptions) Used to control how a dataset
treats data of the ftString and
ftVarBytes fields.

LocalMasterDetail (inherited from TDADataSetOptions) Used for TCustomDADataSet to use
local filtering to establish master/
detail relationship for detail dataset
and does not refer to the server.

LongStrings (inherited from TDADataSetOptions) Used to represent string fields with
the length that is greater than 255
as TStringField.

UpdateAllFields (inherited from TDADataSetOptions) Used to include all dataset fields in
the generated UPDATE and INSERT
statements.

Data Access Components for MySQL464

UpdateBatchSize (inherited from TDADataSetOptions) Used to get or set a value that
enables or disables batch
processing support, and specifies
the number of commands that can
be executed in a batch.

Published

Name Description

AutoPrepare Used to execute automatic
TCustomDADataSet.Prepare on a
query execution.

AutoRefresh Used to automatically refresh
dataset every AutoRefreshInterval
seconds.

AutoRefreshInterval Used to define in what time interval
in seconds the Refresh or
TCustomMyDataSet.RefreshQuick
method of a DataSet is called.

BinaryAsString Used to specify a method of
representation of the BINARY and
VARBINARY fields.

CheckRowVersion Used to determine whether a
dataset checks for rows
modifications made by another user
on automatic generation of SQL
statement for update or delete
data.

CreateConnection Used to specify if an additional
connection to a server should be
established to execute an additional
query in the TCustomMyDataSet.
FetchAll=False mode.

DefaultValues Used to fill the DefaultExpression
property of TField objects with
appropriate value.

EnableBoolean Used to specify the method of
representation of the TINYINT(1)
fields.

FieldsAsString Used to store all non-BLOB fields as
string (native MySQL format).

FieldsOrigin Used to fill the Origin property of
TField objects with appropriate
value.

FullRefresh Used to specify the fields to include
in automatically generated SQL
statement when calling the
TCustomDADataSet.RefreshRecord
method. Default value is false.

NullForZeroDate Used for MySQL server to represent
the value for for datetime fields
with invalid values as Null or '0001-
01-01' ('0100-01-01' for CLR).

NumberRange Used to set the MaxValue and
MinValue properties of TIntegerField
and TFloatField to appropriate
values.

QueryRecCount Used for TCustomDADataSet to
perform additional query to get
record count for this SELECT so the
RecordCount property reflects the
actual number of records.

465Data Access Components for MySQL

QuoteNames Used for TCustomMyDataSet to
quote all field names in
autogenerated SQL statements.

RemoveOnRefresh Used for dataset to remove a record
locally if the RefreshRecord
procedure can't find necessary
record on the server.

RequiredFields Used for TCustomDADataSet to set
the Required property of TField
objects for NOT NULL fields.

ReturnParams Used to return the new value of the
fields to dataset after insert or
update.

SetFieldsReadOnly Used to specify whether fields not
belonging to the current updating
table get read-only attribute.

StrictUpdate Used for TCustomDADataSet to
raise an exception when the
number of updated or deleted
records does not equal 1.

TrimFixedChar Used to specify whether to discard
all trailing spaces in string fields of
the dataset.

See Also
 TMyDataSetOptions Class
 TMyDataSetOptions Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to execute automatic TCustomDADataSet.Prepare on a query execution.

Class

TMyDataSetOptions

Syntax

property AutoPrepare: boolean;

Remarks

Set the AutoPrepare property to execute automatic TCustomDADataSet.Prepare on a query execution.
Makes sense for cases when a query will be executed several times, for example, in Master/Detail
relationships.

© 1997-2012 Devart. All Rights Reserved.

Used to automatically refresh dataset every AutoRefreshInterval seconds.

Class

TMyDataSetOptions

Syntax

property AutoRefresh: boolean default False;

Remarks

If True, dataset will be automatically refreshed every AutoRefreshInterval seconds. If dataset has at
least one key field and a TIMESTAMP field, the TCustomMyDataSet.RefreshQuick method will be
executed, otherwise the Refresh method will be executed. This option is only available for Windows.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL466

Used to define in what time interval in seconds the Refresh or TCustomMyDataSet.RefreshQuick method
of a DataSet is called.

Class

TMyDataSetOptions

Syntax

property AutoRefreshInterval: integer default 60;

Remarks

Use the AutoRefreshInterval property to define in what time interval in seconds the Refresh or
TCustomMyDataSet.RefreshQuick method of a DataSet is called. This option is only available for
Windows.

© 1997-2012 Devart. All Rights Reserved.

Used to specify a method of representation of the BINARY and VARBINARY fields.

Class

TMyDataSetOptions

Syntax

property BinaryAsString: boolean default True;

Remarks

Use the BinaryAsString property to specify a method of representation of the BINARY and VARBINARY
fields. If set to True, these fields will be represented as string fields; otherwise, as TBytesField and
TVarBytesField correspondingly. If the binary fields should not be processed as strings then set this
property to False. The default value is True.

© 1997-2012 Devart. All Rights Reserved.

Used to determine whether a dataset checks for rows modifications made by another user on automatic
generation of SQL statement for update or delete data.

Class

TMyDataSetOptions

Syntax

property CheckRowVersion: boolean default False;

Remarks

Use the CheckRowVersion property to determine whether a dataset checks for rows modifications made
by another user on automatic generation of SQL statement for update or delete data. If
CheckRowVersion is True and DataSet has timestamp field when only this field is added into WHERE
clause of generated SQL statement. If CheckRowVersion is True, but there is no TIMESTAMP field, then
all nonblob fields will be added to WHERE clause. The default value is False.

© 1997-2012 Devart. All Rights Reserved.

Used to specify if an additional connection to a server should be established to execute an additional
query in the TCustomMyDataSet.FetchAll=False mode.

Class

TMyDataSetOptions

Syntax

property CreateConnection: boolean default True;

Remarks

467Data Access Components for MySQL

Use the CreateConnection property to specify if an additional connection to a server should be
established to execute an additional query in the TCustomMyDataSet.FetchAll=False mode. If a DataSet
is opened in TCustomMyDataSet.FetchAll=False, the current connection is blocked until all records have
been fetched. If this option is set to True, an additional connection is created to fetch data to avoid
blocking of the current connection.

© 1997-2012 Devart. All Rights Reserved.

Used to fill the DefaultExpression property of TField objects with appropriate value.

Class

TMyDataSetOptions

Syntax

property DefaultValues: boolean;

Remarks

If True, TCustomMyDataSet fills the DefaultExpression property of TField objects with appropriate value.

© 1997-2012 Devart. All Rights Reserved.

Used to specify the method of representation of the TINYINT(1) fields.

Class

TMyDataSetOptions

Syntax

property EnableBoolean: boolean default True;

Remarks

Use the EnableBoolean property to specify the method of representation of the TINYINT(1) fields. If set
to True, these fields will be represented as TBooleanFiled; otherwise, as TSmallintField. The default value
is True.

© 1997-2012 Devart. All Rights Reserved.

Used to store all non-BLOB fields as string (native MySQL format).

Class

TMyDataSetOptions

Syntax

property FieldsAsString: boolean default False;

Remarks

All non-BLOB fields are stored as string (native MySQL format). The default value is False.

© 1997-2012 Devart. All Rights Reserved.

Used to fill the Origin property of TField objects with appropriate value.

Class

TMyDataSetOptions

Syntax

property FieldsOrigin: boolean default True;

Remarks

If True, TCustomMyDataSet fills the Origin property of TField objects with appropriate value.

Data Access Components for MySQL468

© 1997-2012 Devart. All Rights Reserved.

Used to specify the fields to include in automatically generated SQL statement when calling the
TCustomDADataSet.RefreshRecord method. Default value is false.

Class

TMyDataSetOptions

Syntax

property FullRefresh: boolean;

Remarks

Use the FullRefresh property to specify what fields to include in automatically generated SQL statement
when calling the TCustomDADataSet.RefreshRecord method. If the FullRefresh property is True, all the
fields from query are included into a SQL statement to refresh single record. If FullRefresh is False, only
fields from TMyQuery.UpdatingTable are included. The default value is False.

© 1997-2012 Devart. All Rights Reserved.

Used for MySQL server to represent the value for for datetime fields with invalid values as Null or '0001-
01-01' ('0100-01-01' for CLR).

Class

TMyDataSetOptions

Syntax

property NullForZeroDate: boolean default True;

Remarks

For datetime fields with invalid values, for example '2002-12-32', MySQL returns on fetch the '0000-00-
00' value. According to the NullForZeroDate option this value will be represented as Null or '0001-01-01'
('0100-01-01' for CLR). The default value is True.

© 1997-2012 Devart. All Rights Reserved.

Used to set the MaxValue and MinValue properties of TIntegerField and TFloatField to appropriate values.

Class

TMyDataSetOptions

Syntax

property NumberRange: boolean;

Remarks

Use the NumberRange property to set the MaxValue and MinValue properties of TIntegerField and
TFloatField to appropriate values. The default value is False.

© 1997-2012 Devart. All Rights Reserved.

Used for TCustomDADataSet to perform additional query to get record count for this SELECT so the
RecordCount property reflects the actual number of records.

Class

TMyDataSetOptions

Syntax

property QueryRecCount: boolean;

Remarks

469Data Access Components for MySQL

If True, and the TCustomMyDataSet.FetchAll property is False, TCustomDADataSet performs additional
query to get record count for this SELECT so the RecordCount property reflects the actual number of
records. Does not have any effect if the TCustomMyDataSet.FetchAll property is True.

© 1997-2012 Devart. All Rights Reserved.

Used for TCustomMyDataSet to quote all field names in autogenerated SQL statements.

Class

TMyDataSetOptions

Syntax

property QuoteNames: boolean;

Remarks

If True, TCustomMyDataSet quotes all field names in autogenerated SQL statements such as update
SQL.

© 1997-2012 Devart. All Rights Reserved.

Used for dataset to remove a record locally if the RefreshRecord procedure can't find necessary record
on the server.

Class

TMyDataSetOptions

Syntax

property RemoveOnRefresh: boolean;

Remarks

When the RefreshRecord procedure can't find necessary record on the server and RemoveOnRefresh is
set to True, dataset removes the record locally. Usually RefreshRecord can't find necessary record when
someone else dropped the record or changed its key value.
This option makes sense only if the StrictUpdate option is set to False. If the StrictUpdate option is True,
error will be generated regardless of the RemoveOnRefresh option value.

© 1997-2012 Devart. All Rights Reserved.

Used for TCustomDADataSet to set the Required property of TField objects for NOT NULL fields.

Class

TMyDataSetOptions

Syntax

property RequiredFields: boolean default False;

Remarks

If True, TCustomDADataSet sets the Required property of TField objects for NOT NULL fields. It is useful
when table has a trigger that updates NOT NULL fields. The default value is False.

© 1997-2012 Devart. All Rights Reserved.

Used to return the new value of the fields to dataset after insert or update.

Class

TMyDataSetOptions

Syntax

property ReturnParams: boolean;

Data Access Components for MySQL470

Remarks

Use the ReturnParams property to return the new value of the fields to dataset after insert or update.
Actual value of field after insert or update may be different from the value stored in local memory if the
table has a trigger. When ReturnParams is True, OUT parameters of SQLInsert and SQLUpdate
statements is assigned to corresponding fields. The default value is False.

© 1997-2012 Devart. All Rights Reserved.

Used to specify whether fields not belonging to the current updating table get read-only attribute.

Class

TMyDataSetOptions

Syntax

property SetFieldsReadOnly: boolean default False;

Remarks

Use the SetFieldsReadOnly property to specify whether fields not belonging to the current updating table
get read-only attribute. The default value is False.

© 1997-2012 Devart. All Rights Reserved.

Used for TCustomDADataSet to raise an exception when the number of updated or deleted records does
not equal 1.

Class

TMyDataSetOptions

Syntax

property StrictUpdate: boolean;

Remarks

TCustomDADataSet raises an exception when the number of updated or deleted records does not equal
1. Setting this option also causes an exception if the RefreshRecord procedure returns more than one
record. The exception does not occur when you use a non-SQL block. The default value is True.

© 1997-2012 Devart. All Rights Reserved.

Used to specify whether to discard all trailing spaces in string fields of the dataset.

Class

TMyDataSetOptions

Syntax

property TrimFixedChar: boolean stored False;

Remarks

Use the TrimFixedChar property to specify whether to discard all trailing spaces in string fields of the
dataset. The default value is True.

© 1997-2012 Devart. All Rights Reserved.

17.15.1.11 MyAccess.TMyDataSource Class

TMyDataSource provides an interface between a MyDAC dataset components and data-aware controls on
a form.
For a list of all members of this type, see TMyDataSource members.

Unit

MyAccess

471Data Access Components for MySQL

Syntax

TMyDataSource = class(TCRDataSource);

Remarks

TMyDataSource provides an interface between a MyDAC dataset components and data-aware controls on
a form.
TMyDataSource inherits its functionality directly from the TDataSource component.
At design-time assign individual data-aware components' DataSource properties from their drop-down
listboxes.

Inheritance Hierarchy

TObject
 TCRDataSource
 TMyDataSource

© 1997-2012 Devart. All Rights Reserved.

TMyDataSource class overview.

© 1997-2012 Devart. All Rights Reserved.

17.15.1.12 MyAccess.TMyEncryptor Class

The class that performs encrypting and decrypting of data.
For a list of all members of this type, see TMyEncryptor members.

Unit

MyAccess

Syntax

TMyEncryptor = class(TCREncryptor);

Inheritance Hierarchy

TObject
 TCREncryptor
 TMyEncryptor

© 1997-2012 Devart. All Rights Reserved.

TMyEncryptor class overview.

Properties

Name Description

DataHeader (inherited from TCREncryptor) Specifies whether the additional
information is stored with the
encrypted data.

EncryptionAlgorithm (inherited from TCREncryptor) Specifies the algorithm of data
encryption.

HashAlgorithm (inherited from TCREncryptor) Specifies the algorithm of
generating hash data.

InvalidHashAction (inherited from TCREncryptor) Specifies the action to perform on
data fetching when hash data is
invalid.

Password (inherited from TCREncryptor) Used to set a password that is used
to generate a key for encryption.

Methods

Name Description

SetKey (inherited from TCREncryptor) Sets a key, using which data is
encrypted.

Data Access Components for MySQL472

© 1997-2012 Devart. All Rights Reserved.

17.15.1.13 MyAccess.TMyMetaData Class

A component for obtaining metainformation about database objects from the server.
For a list of all members of this type, see TMyMetaData members.

Unit

MyAccess

Syntax

TMyMetaData = class(TDAMetaData);

Remarks

The TMyMetaData component is used to obtain metainformation from the server about objects in the
database, such as tables, table columns, stored procedures, etc. TMyMetaData publishes properties of
TDAMetaData.

Inheritance Hierarchy

TObject
 TMemDataSet
 TDAMetaData
 TMyMetaData

See Also

 TCustomDADataSet.Debug
 TCustomDASQL.Debug
 DBMonitor

© 1997-2012 Devart. All Rights Reserved.

TMyMetaData class overview.

Properties

Name Description

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

Connection (inherited from TDAMetaData) Used to specify a connection object
to use to connect to a data store.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

MetaDataKind (inherited from TDAMetaData) Used to specify which kind of
metainformation to show.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

Restrictions (inherited from TDAMetaData) Used to provide one or more
conditions restricting the list of
objects to be described.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

473Data Access Components for MySQL

Methods

Name Description

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetMetaDataKinds (inherited from TDAMetaData) Used to get values acceptable in the
MetaDataKind property.

GetRestrictions (inherited from TDAMetaData) Used to find out which restrictions
are applicable to a certain
MetaDataKind.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Prepare (inherited from TMemDataSet) Allocates resources and creates
field components for a dataset.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

Events

Name Description

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL474

17.15.1.14 MyAccess.TMyQuery Class

A component for executing queries and operating record sets. It also provides flexible way to update
data.
For a list of all members of this type, see TMyQuery members.

Unit

MyAccess

Syntax

TMyQuery = class(TCustomMyDataSet);

Remarks

TMyQuery is a direct descendant of the TCustomMyDataSet component. It publishes most of its inherited
properties and events so that they can be manipulated at design-time.
Use TMyQuery to perform fetching, insertion, deletion and update of record by dynamically generated
SQL statements. TMyQuery provides automatic blocking of records, their checking before edit and
refreshing after post. Set SQL, SQLInsert, SQLDelete, SQLRefresh, and SQLUpdate properties to define
SQL statements for subsequent accesses to the database server. There is no restriction to their syntax,
so any SQL statement is allowed. Usually you need to use INSERT, DELETE, and UPDATE statements but
you also may use stored procedures in more diverse cases.
To modify records, you can specify KeyFields. If they are not specified, TMyQuery will retrieve primary
keys for UpdatingTable from metadata. TMyQuery can automatically update only one table. Updating
table is defined by the UpdatingTable property if this property is set. Otherwise, the table a field of which
is the first field in the field list in the SELECT clause is used as an updating table.
The SQLInsert, SQLDelete, SQLUpdate, SQLRefresh properties support automatic binding of parameters
which have identical names to fields captions. To retrieve the value of a field as it was before the
operation use the field name with the 'OLD_' prefix. This is especially useful when doing field
comparisons in the WHERE clause of the statement. Use the TCustomDADataSet.BeforeUpdateExecute
event to assign the value to additional parameters and the TCustomDADataSet.AfterUpdateExecute
event to read them.

Inheritance Hierarchy

TObject
 TMemDataSet
 TCustomDADataSet
 TCustomMyDataSet
 TMyQuery

See Also

 Query demo project
 Updating Data with MyDAC Dataset Components
 Master/Detail Relationships
 TMyStoredProc
 TMyTable

© 1997-2012 Devart. All Rights Reserved.

TMyQuery class overview.

Properties

Name Description

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CommandTimeout (inherited from TCustomMyDataSet) Used to specify the amount of time
to attempt execution of a
command.

475Data Access Components for MySQL

Connection (inherited from TCustomMyDataSet) Used to specify a connection object
that will be used to connect to a
data store.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its parameters'
values, and the type of parameters.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet) Used to keep dataset opened after
connection is closed.

Encryption (inherited from TCustomDADataSet) Used to specify the options of the
data encryption in a dataset.

FetchAll Defines whether to request all
records of the query from database
server when the dataset is being
opened.

FetchRows (inherited from TCustomDADataSet) Used to define the number of rows
to be transferred across the
network at the same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE clause
of SELECT statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

InsertId (inherited from TCustomMyDataSet) Returns the ID generated for an
AUTO_INCREMENT column by the
previous query.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

LockMode Used to specify what kind of lock
will be performed when editing a
record.

MacroCount (inherited from TCustomDADataSet) Used to get the number of macros
associated with the Macros
property.

Macros (inherited from TCustomDADataSet) Makes it possible to change SQL
queries easily.

MasterFields (inherited from TCustomDADataSet) Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

Data Access Components for MySQL476

MasterSource (inherited from TCustomDADataSet) Used to specify the data source
component which binds current
dataset to the master one.

Options (inherited from TCustomMyDataSet) Specifies the behaviour of
TCustomMyDataSet object.

ParamCheck (inherited from TCustomDADataSet) Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

ParamCount (inherited from TCustomDADataSet) Used to indicate how many
parameters are there in the Params
property.

Params (inherited from TCustomDADataSet) Used to view and set parameter
names, values, and data types
dynamically.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or deleting data
in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the editing
record is refreshed.

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SQL (inherited from TCustomDADataSet) Used to provide a SQL statement
that a query component executes
when its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying a
deletion to a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to perform a
record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying an
update to a dataset.

UniDirectional (inherited from TCustomDADataSet) Used if an application does not need
bidirectional access to records in
the result set.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

UpdatingTable Used to specify which table in a
query is assumed to be the target
for subsequent data-modification
queries as a result of user incentive
to insert, update or delete records.

Methods

477Data Access Components for MySQL

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

CreateBlobStream (inherited from TCustomDADataSet) Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteWhere (inherited from TCustomDADataSet) Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

Execute (inherited from TCustomDADataSet) Executes a SQL statement on the
server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL statement is
still being executed.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has already
fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still fetching
rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a specified macro
exists in a dataset.

FindNearest (inherited from TCustomDADataSet) Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomDADataSet) Determines if a parameter with the
specified name exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet) Returns internal field types defined
in the MemData and accompanying
modules.

GetFieldEnum (inherited from TCustomMyDataSet) Retrieve the list of acceptable
values for a specified field given by
the FieldName parameter.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference shared
object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a number
field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a number
field.

Data Access Components for MySQL478

GetOrderBy (inherited from TCustomDADataSet) Retrieves an ORDER BY clause from
a SQL statement.

GotoCurrent (inherited from TCustomDADataSet) Sets the current record in this
dataset similar to the current record
in another dataset.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Lock (inherited from TCustomMyDataSet) Overloaded. Locks the current
record for the current connection.

LockTable (inherited from TCustomMyDataSet) Locks table for the current
connection.

MacroByName (inherited from TCustomDADataSet) Finds a Macro with the name passed
in Name.

ParamByName (inherited from TCustomDADataSet) Sets or uses parameter information
for a specific parameter based on
its name.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses cursor
for a query.

RefreshQuick (inherited from TCustomMyDataSet) Retrieves changes posted to the
server by another clients on the
client side quickly.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for the
current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property modified
by AddWhere and SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property value to
BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause of a
SELECT statement.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL property
value was saved to the BaseSQL
property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnLockTable (inherited from TCustomMyDataSet) Releases a table locked by the
TCustomMyDataSet.LockTable
method.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

479Data Access Components for MySQL

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

Events

Name Description

AfterExecute (inherited from TCustomDADataSet) Occurs after a component has
executed a query to database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from TCustomDADataSet) Occurs after executing insert,
delete, update, lock and refresh
operations.

BeforeFetch (inherited from TCustomDADataSet) Occurs before dataset is going to
fetch block of records from the
server.

BeforeUpdateExecute (inherited from TCustomDADataSet) Occurs before executing insert,
delete, update, lock, and refresh
operations.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMyQuery class.
For a complete list of the TMyQuery class members, see the TMyQuery Members topic.

Public

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

AfterExecute (inherited from TCustomDADataSet) Occurs after a component has
executed a query to database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from TCustomDADataSet) Occurs after executing insert,
delete, update, lock and refresh
operations.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

BeforeFetch (inherited from TCustomDADataSet) Occurs before dataset is going to
fetch block of records from the
server.

BeforeUpdateExecute (inherited from TCustomDADataSet) Occurs before executing insert,
delete, update, lock, and refresh
operations.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

Data Access Components for MySQL480

CommandTimeout (inherited from TCustomMyDataSet) Used to specify the amount of time
to attempt execution of a
command.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

Connection (inherited from TCustomMyDataSet) Used to specify a connection object
that will be used to connect to a
data store.

CreateBlobStream (inherited from TCustomDADataSet) Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its parameters'
values, and the type of parameters.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteWhere (inherited from TCustomDADataSet) Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet) Used to keep dataset opened after
connection is closed.

Encryption (inherited from TCustomDADataSet) Used to specify the options of the
data encryption in a dataset.

Execute (inherited from TCustomDADataSet) Executes a SQL statement on the
server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL statement is
still being executed.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has already
fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still fetching
rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

FetchRows (inherited from TCustomDADataSet) Used to define the number of rows
to be transferred across the
network at the same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE clause
of SELECT statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a specified macro
exists in a dataset.

FindNearest (inherited from TCustomDADataSet) Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomDADataSet) Determines if a parameter with the
specified name exists in a dataset.

481Data Access Components for MySQL

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet) Returns internal field types defined
in the MemData and accompanying
modules.

GetFieldEnum (inherited from TCustomMyDataSet) Retrieve the list of acceptable
values for a specified field given by
the FieldName parameter.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference shared
object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a number
field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a number
field.

GetOrderBy (inherited from TCustomDADataSet) Retrieves an ORDER BY clause from
a SQL statement.

GotoCurrent (inherited from TCustomDADataSet) Sets the current record in this
dataset similar to the current record
in another dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

InsertId (inherited from TCustomMyDataSet) Returns the ID generated for an
AUTO_INCREMENT column by the
previous query.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Lock (inherited from TCustomMyDataSet) Overloaded. Locks the current
record for the current connection.

LockTable (inherited from TCustomMyDataSet) Locks table for the current
connection.

MacroByName (inherited from TCustomDADataSet) Finds a Macro with the name passed
in Name.

MacroCount (inherited from TCustomDADataSet) Used to get the number of macros
associated with the Macros
property.

Macros (inherited from TCustomDADataSet) Makes it possible to change SQL
queries easily.

Data Access Components for MySQL482

MasterFields (inherited from TCustomDADataSet) Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

MasterSource (inherited from TCustomDADataSet) Used to specify the data source
component which binds current
dataset to the master one.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

Options (inherited from TCustomMyDataSet) Specifies the behaviour of
TCustomMyDataSet object.

ParamByName (inherited from TCustomDADataSet) Sets or uses parameter information
for a specific parameter based on
its name.

ParamCheck (inherited from TCustomDADataSet) Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

ParamCount (inherited from TCustomDADataSet) Used to indicate how many
parameters are there in the Params
property.

Params (inherited from TCustomDADataSet) Used to view and set parameter
names, values, and data types
dynamically.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses cursor
for a query.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or deleting data
in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the editing
record is refreshed.

RefreshQuick (inherited from TCustomMyDataSet) Retrieves changes posted to the
server by another clients on the
client side quickly.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for the
current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property modified
by AddWhere and SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property value to
BaseSQL.

483Data Access Components for MySQL

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause of a
SELECT statement.

SQL (inherited from TCustomDADataSet) Used to provide a SQL statement
that a query component executes
when its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying a
deletion to a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to perform a
record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL property
value was saved to the BaseSQL
property.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying an
update to a dataset.

UniDirectional (inherited from TCustomDADataSet) Used if an application does not need
bidirectional access to records in
the result set.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnLockTable (inherited from TCustomMyDataSet) Releases a table locked by the
TCustomMyDataSet.LockTable
method.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

Published

Name Description

FetchAll Defines whether to request all
records of the query from database
server when the dataset is being
opened.

LockMode Used to specify what kind of lock
will be performed when editing a
record.

Data Access Components for MySQL484

UpdatingTable Used to specify which table in a
query is assumed to be the target
for subsequent data-modification
queries as a result of user incentive
to insert, update or delete records.

See Also
 TMyQuery Class
 TMyQuery Class Members

© 1997-2012 Devart. All Rights Reserved.

Defines whether to request all records of the query from database server when the dataset is being
opened.

Class

TMyQuery

Syntax

property FetchAll: boolean;

Remarks

When set to True, all records of the query are requested from database server when the dataset is being
opened. When set to False, records are retrieved when a data-aware component or a program requests
it. If a query can return a lot of records, set this property to False if initial response time is important.
When the FetchAll property is False, the first call to TMemDataSet.Locate and TMemDataSet.LocateEx
methods may take a lot of time to retrieve additional records to the client side.

© 1997-2012 Devart. All Rights Reserved.

Used to specify what kind of lock will be performed when editing a record.

Class

TMyQuery

Syntax

property LockMode: TLockMode;

Remarks

Use the LockMode property to define what kind of lock will be performed when editing a record. Locking
a record is useful in creating multi-user applications. It prevents modification of a record by several
users at the same time.
Locking is performed by the RefreshRecord method.
The default value is lmNone.

See Also

 TMyStoredProc.LockMode
 TMyTable.LockMode

© 1997-2012 Devart. All Rights Reserved.

Used to specify which table in a query is assumed to be the target for subsequent data-modification
queries as a result of user incentive to insert, update or delete records.

Class

TMyQuery

Syntax

property UpdatingTable: string;

485Data Access Components for MySQL

Remarks

Use the UpdatingTable property to specify which table in a query is assumed to be the target for the
subsequent data-modification queries as a result of user incentive to insert, update or delete records.
This property is used on Insert, Update, Delete or RefreshRecord (see also TCustomMyDataSet.Options)
if appropriate SQL (SQLInsert, SQLUpdate or SQLDelete) is not provided.
If UpdatingTable is not set then the first table used in a query is assumed to be the target.
All fields from other than target table have their ReadOnly properties set to True (if TCustomMyDataSet.
Options)

Example

The first example specifies a query in which only one value 'Dept' for the UpdatingTable property is
allowed.
The second example shows a query in which allowed values for UpdatingTable are 'Dept' and 'Emp'.
By default the updating table will be the first used table, so 'DEPT' and all fields of DEPT will be editable.
If however UpdatingTable is set to be 'EMP' all fields of EMP will be editable.

Example 1.
 SELECT * FROM Dept
Example 2.
 SELECT * FROM Dept, Emp
 WHERE Dept.DeptNo = Emp.DeptNo

© 1997-2012 Devart. All Rights Reserved.

17.15.1.15 MyAccess.TMyStoredProc Class

A component for accessing and executing stored procedures and functions.
For a list of all members of this type, see TMyStoredProc members.

Unit

MyAccess

Syntax

TMyStoredProc = class(TCustomMyStoredProc);

Remarks

Use TMyStoredProc to access stored procedures on the database server.
You need only to define the StoredProcName property, and the SQL statement to call the stored
procedure will be generated automatically.
Use the Execute method at runtime to generate request that instructs server to execute procedure and
return parameters in the Params property.

Inheritance Hierarchy

TObject
 TMemDataSet
 TCustomDADataSet
 TCustomMyDataSet
 TCustomMyStoredProc
 TMyStoredProc

See Also

 Stored proc demo
 TMyQuery
 TMyCommand
 Updating Data with MyDAC Dataset Components

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL486

TMyStoredProc class overview.

Properties

Name Description

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CommandTimeout (inherited from TCustomMyDataSet) Used to specify the amount of time
to attempt execution of a
command.

Connection (inherited from TCustomMyDataSet) Used to specify a connection object
that will be used to connect to a
data store.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its parameters'
values, and the type of parameters.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet) Used to keep dataset opened after
connection is closed.

Encryption (inherited from TCustomDADataSet) Used to specify the options of the
data encryption in a dataset.

FetchAll (inherited from TCustomMyDataSet) Description is not available at the
moment.

FetchRows (inherited from TCustomDADataSet) Used to define the number of rows
to be transferred across the
network at the same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE clause
of SELECT statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

InsertId (inherited from TCustomMyDataSet) Returns the ID generated for an
AUTO_INCREMENT column by the
previous query.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

LockMode Used to specify what kind of lock
will be performed when editing a
record.

487Data Access Components for MySQL

MacroCount (inherited from TCustomDADataSet) Used to get the number of macros
associated with the Macros
property.

Macros (inherited from TCustomDADataSet) Makes it possible to change SQL
queries easily.

MasterFields (inherited from TCustomDADataSet) Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

MasterSource (inherited from TCustomDADataSet) Used to specify the data source
component which binds current
dataset to the master one.

Options (inherited from TCustomMyDataSet) Specifies the behaviour of
TCustomMyDataSet object.

ParamCheck (inherited from TCustomDADataSet) Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

ParamCount (inherited from TCustomDADataSet) Used to indicate how many
parameters are there in the Params
property.

Params (inherited from TCustomDADataSet) Used to view and set parameter
names, values, and data types
dynamically.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or deleting data
in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the editing
record is refreshed.

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SQL (inherited from TCustomDADataSet) Used to provide a SQL statement
that a query component executes
when its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying a
deletion to a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to perform a
record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying an
update to a dataset.

StoredProcName (inherited from TCustomMyStoredProc) Used to specify the name of the
stored procedure to call on the
server.

Data Access Components for MySQL488

UniDirectional (inherited from TCustomDADataSet) Used if an application does not need
bidirectional access to records in
the result set.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

UpdatingTable Specifies which table in a query is
assumed to be the target for
subsequent data-modification
queries as a result of user incentive
to insert, update or delete records.

Methods

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

CreateBlobStream (inherited from TCustomDADataSet) Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteWhere (inherited from TCustomDADataSet) Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

ExecProc (inherited from TCustomMyStoredProc) Executes a SQL statement on the
server.

Execute (inherited from TCustomDADataSet) Executes a SQL statement on the
server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL statement is
still being executed.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has already
fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still fetching
rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a specified macro
exists in a dataset.

FindNearest (inherited from TCustomDADataSet) Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

489Data Access Components for MySQL

FindParam (inherited from TCustomDADataSet) Determines if a parameter with the
specified name exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet) Returns internal field types defined
in the MemData and accompanying
modules.

GetFieldEnum (inherited from TCustomMyDataSet) Retrieve the list of acceptable
values for a specified field given by
the FieldName parameter.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference shared
object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a number
field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a number
field.

GetOrderBy (inherited from TCustomDADataSet) Retrieves an ORDER BY clause from
a SQL statement.

GotoCurrent (inherited from TCustomDADataSet) Sets the current record in this
dataset similar to the current record
in another dataset.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Lock (inherited from TCustomMyDataSet) Overloaded. Locks the current
record for the current connection.

LockTable (inherited from TCustomMyDataSet) Locks table for the current
connection.

MacroByName (inherited from TCustomDADataSet) Finds a Macro with the name passed
in Name.

ParamByName (inherited from TCustomDADataSet) Sets or uses parameter information
for a specific parameter based on
its name.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses cursor
for a query.

PrepareSQL (inherited from TCustomMyStoredProc) Builds a query for
TCustomMyStoredProc based on the
Params and StoredProcName
properties, and assigns it to the
SQL property.

RefreshQuick (inherited from TCustomMyDataSet) Retrieves changes posted to the
server by another clients on the
client side quickly.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for the
current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property modified
by AddWhere and SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

Data Access Components for MySQL490

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property value to
BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause of a
SELECT statement.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL property
value was saved to the BaseSQL
property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnLockTable (inherited from TCustomMyDataSet) Releases a table locked by the
TCustomMyDataSet.LockTable
method.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

Events

Name Description

AfterExecute (inherited from TCustomDADataSet) Occurs after a component has
executed a query to database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from TCustomDADataSet) Occurs after executing insert,
delete, update, lock and refresh
operations.

BeforeFetch (inherited from TCustomDADataSet) Occurs before dataset is going to
fetch block of records from the
server.

BeforeUpdateExecute (inherited from TCustomDADataSet) Occurs before executing insert,
delete, update, lock, and refresh
operations.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMyStoredProc class.
For a complete list of the TMyStoredProc class members, see the TMyStoredProc Members topic.

Public

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

491Data Access Components for MySQL

AfterExecute (inherited from TCustomDADataSet) Occurs after a component has
executed a query to database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from TCustomDADataSet) Occurs after executing insert,
delete, update, lock and refresh
operations.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

BeforeFetch (inherited from TCustomDADataSet) Occurs before dataset is going to
fetch block of records from the
server.

BeforeUpdateExecute (inherited from TCustomDADataSet) Occurs before executing insert,
delete, update, lock, and refresh
operations.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommandTimeout (inherited from TCustomMyDataSet) Used to specify the amount of time
to attempt execution of a
command.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

Connection (inherited from TCustomMyDataSet) Used to specify a connection object
that will be used to connect to a
data store.

CreateBlobStream (inherited from TCustomDADataSet) Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its parameters'
values, and the type of parameters.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteWhere (inherited from TCustomDADataSet) Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet) Used to keep dataset opened after
connection is closed.

Encryption (inherited from TCustomDADataSet) Used to specify the options of the
data encryption in a dataset.

ExecProc (inherited from TCustomMyStoredProc) Executes a SQL statement on the
server.

Execute (inherited from TCustomDADataSet) Executes a SQL statement on the
server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL statement is
still being executed.

FetchAll (inherited from TCustomMyDataSet) Description is not available at the
moment.

Data Access Components for MySQL492

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has already
fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still fetching
rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

FetchRows (inherited from TCustomDADataSet) Used to define the number of rows
to be transferred across the
network at the same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE clause
of SELECT statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a specified macro
exists in a dataset.

FindNearest (inherited from TCustomDADataSet) Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomDADataSet) Determines if a parameter with the
specified name exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet) Returns internal field types defined
in the MemData and accompanying
modules.

GetFieldEnum (inherited from TCustomMyDataSet) Retrieve the list of acceptable
values for a specified field given by
the FieldName parameter.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference shared
object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a number
field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a number
field.

GetOrderBy (inherited from TCustomDADataSet) Retrieves an ORDER BY clause from
a SQL statement.

GotoCurrent (inherited from TCustomDADataSet) Sets the current record in this
dataset similar to the current record
in another dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

InsertId (inherited from TCustomMyDataSet) Returns the ID generated for an
AUTO_INCREMENT column by the
previous query.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

493Data Access Components for MySQL

KeyFields (inherited from TCustomDADataSet) Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Lock (inherited from TCustomMyDataSet) Overloaded. Locks the current
record for the current connection.

LockTable (inherited from TCustomMyDataSet) Locks table for the current
connection.

MacroByName (inherited from TCustomDADataSet) Finds a Macro with the name passed
in Name.

MacroCount (inherited from TCustomDADataSet) Used to get the number of macros
associated with the Macros
property.

Macros (inherited from TCustomDADataSet) Makes it possible to change SQL
queries easily.

MasterFields (inherited from TCustomDADataSet) Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

MasterSource (inherited from TCustomDADataSet) Used to specify the data source
component which binds current
dataset to the master one.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

Options (inherited from TCustomMyDataSet) Specifies the behaviour of
TCustomMyDataSet object.

ParamByName (inherited from TCustomDADataSet) Sets or uses parameter information
for a specific parameter based on
its name.

ParamCheck (inherited from TCustomDADataSet) Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

ParamCount (inherited from TCustomDADataSet) Used to indicate how many
parameters are there in the Params
property.

Params (inherited from TCustomDADataSet) Used to view and set parameter
names, values, and data types
dynamically.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses cursor
for a query.

Data Access Components for MySQL494

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

PrepareSQL (inherited from TCustomMyStoredProc) Builds a query for
TCustomMyStoredProc based on the
Params and StoredProcName
properties, and assigns it to the
SQL property.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or deleting data
in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the editing
record is refreshed.

RefreshQuick (inherited from TCustomMyDataSet) Retrieves changes posted to the
server by another clients on the
client side quickly.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for the
current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property modified
by AddWhere and SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property value to
BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause of a
SELECT statement.

SQL (inherited from TCustomDADataSet) Used to provide a SQL statement
that a query component executes
when its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying a
deletion to a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to perform a
record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL property
value was saved to the BaseSQL
property.

495Data Access Components for MySQL

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying an
update to a dataset.

StoredProcName (inherited from TCustomMyStoredProc) Used to specify the name of the
stored procedure to call on the
server.

UniDirectional (inherited from TCustomDADataSet) Used if an application does not need
bidirectional access to records in
the result set.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnLockTable (inherited from TCustomMyDataSet) Releases a table locked by the
TCustomMyDataSet.LockTable
method.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

Published

Name Description

LockMode Used to specify what kind of lock
will be performed when editing a
record.

UpdatingTable Specifies which table in a query is
assumed to be the target for
subsequent data-modification
queries as a result of user incentive
to insert, update or delete records.

See Also
 TMyStoredProc Class
 TMyStoredProc Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify what kind of lock will be performed when editing a record.

Class

TMyStoredProc

Syntax

property LockMode: TLockMode;

Remarks

Use the LockMode property to define what kind of lock will be performed when editing a record. Locking
a record is useful in creating multi-user applications. It prevents modification of a record by several
users at the same time.
Locking is performed by the RefreshRecord method.
The default value is lmNone.

Data Access Components for MySQL496

See Also

 TMyQuery.LockMode
 TMyTable.LockMode

© 1997-2012 Devart. All Rights Reserved.

Specifies which table in a query is assumed to be the target for subsequent data-modification queries as
a result of user incentive to insert, update or delete records.

Class

TMyStoredProc

Syntax

property UpdatingTable: string;

Remarks

the UpdatingTable property is used on Insert, Update, Delete or RefreshRecord (see also
TCustomMyDataSet.Options) if appropriate SQL (SQLInsert, SQLUpdate or SQLDelete) is not provided.
If UpdatingTable is not set then the first table used in query is assumed to be the target.
If the query is addressed to the View then entire View is taken as a target for subsequent modifications.
All fields from other than target table have their ReadOnly properties set to True (if TCustomMyDataSet.
Options is True).

© 1997-2012 Devart. All Rights Reserved.

17.15.1.16 MyAccess.TMyTable Class

A component for retrieving and updating data in a single table without writing SQL statements.
For a list of all members of this type, see TMyTable members.

Unit

MyAccess

Syntax

TMyTable = class(TCustomMyTable);

Remarks

The TMyTable component allows retrieving and updating data in a single table without writing SQL
statements. Use TMyTable to access data in a table . Use the TableName property to specify table name.
TMyTable uses the KeyFields property to build SQL statements for updating table data. KeyFields is a
string containing a semicolon-delimited list of the field names.

Inheritance Hierarchy

TObject
 TMemDataSet
 TCustomDADataSet
 TCustomMyDataSet
 TCustomMyTable
 TMyTable

See Also

 Updating Data with MyDAC Dataset Components
 Master/Detail Relationships
 TCustomMyDataSet
 TMyQuery
 TCustomMyTable

© 1997-2012 Devart. All Rights Reserved.

497Data Access Components for MySQL

TMyTable class overview.

Properties

Name Description

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CommandTimeout (inherited from TCustomMyDataSet) Used to specify the amount of time
to attempt execution of a
command.

Connection (inherited from TCustomMyDataSet) Used to specify a connection object
that will be used to connect to a
data store.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its parameters'
values, and the type of parameters.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet) Used to keep dataset opened after
connection is closed.

Encryption (inherited from TCustomDADataSet) Used to specify the options of the
data encryption in a dataset.

FetchAll Defines whether to request all
records of the query from database
server when the dataset is being
opened.

FetchRows (inherited from TCustomDADataSet) Used to define the number of rows
to be transferred across the
network at the same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE clause
of SELECT statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

IndexDefs (inherited from TCustomMyTable) Contains information about the
indexes for a table.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

InsertId (inherited from TCustomMyDataSet) Returns the ID generated for an
AUTO_INCREMENT column by the
previous query.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

Limit (inherited from TCustomMyTable) Used to set the number of rows
retrieved from the query.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

Data Access Components for MySQL498

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

LockMode Used to specify what kind of lock
will be performed when editing a
record.

MacroCount (inherited from TCustomDADataSet) Used to get the number of macros
associated with the Macros
property.

Macros (inherited from TCustomDADataSet) Makes it possible to change SQL
queries easily.

MasterFields (inherited from TCustomDADataSet) Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

MasterSource (inherited from TCustomDADataSet) Used to specify the data source
component which binds current
dataset to the master one.

Offset (inherited from TCustomMyTable) Used to allow retrieving data from
the server starting from the
specified row.

Options (inherited from TCustomMyTable) Specifies the behaviour of the
TMyTable object.

OrderFields Used to build ORDER BY clause of
SQL statements.

ParamCheck (inherited from TCustomDADataSet) Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

ParamCount (inherited from TCustomDADataSet) Used to indicate how many
parameters are there in the Params
property.

Params (inherited from TCustomDADataSet) Used to view and set parameter
names, values, and data types
dynamically.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or deleting data
in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the editing
record is refreshed.

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SQL (inherited from TCustomDADataSet) Used to provide a SQL statement
that a query component executes
when its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying a
deletion to a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to perform a
record lock.

499Data Access Components for MySQL

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying an
update to a dataset.

TableName Used to specify the name of the
database table this component
encapsulates.

UniDirectional (inherited from TCustomDADataSet) Used if an application does not need
bidirectional access to records in
the result set.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

Methods

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

CreateBlobStream (inherited from TCustomDADataSet) Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteWhere (inherited from TCustomDADataSet) Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

EmptyTable (inherited from TCustomMyTable) Deletes all records from the
database table specified by the
TableName property.

Execute (inherited from TCustomDADataSet) Executes a SQL statement on the
server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL statement is
still being executed.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has already
fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still fetching
rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field values.

Data Access Components for MySQL500

FindMacro (inherited from TCustomDADataSet) Indicates whether a specified macro
exists in a dataset.

FindNearest (inherited from TCustomDADataSet) Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomDADataSet) Determines if a parameter with the
specified name exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet) Returns internal field types defined
in the MemData and accompanying
modules.

GetFieldEnum (inherited from TCustomMyDataSet) Retrieve the list of acceptable
values for a specified field given by
the FieldName parameter.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference shared
object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a number
field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a number
field.

GetOrderBy (inherited from TCustomDADataSet) Retrieves an ORDER BY clause from
a SQL statement.

GotoCurrent (inherited from TCustomDADataSet) Sets the current record in this
dataset similar to the current record
in another dataset.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Lock (inherited from TCustomMyDataSet) Overloaded. Locks the current
record for the current connection.

LockTable (inherited from TCustomMyDataSet) Locks table for the current
connection.

MacroByName (inherited from TCustomDADataSet) Finds a Macro with the name passed
in Name.

ParamByName (inherited from TCustomDADataSet) Sets or uses parameter information
for a specific parameter based on
its name.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses cursor
for a query.

RefreshQuick (inherited from TCustomMyDataSet) Retrieves changes posted to the
server by another clients on the
client side quickly.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for the
current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property modified
by AddWhere and SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

501Data Access Components for MySQL

Resync (inherited from TCustomDADataSet) Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property value to
BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause of a
SELECT statement.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL property
value was saved to the BaseSQL
property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnLockTable (inherited from TCustomMyDataSet) Releases a table locked by the
TCustomMyDataSet.LockTable
method.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

Events

Name Description

AfterExecute (inherited from TCustomDADataSet) Occurs after a component has
executed a query to database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from TCustomDADataSet) Occurs after executing insert,
delete, update, lock and refresh
operations.

BeforeFetch (inherited from TCustomDADataSet) Occurs before dataset is going to
fetch block of records from the
server.

BeforeUpdateExecute (inherited from TCustomDADataSet) Occurs before executing insert,
delete, update, lock, and refresh
operations.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMyTable class.
For a complete list of the TMyTable class members, see the TMyTable Members topic.

Public

Data Access Components for MySQL502

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

AfterExecute (inherited from TCustomDADataSet) Occurs after a component has
executed a query to database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from TCustomDADataSet) Occurs after executing insert,
delete, update, lock and refresh
operations.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

BeforeFetch (inherited from TCustomDADataSet) Occurs before dataset is going to
fetch block of records from the
server.

BeforeUpdateExecute (inherited from TCustomDADataSet) Occurs before executing insert,
delete, update, lock, and refresh
operations.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommandTimeout (inherited from TCustomMyDataSet) Used to specify the amount of time
to attempt execution of a
command.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

Connection (inherited from TCustomMyDataSet) Used to specify a connection object
that will be used to connect to a
data store.

CreateBlobStream (inherited from TCustomDADataSet) Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its parameters'
values, and the type of parameters.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteWhere (inherited from TCustomDADataSet) Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet) Used to keep dataset opened after
connection is closed.

EmptyTable (inherited from TCustomMyTable) Deletes all records from the
database table specified by the
TableName property.

Encryption (inherited from TCustomDADataSet) Used to specify the options of the
data encryption in a dataset.

Execute (inherited from TCustomDADataSet) Executes a SQL statement on the
server.

503Data Access Components for MySQL

Executing (inherited from TCustomDADataSet) Indicates whether SQL statement is
still being executed.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has already
fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still fetching
rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

FetchRows (inherited from TCustomDADataSet) Used to define the number of rows
to be transferred across the
network at the same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE clause
of SELECT statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a specified macro
exists in a dataset.

FindNearest (inherited from TCustomDADataSet) Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomDADataSet) Determines if a parameter with the
specified name exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet) Returns internal field types defined
in the MemData and accompanying
modules.

GetFieldEnum (inherited from TCustomMyDataSet) Retrieve the list of acceptable
values for a specified field given by
the FieldName parameter.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference shared
object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a number
field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a number
field.

GetOrderBy (inherited from TCustomDADataSet) Retrieves an ORDER BY clause from
a SQL statement.

GotoCurrent (inherited from TCustomDADataSet) Sets the current record in this
dataset similar to the current record
in another dataset.

IndexDefs (inherited from TCustomMyTable) Contains information about the
indexes for a table.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

InsertId (inherited from TCustomMyDataSet) Returns the ID generated for an
AUTO_INCREMENT column by the
previous query.

Data Access Components for MySQL504

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

Limit (inherited from TCustomMyTable) Used to set the number of rows
retrieved from the query.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Lock (inherited from TCustomMyDataSet) Overloaded. Locks the current
record for the current connection.

LockTable (inherited from TCustomMyDataSet) Locks table for the current
connection.

MacroByName (inherited from TCustomDADataSet) Finds a Macro with the name passed
in Name.

MacroCount (inherited from TCustomDADataSet) Used to get the number of macros
associated with the Macros
property.

Macros (inherited from TCustomDADataSet) Makes it possible to change SQL
queries easily.

MasterFields (inherited from TCustomDADataSet) Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

MasterSource (inherited from TCustomDADataSet) Used to specify the data source
component which binds current
dataset to the master one.

Offset (inherited from TCustomMyTable) Used to allow retrieving data from
the server starting from the
specified row.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

Options (inherited from TCustomMyTable) Specifies the behaviour of the
TMyTable object.

ParamByName (inherited from TCustomDADataSet) Sets or uses parameter information
for a specific parameter based on
its name.

ParamCheck (inherited from TCustomDADataSet) Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

505Data Access Components for MySQL

ParamCount (inherited from TCustomDADataSet) Used to indicate how many
parameters are there in the Params
property.

Params (inherited from TCustomDADataSet) Used to view and set parameter
names, values, and data types
dynamically.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses cursor
for a query.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or deleting data
in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the editing
record is refreshed.

RefreshQuick (inherited from TCustomMyDataSet) Retrieves changes posted to the
server by another clients on the
client side quickly.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for the
current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property modified
by AddWhere and SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property value to
BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause of a
SELECT statement.

SQL (inherited from TCustomDADataSet) Used to provide a SQL statement
that a query component executes
when its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying a
deletion to a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to perform a
record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

Data Access Components for MySQL506

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL property
value was saved to the BaseSQL
property.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying an
update to a dataset.

UniDirectional (inherited from TCustomDADataSet) Used if an application does not need
bidirectional access to records in
the result set.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnLockTable (inherited from TCustomMyDataSet) Releases a table locked by the
TCustomMyDataSet.LockTable
method.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

Published

Name Description

FetchAll Defines whether to request all
records of the query from database
server when the dataset is being
opened.

LockMode Used to specify what kind of lock
will be performed when editing a
record.

OrderFields Used to build ORDER BY clause of
SQL statements.

TableName Used to specify the name of the
database table this component
encapsulates.

See Also
 TMyTable Class
 TMyTable Class Members

© 1997-2012 Devart. All Rights Reserved.

Defines whether to request all records of the query from database server when the dataset is being
opened.

Class

TMyTable

Syntax

property FetchAll: boolean;

Remarks

When set to True, all records of the query are requested from database server when the dataset is being
opened. When set to False, records are retrieved when a data-aware component or a program requests

507Data Access Components for MySQL

it. If a query can return a lot of records, set this property to False if initial response time is important.
When the FetchAll property is False, the first call to TMemDataSet.Locate and TMemDataSet.LocateEx
methods may take a lot of time to retrieve additional records to the client side.

© 1997-2012 Devart. All Rights Reserved.

Used to specify what kind of lock will be performed when editing a record.

Class

TMyTable

Syntax

property LockMode: TLockMode;

Remarks

Use the LockMode property to define what kind of lock will be performed when editing a record. Locking
a record is useful in creating multi-user applications. It prevents modification of a record by several
users at the same time.
Locking is performed by the RefreshRecord method.
The default value is lmNone.

See Also

 TMyStoredProc.LockMode
 TMyQuery.LockMode

© 1997-2012 Devart. All Rights Reserved.

Used to build ORDER BY clause of SQL statements.

Class

TMyTable

Syntax

property OrderFields: string;

Remarks

TMyTable uses the OrderFields property to build ORDER BY clause of SQL statements. To set several
field names to this property separate them with commas.
TMyTable is reopened when OrderFields is being changed.

See Also

 TMyTable

© 1997-2012 Devart. All Rights Reserved.

Used to specify the name of the database table this component encapsulates.

Class

TMyTable

Syntax

property TableName: string;

Remarks

Use the TableName property to specify the name of the database table this component encapsulates. If
TCustomDADataSet.Connection is assigned at design time,select a valid table name from the TableName

Data Access Components for MySQL508

drop-down list in Object Inspector.

© 1997-2012 Devart. All Rights Reserved.

17.15.1.17 MyAccess.TMyTableOptions Class

This class allows setting up the behaviour of the TMyTable class.
For a list of all members of this type, see TMyTableOptions members.

Unit

MyAccess

Syntax

TMyTableOptions = class(TMyDataSetOptions);

Inheritance Hierarchy

TObject
 TDADataSetOptions
 TMyDataSetOptions
 TMyTableOptions

© 1997-2012 Devart. All Rights Reserved.

TMyTableOptions class overview.

Properties

Name Description

AutoPrepare (inherited from TMyDataSetOptions) Used to execute automatic
TCustomDADataSet.Prepare on a
query execution.

AutoRefresh (inherited from TMyDataSetOptions) Used to automatically refresh
dataset every AutoRefreshInterval
seconds.

AutoRefreshInterval (inherited from TMyDataSetOptions) Used to define in what time interval
in seconds the Refresh or
TCustomMyDataSet.RefreshQuick
method of a DataSet is called.

BinaryAsString (inherited from TMyDataSetOptions) Used to specify a method of
representation of the BINARY and
VARBINARY fields.

CacheCalcFields (inherited from TDADataSetOptions) Used to enable caching of the
TField.Calculated and TField.Lookup
fields.

CheckRowVersion (inherited from TMyDataSetOptions) Used to determine whether a
dataset checks for rows
modifications made by another user
on automatic generation of SQL
statement for update or delete
data.

CreateConnection (inherited from TMyDataSetOptions) Used to specify if an additional
connection to a server should be
established to execute an additional
query in the TCustomMyDataSet.
FetchAll=False mode.

DefaultValues (inherited from TMyDataSetOptions) Used to fill the DefaultExpression
property of TField objects with
appropriate value.

DetailDelay (inherited from TDADataSetOptions) Used to get or set a delay in
milliseconds before refreshing detail
dataset while navigating master
dataset.

509Data Access Components for MySQL

EnableBoolean (inherited from TMyDataSetOptions) Used to specify the method of
representation of the TINYINT(1)
fields.

FieldsAsString (inherited from TMyDataSetOptions) Used to store all non-BLOB fields as
string (native MySQL format).

FieldsOrigin (inherited from TMyDataSetOptions) Used to fill the Origin property of
TField objects with appropriate
value.

FlatBuffers (inherited from TDADataSetOptions) Used to control how a dataset
treats data of the ftString and
ftVarBytes fields.

FullRefresh (inherited from TMyDataSetOptions) Used to specify the fields to include
in automatically generated SQL
statement when calling the
TCustomDADataSet.RefreshRecord
method. Default value is false.

HandlerIndex Used to assign an index and a value
that this index should satisfy.

LocalMasterDetail (inherited from TDADataSetOptions) Used for TCustomDADataSet to use
local filtering to establish master/
detail relationship for detail dataset
and does not refer to the server.

LongStrings (inherited from TDADataSetOptions) Used to represent string fields with
the length that is greater than 255
as TStringField.

NullForZeroDate (inherited from TMyDataSetOptions) Used for MySQL server to represent
the value for for datetime fields
with invalid values as Null or '0001-
01-01' ('0100-01-01' for CLR).

NumberRange (inherited from TMyDataSetOptions) Used to set the MaxValue and
MinValue properties of TIntegerField
and TFloatField to appropriate
values.

QueryRecCount (inherited from TMyDataSetOptions) Used for TCustomDADataSet to
perform additional query to get
record count for this SELECT so the
RecordCount property reflects the
actual number of records.

QuoteNames (inherited from TMyDataSetOptions) Used for TCustomMyDataSet to
quote all field names in
autogenerated SQL statements.

RemoveOnRefresh (inherited from TMyDataSetOptions) Used for dataset to remove a record
locally if the RefreshRecord
procedure can't find necessary
record on the server.

RequiredFields (inherited from TMyDataSetOptions) Used for TCustomDADataSet to set
the Required property of TField
objects for NOT NULL fields.

ReturnParams (inherited from TMyDataSetOptions) Used to return the new value of the
fields to dataset after insert or
update.

SetFieldsReadOnly (inherited from TMyDataSetOptions) Used to specify whether fields not
belonging to the current updating
table get read-only attribute.

StrictUpdate (inherited from TMyDataSetOptions) Used for TCustomDADataSet to
raise an exception when the
number of updated or deleted
records does not equal 1.

TrimFixedChar (inherited from TMyDataSetOptions) Used to specify whether to discard
all trailing spaces in string fields of
the dataset.

Data Access Components for MySQL510

UpdateAllFields (inherited from TDADataSetOptions) Used to include all dataset fields in
the generated UPDATE and INSERT
statements.

UpdateBatchSize (inherited from TDADataSetOptions) Used to get or set a value that
enables or disables batch
processing support, and specifies
the number of commands that can
be executed in a batch.

UseHandler Used for the HANDLER statement to
be used instead of the SELECT
statement.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMyTableOptions class.
For a complete list of the TMyTableOptions class members, see the TMyTableOptions Members topic.

Public

Name Description

CacheCalcFields (inherited from TDADataSetOptions) Used to enable caching of the
TField.Calculated and TField.Lookup
fields.

DetailDelay (inherited from TDADataSetOptions) Used to get or set a delay in
milliseconds before refreshing detail
dataset while navigating master
dataset.

FlatBuffers (inherited from TDADataSetOptions) Used to control how a dataset
treats data of the ftString and
ftVarBytes fields.

LocalMasterDetail (inherited from TDADataSetOptions) Used for TCustomDADataSet to use
local filtering to establish master/
detail relationship for detail dataset
and does not refer to the server.

LongStrings (inherited from TDADataSetOptions) Used to represent string fields with
the length that is greater than 255
as TStringField.

UpdateAllFields (inherited from TDADataSetOptions) Used to include all dataset fields in
the generated UPDATE and INSERT
statements.

UpdateBatchSize (inherited from TDADataSetOptions) Used to get or set a value that
enables or disables batch
processing support, and specifies
the number of commands that can
be executed in a batch.

Published

Name Description

AutoPrepare (inherited from TMyDataSetOptions) Used to execute automatic
TCustomDADataSet.Prepare on a
query execution.

AutoRefresh (inherited from TMyDataSetOptions) Used to automatically refresh
dataset every AutoRefreshInterval
seconds.

AutoRefreshInterval (inherited from TMyDataSetOptions) Used to define in what time interval
in seconds the Refresh or
TCustomMyDataSet.RefreshQuick
method of a DataSet is called.

BinaryAsString (inherited from TMyDataSetOptions) Used to specify a method of
representation of the BINARY and
VARBINARY fields.

511Data Access Components for MySQL

CheckRowVersion (inherited from TMyDataSetOptions) Used to determine whether a
dataset checks for rows
modifications made by another user
on automatic generation of SQL
statement for update or delete
data.

CreateConnection (inherited from TMyDataSetOptions) Used to specify if an additional
connection to a server should be
established to execute an additional
query in the TCustomMyDataSet.
FetchAll=False mode.

DefaultValues (inherited from TMyDataSetOptions) Used to fill the DefaultExpression
property of TField objects with
appropriate value.

EnableBoolean (inherited from TMyDataSetOptions) Used to specify the method of
representation of the TINYINT(1)
fields.

FieldsAsString (inherited from TMyDataSetOptions) Used to store all non-BLOB fields as
string (native MySQL format).

FieldsOrigin (inherited from TMyDataSetOptions) Used to fill the Origin property of
TField objects with appropriate
value.

FullRefresh (inherited from TMyDataSetOptions) Used to specify the fields to include
in automatically generated SQL
statement when calling the
TCustomDADataSet.RefreshRecord
method. Default value is false.

HandlerIndex Used to assign an index and a value
that this index should satisfy.

NullForZeroDate (inherited from TMyDataSetOptions) Used for MySQL server to represent
the value for for datetime fields
with invalid values as Null or '0001-
01-01' ('0100-01-01' for CLR).

NumberRange (inherited from TMyDataSetOptions) Used to set the MaxValue and
MinValue properties of TIntegerField
and TFloatField to appropriate
values.

QueryRecCount (inherited from TMyDataSetOptions) Used for TCustomDADataSet to
perform additional query to get
record count for this SELECT so the
RecordCount property reflects the
actual number of records.

QuoteNames (inherited from TMyDataSetOptions) Used for TCustomMyDataSet to
quote all field names in
autogenerated SQL statements.

RemoveOnRefresh (inherited from TMyDataSetOptions) Used for dataset to remove a record
locally if the RefreshRecord
procedure can't find necessary
record on the server.

RequiredFields (inherited from TMyDataSetOptions) Used for TCustomDADataSet to set
the Required property of TField
objects for NOT NULL fields.

ReturnParams (inherited from TMyDataSetOptions) Used to return the new value of the
fields to dataset after insert or
update.

SetFieldsReadOnly (inherited from TMyDataSetOptions) Used to specify whether fields not
belonging to the current updating
table get read-only attribute.

StrictUpdate (inherited from TMyDataSetOptions) Used for TCustomDADataSet to
raise an exception when the
number of updated or deleted
records does not equal 1.

Data Access Components for MySQL512

TrimFixedChar (inherited from TMyDataSetOptions) Used to specify whether to discard
all trailing spaces in string fields of
the dataset.

UseHandler Used for the HANDLER statement to
be used instead of the SELECT
statement.

See Also
 TMyTableOptions Class
 TMyTableOptions Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to assign an index and a value that this index should satisfy.

Class

TMyTableOptions

Syntax

property HandlerIndex: string;

Remarks

Use the HandlerIndex property to assign an index and a value that this index should satisfy.

© 1997-2012 Devart. All Rights Reserved.

Used for the HANDLER statement to be used instead of the SELECT statement.

Class

TMyTableOptions

Syntax

property UseHandler: boolean default False;

Remarks

If this option is enabled, the HANDLER statement is used instead of the SELECT statement.
From the MySQL Refernce Manual:
"There are several reasons to use the HANDLER interface instead of normal SELECT statements:
HANDLER is faster than SELECT:
A designated storage engine handler object is allocated for the HANDLER ... OPEN. The object is reused
for subsequent HANDLER statements for that table; it need not be reinitialized for each one.
There is less parsing involved.
There is no optimizer or query-checking overhead.
The table does not have to be locked between two handler requests.
The handler interface does not have to provide a consistent look of the data (for example, dirty reads
are allowed), so the storage engine can use optimizations that SELECT does not normally allow.
For applications that use a low-level ISAM-like interface, HANDLER makes it much easier to port them to
MySQL.
HANDLER enables you to traverse a database in a manner that is difficult (or even impossible) to
accomplish with SELECT. The HANDLER interface is a more natural way to look at data when working
with applications that provide an interactive user interface to the database."
The FilterSQL property is used to assign the WHERE condition. To return a specific number of rows,
assign the Limit property.
If the Limit property equals -1 and the UseHandler option is set to True, requested records count equals
to MaxInt.
The default value of the UseHandler option is False.

© 1997-2012 Devart. All Rights Reserved.

513Data Access Components for MySQL

17.15.1.18 MyAccess.TMyTransaction Class

A component for managing transactions.
For a list of all members of this type, see TMyTransaction members.

Unit

MyAccess

Syntax

TMyTransaction = class(TDATransaction);

Remarks

The TMyTransaction component is used to manage transactions in your application.

Inheritance Hierarchy

TObject
 TDATransaction
 TMyTransaction

© 1997-2012 Devart. All Rights Reserved.

TMyTransaction class overview.

Properties

Name Description

Active (inherited from TDATransaction) Used to determine if the transaction
is active.

DefaultCloseAction (inherited from TDATransaction) Used to specify the transaction
behaviour when it is destroyed
while being active, or when one of
its connections is closed with the
active transaction.

Methods

Name Description

Commit (inherited from TDATransaction) Commits the current transaction.

Rollback (inherited from TDATransaction) Discards all modifications of data
associated with the current
transaction and ends the
transaction.

StartTransaction (inherited from TDATransaction) Begins a new transaction.

Events

Name Description

OnError (inherited from TDATransaction) Used to process errors that occur
during executing a transaction.

© 1997-2012 Devart. All Rights Reserved.

17.15.1.19 MyAccess.TMyUpdateSQL Class

A component for tuning update operations for the DataSet component.
For a list of all members of this type, see TMyUpdateSQL members.

Unit

MyAccess

Syntax

TMyUpdateSQL = class(TCustomDAUpdateSQL);

Remarks

Use the TMyUpdateSQL component to provide DML statements for the dataset components that return

Data Access Components for MySQL514

read-only result set. This component also allows setting objects that can be used for executing update
operations. You may prefer to use directly SQLInsert, SQLUpdate, and SQLDelete properties of the
TCustomDADataSet descendants.

Inheritance Hierarchy

TObject
 TCustomDAUpdateSQL
 TMyUpdateSQL

© 1997-2012 Devart. All Rights Reserved.

TMyUpdateSQL class overview.

Properties

Name Description

DataSet (inherited from TCustomDAUpdateSQL) Used to hold a reference to the
TCustomDADataSet object that is
being updated.

DeleteObject (inherited from TCustomDAUpdateSQL) Provides ability to perform
advanced adjustment of the delete
operations.

DeleteSQL (inherited from TCustomDAUpdateSQL) Used when deleting a record.

InsertObject (inherited from TCustomDAUpdateSQL) Provides ability to perform
advanced adjustment of insert
operations.

InsertSQL (inherited from TCustomDAUpdateSQL) Used when inserting a record.

LockObject (inherited from TCustomDAUpdateSQL) Provides ability to perform
advanced adjustment of lock
operations.

LockSQL (inherited from TCustomDAUpdateSQL) Used to lock the current record.

ModifyObject (inherited from TCustomDAUpdateSQL) Provides ability to perform
advanced adjustment of modify
operations.

ModifySQL (inherited from TCustomDAUpdateSQL) Used when updating a record.

RefreshObject (inherited from TCustomDAUpdateSQL) Provides ability to perform
advanced adjustment of refresh
operations.

RefreshSQL (inherited from TCustomDAUpdateSQL) Used to specify an SQL statement
that will be used for refreshing the
current record by
TCustomDADataSet.RefreshRecord
procedure.

SQL (inherited from TCustomDAUpdateSQL) Used to return a SQL statement for
one of the ModifySQL, InsertSQL, or
DeleteSQL properties.

Methods

Name Description

Apply (inherited from TCustomDAUpdateSQL) Sets parameters for a SQL
statement and executes it to update
a record.

ExecSQL (inherited from TCustomDAUpdateSQL) Executes a SQL statement.

© 1997-2012 Devart. All Rights Reserved.

515Data Access Components for MySQL

17.15.2 Types

Types in the MyAccess unit.

Types

Name Description

TMyUpdateExecuteEvent This type is used for the E:Devart.
MyDac.TCustomMyDataSet.
AfterUpdateExecute and E:Devart.
MyDac.TCustomMyDataSet.
BeforeUpdateExecute events.

© 1997-2012 Devart. All Rights Reserved.

17.15.2.1 MyAccess.TMyUpdateExecuteEvent Procedure Reference

This type is used for the E:Devart.MyDac.TCustomMyDataSet.AfterUpdateExecute and E:Devart.MyDac.
TCustomMyDataSet.BeforeUpdateExecute events.

Unit

MyAccess

Syntax

TMyUpdateExecuteEvent = procedure (Sender: TCustomMyDataSet;
StatementTypes: TStatementTypes; Params: TDAParams) of object;
Parameters

Sender
An object that raised the event.

StatementTypes
Holds the type of the SQL statement being executed.

Params
Holds the parameters with which the SQL statement will be executed.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL516

17.15.3 Enumerations

Enumerations in the MyAccess unit.

Enumerations

Name Description

TLockRecordType Specifies the type of the record
locking.

TLockType Specifies the type of the table
locking.

TMyIsolationLevel Specifies the xtent to which all
outside transactions interfere with
subsequent transactions of current
connection.

© 1997-2012 Devart. All Rights Reserved.

17.15.3.1 MyAccess.TLockRecordType Enumeration

Specifies the type of the record locking.

Unit

MyAccess

Syntax

TLockRecordType = (lrImmediately, lrDelayed);

Values

Value Meaning

lrDelayed Locking is performed just at the time of execution Post for this record.

lrImmediately Checks for locking directly on calling the Lock method. In this case if set
Lock(lrImmediately) call to BeforeEdit event you can unable the same row
in the table to be modified by several users at the same time.

© 1997-2012 Devart. All Rights Reserved.

17.15.3.2 MyAccess.TLockType Enumeration

Specifies the type of the table locking.

Unit

MyAccess

Syntax

TLockType = (ltRead, ltReadLocal, ltWrite, ltWriteLowPriority);

Values

Value Meaning

ltRead All connections including the current one can read only from the specified
table.

ltReadLocal Similar to ltRead. Moreover, allows non-conflicting INSERT statements to
execute while the lock is held.

ltWrite The current connection can read and write to the table. Other connections
wait for the UnlockTable call.

ltWriteLowPriority You can use ltWriteLowPriority locks to allow other threads to obtain
ltRead locks while the thread is waiting for the ltWrite lock. You should
use only ltWriteLowPriority locks if you are sure that eventually there will
be a time when no threads will have a ltRead lock.

© 1997-2012 Devart. All Rights Reserved.

517Data Access Components for MySQL

17.15.3.3 MyAccess.TMyIsolationLevel Enumeration

Specifies the xtent to which all outside transactions interfere with subsequent transactions of current
connection.

Unit

MyAccess

Syntax

TMyIsolationLevel = (ilReadCommitted, ilReadUnCommitted,
ilRepeatableRead, ilSerializable);

Values

Value Meaning

ilReadCommitted Sets isolation level at which transaction cannot see changes made by
outside transactions until they are committed. Only dirty reads (changes
made by uncommitted transactions) are eliminated by this state of
isolation level. The default value.

ilReadUnCommitted The most unrestricted level of transaction isolation. All types of data
access interferences are possible. Mainly used for browsing database and
to receive instant data with prospective changes.

ilRepeatableRead Prevents concurrent transactions from modifying data in current
uncommitted transaction. This level eliminates dirty reads as well as
nonrepeatable reads (repeatable reads of the same data in one
transaction before and after outside transactions may have started and
committed).

ilSerializable The most restricted level of transaction isolation. Database server isolates
data involved in current transaction by putting additional processing on
range locks. Used to put aside all undesired effects observed in
concurrent accesses to the same set of data, but may lead to a greater
latency at times of congested database environment.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL518

17.15.4 Routines

Routines in the MyAccess unit.

Routines

Name Description

GetServerList Returns the list of the MySQL
servers in LAN. MySQL server does
not provide usual ways of such list
getting, so it can be incomplete.

© 1997-2012 Devart. All Rights Reserved.

17.15.4.1 MyAccess.GetServerList Procedure

Returns the list of the MySQL servers in LAN. MySQL server does not provide usual ways of such list
getting, so it can be incomplete.

Unit

MyAccess

Syntax

procedure GetServerList(List: _TStrings);
Parameters

List
the list of the MySQL servers in LAN.

© 1997-2012 Devart. All Rights Reserved.

519Data Access Components for MySQL

17.15.5 Constants

Constants in the MyAccess unit.

Constants

Name Description

MydacVersion Read this constant to get current
version number for MyDAC.

© 1997-2012 Devart. All Rights Reserved.

17.15.5.1 MyAccess.MydacVersion Constant

Read this constant to get current version number for MyDAC.

Unit

MyAccess

Syntax

MyDACVersion = '7.5.9';

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL520

17.16 MyBackup

This unit contains implementation of the TMyBackup component.

Classes

Name Description

TMyBackup A component that serves for backup
copying specified tables on the
server.

Types

Name Description

TMyTableMsgEvent This type is used for the
TMyBackup.OnTableMsg event.

Enumerations

Name Description

TMyBackupMode Specifies the mode of TMyBackup
work.

TMyBackupPriority Specifies priority of the TMyBackup.
Restore operation.

TMyRestoreDuplicates Specifies the behaviour on detection
records with repeated key fields on
the execution of the TMyBackup.
Restore method.

© 1997-2012 Devart. All Rights Reserved.

521Data Access Components for MySQL

17.16.1 Classes

Classes in the MyBackup unit.

Classes

Name Description

TMyBackup A component that serves for backup
copying specified tables on the
server.

© 1997-2012 Devart. All Rights Reserved.

17.16.1.1 MyBackup.TMyBackup Class

A component that serves for backup copying specified tables on the server.
For a list of all members of this type, see TMyBackup members.

Unit

MyBackup

Syntax

TMyBackup = class(TComponent);

Remarks

Serves for backup copying specified tables on the server. Supports working in two modes defined by
the TMyBackup.Mode property - bmText and bmBinary.
The list of tables is specified in TMyBackup.TableNames.
Use the TMyBackup.Path property to specify the path to the server.
TMyBackup works on the server side that greatly affects on performance. However, it has some
restrictions. Firstly, backup is performed only for the tables, database structure and user rights that are
not stored. Secondly, files created on the server cannot be modified and deleted by MySQL tools.
Note: When using bmBinary mode, both servers must have the same format of the tables (must be the
same version). About compatibility of formats storing data please see MySQL Reference Manual.

Inheritance Hierarchy

TObject
 TMyBackup

See Also

 TMyBackup.Backup
 TMyBackup.Restore
 TMyDump

© 1997-2012 Devart. All Rights Reserved.

TMyBackup class overview.

Properties

Name Description

BackupPriority Specifies priority of the TMyBackup.
Restore operation.

Connection Used to specify a connection object
that will be used to connect to a
data store.

Debug Used to display the statement being
executed.

Duplicates Used to specify the behaviour on
detection records with repeated key
fields on the execution of the
TMyBackup.Restore method.

Data Access Components for MySQL522

EnclosedBy Used to specify a string (a character
set) with which a field can be
quoted.

EscapedBy Used to specify a symbol that will
be used as a special symbol pointer.

Fields Holds the list of the fields that will
be saved.

FieldsTerminatedBy Used to specify field delimiter.

IgnoreLines Determines if the specified rows
number at the beginning of the file
will be ignored or not.

LinesTerminatedBy Used to specify row delimiter.

Local Used to specify that TMyBackup.
Path is a local path but not a path
on the server.

Mode Used to control modes of
TMyBackup work.

Path Holds a path on the server to the
folder where data files will be
stored.

TableNames Holds the list of tables which will be
used in the script.

Methods

Name Description

Backup Copies current tables by the
specified path.

Restore Restores tables.

Events

Name Description

OnTableMsg Occurrs on executing of the
TMyBackup.Restore operation.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMyBackup class.
For a complete list of the TMyBackup class members, see the TMyBackup Members topic.

Published

Name Description

BackupPriority Specifies priority of the TMyBackup.
Restore operation.

Connection Used to specify a connection object
that will be used to connect to a
data store.

Debug Used to display the statement being
executed.

Duplicates Used to specify the behaviour on
detection records with repeated key
fields on the execution of the
TMyBackup.Restore method.

EnclosedBy Used to specify a string (a character
set) with which a field can be
quoted.

EscapedBy Used to specify a symbol that will
be used as a special symbol pointer.

Fields Holds the list of the fields that will
be saved.

523Data Access Components for MySQL

FieldsTerminatedBy Used to specify field delimiter.

IgnoreLines Determines if the specified rows
number at the beginning of the file
will be ignored or not.

LinesTerminatedBy Used to specify row delimiter.

Local Used to specify that TMyBackup.
Path is a local path but not a path
on the server.

Mode Used to control modes of
TMyBackup work.

Path Holds a path on the server to the
folder where data files will be
stored.

TableNames Holds the list of tables which will be
used in the script.

See Also
 TMyBackup Class
 TMyBackup Class Members

© 1997-2012 Devart. All Rights Reserved.

Specifies priority of the Restore operation.

Class

TMyBackup

Syntax

property BackupPriority: TMyBackupPriority default bpDefault;

Remarks

Specifies a priority on Restore operation.
Used only if Mode is bmText.

See Also

 Mode
 Restore

© 1997-2012 Devart. All Rights Reserved.

Used to specify a connection object that will be used to connect to a data store.

Class

TMyBackup

Syntax

property Connection: TCustomMyConnection;

Remarks

Use the Connection property to specify a connection object that will be used to connect to a data store.
Set at design-time by selecting from the list of provided TCustomMyConnection objects.
At run-time, set the Connection property to reference an existing TCustomMyConnection object.

See Also

 TCustomMyConnection

Data Access Components for MySQL524

© 1997-2012 Devart. All Rights Reserved.

Used to display the statement being executed.

Class

TMyBackup

Syntax

property Debug: boolean default False;

Remarks

Set the Debug property to True to display the statement being executed.
The default value is False.
Note: To enable debug form display you should explicitly include MyDacVcl (MyDacClx under Kylix) unit
in your project.

See Also

 TCustomDASQL.Debug
 TCustomDADataSet.Debug

© 1997-2012 Devart. All Rights Reserved.

Used to specify the behaviour on detection records with repeated key fields on the execution of the
Restore method.

Class

TMyBackup

Syntax

property Duplicates: TMyRestoreDuplicates default bdError;

Remarks

Use the Duplicates property to specify the behaviour on detection records with repeated key fields on
the execution of the Restore method.
Used only if Mode is bmText.

See Also

 Mode
 Restore

© 1997-2012 Devart. All Rights Reserved.

Used to specify a string (a character set) with which a field can be quoted.

Class

TMyBackup

Syntax

property EnclosedBy: string;

Remarks

Use the EnclosedBy property to specify a string (a character set) with which a field can be quoted. By
default it is an empty string.
Used only if Mode is bmText.

525Data Access Components for MySQL

See Also

 Backup
 Mode
 EscapedBy
 FieldsTerminatedBy
 LinesTerminatedBy

© 1997-2012 Devart. All Rights Reserved.

Used to specify a symbol that will be used as a special symbol pointer.

Class

TMyBackup

Syntax

property EscapedBy: string;

Remarks

Use the EscapedBy property to specify a symbol that will be used as a special symbol pointer to define
the entering of a special symbol. By default such pointer is '\\'.
Used only if Mode is bmText.

See Also

 Backup
 Mode
 EnclosedBy
 FieldsTerminatedBy
 LinesTerminatedBy

© 1997-2012 Devart. All Rights Reserved.

Holds the list of the fields that will be saved.

Class

TMyBackup

Syntax

property Fields: string;

Remarks

The Fields property is used to contain the list of the fields that will be saved. If not specified, all fields
will be stored.
Use this property on execution Backup for a single table (see TableNames).
Used only if Mode is bmText.

See Also

 Mode
 TableNames
 Backup
 Restore

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL526

Used to specify field delimiter.

Class

TMyBackup

Syntax

property FieldsTerminatedBy: string;

Remarks

Use the FieldsTerminatedBy property to specify a string that will be used as field delimiter. By default
field delimiter is '\t'.
Used only if Mode is bmText.

See Also

 Backup
 Mode
 EnclosedBy
 EscapedBy
 LinesTerminatedBy

© 1997-2012 Devart. All Rights Reserved.

Determines if the specified rows number at the beginning of the file will be ignored or not.

Class

TMyBackup

Syntax

property IgnoreLines: integer default 0;

Remarks

Use the IgnoreLines property to determine if the specified rows number at the beginning of the file will
be ignored or not.
Use this property if you need:
 create non-typical formatted text file to be processed by the third-party applications
 fast load of big volume data to the database generated by the third-party application.

Used only if Mode is bmText.

See Also

 Mode
 Restore

© 1997-2012 Devart. All Rights Reserved.

Used to specify row delimiter.

Class

TMyBackup

Syntax

property LinesTerminatedBy: string;

Remarks

Use the LinesTerminatedBy property to specify a string that will be used as row delimiter. By default row
delimiter is '\n'.
Used only if Mode is bmText.

527Data Access Components for MySQL

See Also

 Backup
 Mode
 EnclosedBy
 EscapedBy
 FieldsTerminatedBy

© 1997-2012 Devart. All Rights Reserved.

Used to specify that Path is a local path but not a path on the server.

Class

TMyBackup

Syntax

property Local: boolean default False;

Remarks

Use the Local property to specify that Path is a local path but not a path on the server on the execution
of the Restore method.
Used only if Mode is bmText.

See Also

 Mode
 Restore

© 1997-2012 Devart. All Rights Reserved.

Used to control modes of TMyBackup work.

Class

TMyBackup

Syntax

property Mode: TMyBackupMode default bmBinary;

Remarks

Use the Mode property to control modes of TMyBackup work.
Note: By security reasons MySQL does not allow to overwrite files that already exist. Also MySQL
requires a path to the server to be created beforehand.
When using bmBinary mode, both servers must have the same format of the tables (must be the same
version). About the compatibility of formats storing data please see MySQL Reference Manual.

See Also

 Backup
 Restore

© 1997-2012 Devart. All Rights Reserved.

Holds a path on the server to the folder where data files will be stored.

Class

TMyBackup

Syntax

Data Access Components for MySQL528

property Path: string;

Remarks

Use the Path property to contain a path on the server to the folder where data files will be stored. Path
must exist before executing the Backup and Restore operations.

See Also

 Backup
 Restore

© 1997-2012 Devart. All Rights Reserved.

Holds the list of tables which will be used in the script.

Class

TMyBackup

Syntax

property TableNames: string;

Remarks

Use the TableNames property to hold the list of tables which will be used in the script. Table names are
separated by comma or semicolon. If it has an empty value, all the tables presented in the database will
be processed.

See Also

 Backup
 Restore
 M:Devart.Dac.TCustomDAConnection.GetTableNames(Borland.Vcl.TStrings,System.Boolean)

© 1997-2012 Devart. All Rights Reserved.

Methods of the TMyBackup class.
For a complete list of the TMyBackup class members, see the TMyBackup Members topic.

Public

Name Description

Backup Copies current tables by the
specified path.

Restore Restores tables.

See Also
 TMyBackup Class
 TMyBackup Class Members

© 1997-2012 Devart. All Rights Reserved.

Copies current tables by the specified path.

Class

TMyBackup

Syntax

procedure Backup;

Remarks

529Data Access Components for MySQL

Call the Backup method to copy current tables by the specified path (see Path property).
A list of tables is specified in the TableNames property. If the list isn't specified, all tables will be copied.
Use the Mode property to specify a copy mode.
If Mode is bmBinary before backup copying of table files, tables are TCustomMyDataSet.LockTable on
writing and TMyServerControl.Flush is called.

See Also

 Mode
 TableNames
 Path

© 1997-2012 Devart. All Rights Reserved.

Restores tables.

Class

TMyBackup

Syntax

procedure Restore;

Remarks

Call the Restore method to restore tables.

See Also

 OnTableMsg

© 1997-2012 Devart. All Rights Reserved.

Events of the TMyBackup class.
For a complete list of the TMyBackup class members, see the TMyBackup Members topic.

Published

Name Description

OnTableMsg Occurrs on executing of the
TMyBackup.Restore operation.

See Also
 TMyBackup Class
 TMyBackup Class Members

© 1997-2012 Devart. All Rights Reserved.

Occurrs on executing of the Restore operation.

Class

TMyBackup

Syntax

property OnTableMsg: TMyTableMsgEvent;

Remarks

The OnTableMsg event occurs on executing of the Restore operation.

See Also

Data Access Components for MySQL530

 Restore

© 1997-2012 Devart. All Rights Reserved.

531Data Access Components for MySQL

17.16.2 Types

Types in the MyBackup unit.

Types

Name Description

TMyTableMsgEvent This type is used for the
TMyBackup.OnTableMsg event.

© 1997-2012 Devart. All Rights Reserved.

17.16.2.1 MyBackup.TMyTableMsgEvent Procedure Reference

This type is used for the TMyBackup.OnTableMsg event.

Unit

MyBackup

Syntax

TMyTableMsgEvent = procedure (Sender: TObject; TableName: string;
MsgText: string) of object;
Parameters

Sender
An object that raised the event.

TableName
Holds the table name.

MsgText
Holds the message text.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL532

17.16.3 Enumerations

Enumerations in the MyBackup unit.

Enumerations

Name Description

TMyBackupMode Specifies the mode of TMyBackup
work.

TMyBackupPriority Specifies priority of the TMyBackup.
Restore operation.

TMyRestoreDuplicates Specifies the behaviour on detection
records with repeated key fields on
the execution of the TMyBackup.
Restore method.

© 1997-2012 Devart. All Rights Reserved.

17.16.3.1 MyBackup.TMyBackupMode Enumeration

Specifies the mode of TMyBackup work.

Unit

MyBackup

Syntax

TMyBackupMode = (bmBinary, bmText);

Values

Value Meaning

bmBinary The fastest way of saving data. Files with the tables are copied physically
to the specified folder (Path). This mode is not supported for several table
types, for example, InnoDB.

bmText Data from the tables is copied as a text file. To specify its format use
TMyBackup.EnclosedBy, TMyBackup.EscapedBy, TMyBackup.
FieldsTerminatedBy, TMyBackup.LinesTerminatedBy properties. This mode
can be used for all table types.

© 1997-2012 Devart. All Rights Reserved.

17.16.3.2 MyBackup.TMyBackupPriority Enumeration

Specifies priority of the TMyBackup.Restore operation.

Unit

MyBackup

Syntax

TMyBackupPriority = (bpDefault, bpLowPriority, bpConcurrent);

Values

Value Meaning

bpConcurrent Restore will be executed simultaneously with queries from other
connections.

bpDefault Other connections wait for finishing Restore.

bpLowPriority Execution of Restore will be suspended until other connections stop
reading from the table.

© 1997-2012 Devart. All Rights Reserved.

533Data Access Components for MySQL

17.16.3.3 MyBackup.TMyRestoreDuplicates Enumeration

Specifies the behaviour on detection records with repeated key fields on the execution of the
TMyBackup.Restore method.

Unit

MyBackup

Syntax

TMyRestoreDuplicates = (bdIgnore, bdReplace, bdError);

Values

Value Meaning

bdError Generate an error, ignore the rest of the file.

bdIgnore Ignore such records.

bdReplace Replace old record with a new one.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL534

17.17 MyBuilderClient

This unit contains implementation of the TMyBuilder class.

Classes

Name Description

TMyBuilder A component for managing SQL
Builder for MySQL Add-in.

© 1997-2012 Devart. All Rights Reserved.

535Data Access Components for MySQL

17.17.1 Classes

Classes in the MyBuilderClient unit.

Classes

Name Description

TMyBuilder A component for managing SQL
Builder for MySQL Add-in.

© 1997-2012 Devart. All Rights Reserved.

17.17.1.1 MyBuilderClient.TMyBuilder Class

A component for managing SQL Builder for MySQL Add-in.
For a list of all members of this type, see TMyBuilder members.

Unit

MyBuilderClient

Syntax

TMyBuilder = class(TComponent);

Remarks

Serves to mange SQL Builder for MySQL Add-in , free tool for visual building queries. The last version is
available for download at http://www.devart.com/mybuilder/mybuilderadd.exe
Available only for Windows.
To use TMyBuilder in the applications on machines where SQL Builder for MySQL Add-in not installed,
you must copy MyBuilder.dll file.
If the path to this file is not available for LoadLibrary, you need to register it by executing
regsvr32 MyBuilder.dll
The full description of LoadLibrary you can see in MSDN, but the best is to place MyBuilder.dll in the
same directory with your executable .exe file.

Inheritance Hierarchy

TObject
 TMyBuilder

See Also

 MyBuilder Add-In

© 1997-2012 Devart. All Rights Reserved.

TMyBuilder class overview.

Properties

Name Description

Connection Used to specify a connection object
that will be used to connect to a
server.

SQL Used to provide a SQL statement to
SQL Builder for MySQL Add-in.

Version Holds the version of SQL Builder for
MySQL Add-in.

Methods

Name Description

Show Opens SQL Builder for MySQL Add-
in in a modeless window.

http://www.devart.com/mybuilder/
http://www.devart.com/mybuilder/mybuilderadd.exe

Data Access Components for MySQL536

ShowModal Opens SQL Builder for MySQL in a
modal window.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMyBuilder class.
For a complete list of the TMyBuilder class members, see the TMyBuilder Members topic.

Public

Name Description

Version Holds the version of SQL Builder for
MySQL Add-in.

Published

Name Description

Connection Used to specify a connection object
that will be used to connect to a
server.

SQL Used to provide a SQL statement to
SQL Builder for MySQL Add-in.

See Also
 TMyBuilder Class
 TMyBuilder Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify a connection object that will be used to connect to a server.

Class

TMyBuilder

Syntax

property Connection: TMyConnection;

Remarks

Use the Connection property to specify a connection object that will be used to connect to a server.
Set at design-time by selecting from the list of provided TMyConnection objects.
At run-time, set the Connection property to reference an existing TMyConnection object.

See Also

 TCustomMyConnection

© 1997-2012 Devart. All Rights Reserved.

Used to provide a SQL statement to SQL Builder for MySQL Add-in.

Class

TMyBuilder

Syntax

property SQL: TStrings;

Remarks

Use the SQL property to provide a SQL statement to SQL Builder for MySQL Add-in. At design time the
SQL property can be edited by invoking a String List editor in the Object Inspector.

537Data Access Components for MySQL

See Also

 Show
 ShowModal

© 1997-2012 Devart. All Rights Reserved.

Holds the version of SQL Builder for MySQL Add-in.

Class

TMyBuilder

Syntax

property Version: string;

Remarks

Holds the version of SQL Builder for MySQL Add-in.

See Also

 MyBuilder Add-In

© 1997-2012 Devart. All Rights Reserved.

Methods of the TMyBuilder class.
For a complete list of the TMyBuilder class members, see the TMyBuilder Members topic.

Public

Name Description

Show Opens SQL Builder for MySQL Add-
in in a modeless window.

ShowModal Opens SQL Builder for MySQL in a
modal window.

See Also
 TMyBuilder Class
 TMyBuilder Class Members

© 1997-2012 Devart. All Rights Reserved.

Opens SQL Builder for MySQL Add-in in a modeless window.

Class

TMyBuilder

Syntax

procedure Show;

Remarks

Call the Show method to open SQL Builder for MySQL Add-in in a modeless window. In case of absence
of SQL Builder for MySQL a dialog window with an offer to download it will be displayed.

See Also

 SQL
 ShowModal
 MyBuilder Add-In

Data Access Components for MySQL538

© 1997-2012 Devart. All Rights Reserved.

Opens SQL Builder for MySQL in a modal window.

Class

TMyBuilder

Syntax

function ShowModal: boolean;
Return Value

True, if the SQL property has been changed.

Remarks

Call the ShowModal method to open SQL Builder for MySQL in a modal window. In case of absence of
SQL Builder for MySQL a dialog window with an offer to download it will be displayed.

See Also

 SQL
 Show
 MyBuilder Add-In

© 1997-2012 Devart. All Rights Reserved.

539Data Access Components for MySQL

17.18 MyClasses

This unit contains implementation of the EMyError class.

Classes

Name Description

EMyError A base class that is raised when
MySQl server returns error as a
result.

Enumerations

Name Description

TMyProtocol Specifies which protocol to use
when connecting to server.

Variables

Name Description

__Strings65535ToMemo Control flow functions of MySQL
(like IF, CASE) change data type of
LONGMEMO and LONGBLOB fields.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL540

17.18.1 Classes

Classes in the MyClasses unit.

Classes

Name Description

EMyError A base class that is raised when
MySQl server returns error as a
result.

© 1997-2012 Devart. All Rights Reserved.

17.18.1.1 MyClasses.EMyError Class

A base class that is raised when MySQl server returns error as a result.
For a list of all members of this type, see EMyError members.

Unit

MyClasses

Syntax

EMyError = class(EDAError);

Remarks

EMyError is raised when MySQL Server returns error as a result, for example, of an attempt to execute
invalid SQL statement. Use EMyError in an exception-handling block.

Inheritance Hierarchy

TObject
 EDAError
 EMyError

See Also

 EDAError

© 1997-2012 Devart. All Rights Reserved.

EMyError class overview.

Properties

Name Description

Component (inherited from EDAError) Contains the component that
caused the error.

ErrorCode (inherited from EDAError) Determines the error code returned
by the server.

LineNumber Contains the number of a query line
that caused an error.

© 1997-2012 Devart. All Rights Reserved.

Properties of the EMyError class.
For a complete list of the EMyError class members, see the EMyError Members topic.

Public

Name Description

Component (inherited from EDAError) Contains the component that
caused the error.

541Data Access Components for MySQL

ErrorCode (inherited from EDAError) Determines the error code returned
by the server.

LineNumber Contains the number of a query line
that caused an error.

See Also
 EMyError Class
 EMyError Class Members

© 1997-2012 Devart. All Rights Reserved.

Contains the number of a query line that caused an error.

Class

EMyError

Syntax

property LineNumber: integer;

Remarks

If an error, having EDAError.ErrorCode = ER_PARSE_ERROR, occured during query execution,
LineNumber property contains the number of a query line that caused an error. MyDAC will retrieve this
information from the error text automatically.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL542

17.18.2 Enumerations

Enumerations in the MyClasses unit.

Enumerations

Name Description

TMyProtocol Specifies which protocol to use
when connecting to server.

© 1997-2012 Devart. All Rights Reserved.

17.18.2.1 MyClasses.TMyProtocol Enumeration

Specifies which protocol to use when connecting to server.

Unit

MyClasses

Syntax

TMyProtocol = (mpDefault, mpTCP, mpSocket, mpPipe, mpMemory,
mpSSL, mpHttp);

Values

Value Meaning

mpDefault Similar to mpTCP, except the cases when you connect to a local server
and the OS supports sockets (Unix) or named pipes (Windows), they are
used instead of TCP/IP to connect to the server.

mpHttp Uses HTTP Network Tunneling to connect to the server.

mpMemory Uses SharedMem to connect to the server. Can be used with Direct set to
False and libmysql.dll 4.1.

mpPipe Uses NamedPipes to connect to the server.

mpSocket Uses sockets to connect to the server. Can be used with Direct set to
False and libmysql.dll 4.1.

mpSSL Uses protected SSL connection with the server. To use SSL you need to
set TMyConnection.SSLOptions.

mpTCP Uses TCP/IP to connect to the server.

© 1997-2012 Devart. All Rights Reserved.

543Data Access Components for MySQL

17.18.3 Variables

Variables in the MyClasses unit.

Variables

Name Description

__Strings65535ToMemo Control flow functions of MySQL
(like IF, CASE) change data type of
LONGMEMO and LONGBLOB fields.

© 1997-2012 Devart. All Rights Reserved.

17.18.3.1 MyClasses.__Strings65535ToMemo Variable

Control flow functions of MySQL (like IF, CASE) change data type of LONGMEMO and LONGBLOB fields.

Unit

MyClasses

Syntax

__Strings65535ToMemo: boolean = True;

Remarks

Control flow functions of MySQL (like IF, CASE) change data type of LONGMEMO and LONGBLOB fields.
It causes wrong description of these fields by MyDAC and truncating their data. To avoid these
problems, MyDAC tries to restore the correct data type. This behaviour was introduced in MyDAC
5.10.0.9. To disable this behaviour, set the __Strings65535ToMemo variable to False.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL544

17.19 MyConnectionPool

This unit contains the TMyConnectionPoolManager class for managing connection pool.

Classes

Name Description

TMyConnectionPoolManager A class of methods that are used for
managing MyDAC connection pool.

© 1997-2012 Devart. All Rights Reserved.

545Data Access Components for MySQL

17.19.1 Classes

Classes in the MyConnectionPool unit.

Classes

Name Description

TMyConnectionPoolManager A class of methods that are used for
managing MyDAC connection pool.

© 1997-2012 Devart. All Rights Reserved.

17.19.1.1 MyConnectionPool.TMyConnectionPoolManager Class

A class of methods that are used for managing MyDAC connection pool.
For a list of all members of this type, see TMyConnectionPoolManager members.

Unit

MyConnectionPool

Syntax

TMyConnectionPoolManager = class(TCRConnectionPoolManager);

Remarks

Use the TMyConnectionPoolManager methods to manage MyDAC connection pool.

Inheritance Hierarchy

TObject
 TCRConnectionPoolManager
 TMyConnectionPoolManager

See Also

 Connection Pooling

© 1997-2012 Devart. All Rights Reserved.

TMyConnectionPoolManager class overview.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL546

17.20 MyDacVcl

This unit contains the visual constituent of MyDAC.

Classes

Name Description

TMyConnectDialog A class that provides a dialog box
for user to supply his login
information.

© 1997-2012 Devart. All Rights Reserved.

547Data Access Components for MySQL

17.20.1 Classes

Classes in the MyDacVcl unit.

Classes

Name Description

TMyConnectDialog A class that provides a dialog box
for user to supply his login
information.

© 1997-2012 Devart. All Rights Reserved.

17.20.1.1 MyDacVcl.TMyConnectDialog Class

A class that provides a dialog box for user to supply his login information.
For a list of all members of this type, see TMyConnectDialog members.

Unit

MyDacVcl

Syntax

TMyConnectDialog = class(TCustomConnectDialog);

Remarks

The TMyConnectDialog component is a direct descendant of TCustomConnectDialog class. Use
TMyConnectDialog to provide dialog box for user to supply server name, user name, and password. You
may want to customize appearance of dialog box using this class's properties.

Inheritance Hierarchy

TObject
 TCustomConnectDialog
 TMyConnectDialog

See Also

 TCustomDAConnection.ConnectDialog

© 1997-2012 Devart. All Rights Reserved.

TMyConnectDialog class overview.

Properties

Name Description

CancelButton (inherited from TCustomConnectDialog) Used to specify the label for the
Cancel button.

Caption (inherited from TCustomConnectDialog) Used to set the caption of dialog
box.

ConnectButton (inherited from TCustomConnectDialog) Used to specify the label for the
Connect button.

Connection Holds the TMyConnection
component which uses
TMyConnectDialog object.

DatabaseLabel Used to specify a prompt for
database edit.

DialogClass (inherited from TCustomConnectDialog) Used to specify the class of the
form that will be displayed to enter
login information.

LabelSet (inherited from TCustomConnectDialog) Used to set the language of buttons
and labels captions.

Data Access Components for MySQL548

PasswordLabel (inherited from TCustomConnectDialog) Used to specify a prompt for
password edit.

PortLabel Used to specify a prompt for port
edit.

Retries (inherited from TCustomConnectDialog) Used to indicate the number of
retries of failed connections.

SavePassword (inherited from TCustomConnectDialog) Used for the password to be
displayed in ConnectDialog in
asterisks.

ServerLabel (inherited from TCustomConnectDialog) Used to specify a prompt for the
server name edit.

ShowDatabase Used to display a field for entering
database at connect dialog.

ShowPort Used to display a field for entering
port at connect dialog.

StoreLogInfo (inherited from TCustomConnectDialog) Used to specify whether the login
information should be kept in
system registry after a connection
was established.

UsernameLabel (inherited from TCustomConnectDialog) Used to specify a prompt for
username edit.

Methods

Name Description

Execute (inherited from TCustomConnectDialog) Displays the connect dialog and
calls the connection's Connect
method when user clicks the
Connect button.

GetServerList (inherited from TCustomConnectDialog) Retrieves a list of available server
names.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMyConnectDialog class.
For a complete list of the TMyConnectDialog class members, see the TMyConnectDialog Members
topic.

Public

Name Description

CancelButton (inherited from TCustomConnectDialog) Used to specify the label for the
Cancel button.

Caption (inherited from TCustomConnectDialog) Used to set the caption of dialog
box.

ConnectButton (inherited from TCustomConnectDialog) Used to specify the label for the
Connect button.

Connection Holds the TMyConnection
component which uses
TMyConnectDialog object.

DialogClass (inherited from TCustomConnectDialog) Used to specify the class of the
form that will be displayed to enter
login information.

Execute (inherited from TCustomConnectDialog) Displays the connect dialog and
calls the connection's Connect
method when user clicks the
Connect button.

GetServerList (inherited from TCustomConnectDialog) Retrieves a list of available server
names.

LabelSet (inherited from TCustomConnectDialog) Used to set the language of buttons
and labels captions.

549Data Access Components for MySQL

PasswordLabel (inherited from TCustomConnectDialog) Used to specify a prompt for
password edit.

Retries (inherited from TCustomConnectDialog) Used to indicate the number of
retries of failed connections.

SavePassword (inherited from TCustomConnectDialog) Used for the password to be
displayed in ConnectDialog in
asterisks.

ServerLabel (inherited from TCustomConnectDialog) Used to specify a prompt for the
server name edit.

StoreLogInfo (inherited from TCustomConnectDialog) Used to specify whether the login
information should be kept in
system registry after a connection
was established.

UsernameLabel (inherited from TCustomConnectDialog) Used to specify a prompt for
username edit.

Published

Name Description

DatabaseLabel Used to specify a prompt for
database edit.

PortLabel Used to specify a prompt for port
edit.

ShowDatabase Used to display a field for entering
database at connect dialog.

ShowPort Used to display a field for entering
port at connect dialog.

See Also
 TMyConnectDialog Class
 TMyConnectDialog Class Members

© 1997-2012 Devart. All Rights Reserved.

Holds the TMyConnection component which uses TMyConnectDialog object.

Class

TMyConnectDialog

Syntax

property Connection: TCustomMyConnection;

Remarks

Use the Connection property to learn which TMyConnection component uses TMyConnectDialog object.
This property is read-only.

See Also

 TCustomDAConnection.ConnectDialog

© 1997-2012 Devart. All Rights Reserved.

Used to specify a prompt for database edit.

Class

TMyConnectDialog

Syntax

property DatabaseLabel: string;

Data Access Components for MySQL550

Remarks

Use the DatabaseLabel property to specify a prompt for database edit.

See Also

 ShowDatabase

© 1997-2012 Devart. All Rights Reserved.

Used to specify a prompt for port edit.

Class

TMyConnectDialog

Syntax

property PortLabel: string;

Remarks

Use the PortLabel property to specify a prompt for port edit.

See Also

 ShowPort

© 1997-2012 Devart. All Rights Reserved.

Used to display a field for entering database at connect dialog.

Class

TMyConnectDialog

Syntax

property ShowDatabase: boolean default True;

Remarks

Use the ShowDatabase property to display a field for entering database at connect dialog.
The default value is True.

See Also

 DatabaseLabel
 ShowPort

© 1997-2012 Devart. All Rights Reserved.

Used to display a field for entering port at connect dialog.

Class

TMyConnectDialog

Syntax

property ShowPort: boolean default True;

Remarks

Use the ShowPort property to display a field for entering port at connect dialog.
The default value is True.

551Data Access Components for MySQL

See Also

 PortLabel
 ShowDatabase

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL552

17.21 MyDump

This unit contains implementation of the TMyDump component.

Classes

Name Description

TMyDump A component for storing database
or its parts as a script and also for
restoring database from the
received script.

TMyDumpOptions This class allows setting up the
behaviour of the TMyDump class.

Types

Name Description

TMyDumpObjects Represents the set of
TMyDumpObject.

Enumerations

Name Description

TMyDumpObject Specifies the object enumeration.

© 1997-2012 Devart. All Rights Reserved.

553Data Access Components for MySQL

17.21.1 Classes

Classes in the MyDump unit.

Classes

Name Description

TMyDump A component for storing database
or its parts as a script and also for
restoring database from the
received script.

TMyDumpOptions This class allows setting up the
behaviour of the TMyDump class.

© 1997-2012 Devart. All Rights Reserved.

17.21.1.1 MyDump.TMyDump Class

A component for storing database or its parts as a script and also for restoring database from the
received script.
For a list of all members of this type, see TMyDump members.

Unit

MyDump

Syntax

TMyDump = class(TDADump);

Remarks

Serves to store a database or its parts as a script and also to restore database from received script.
TMyDump behaviour is similar to mysqldump program.
Use TMyDump.Objects and TDADump.TableNames properties to specify the list of objects to be stored.
By default, only tables structure and data are stored.
To generate a script call TDADump.Backup or TDADump.BackupQuery method. Resulted script can be
viewed in TDADump.SQL.
TMyDump works on the client side. It causes large network loading. To backup database on the server
side use TMyBackup. Unlike TMyBackup, TMyDump component allows to store not only tables, but
database structure including users' rights.

Inheritance Hierarchy

TObject
 TDADump
 TMyDump

See Also

 TDADump.Backup
 TDADump.Restore
 TMyBackup

© 1997-2012 Devart. All Rights Reserved.

TMyDump class overview.

Properties

Name Description

Connection Used to specify a connection object
that will be used to connect to a
data store.

Debug (inherited from TDADump) Used to display executing
statement, all its parameters'
values, and the type of parameters.

Data Access Components for MySQL554

Objects Used to set the enumeration of
object types that will be described
on calling TDADump.Backup.

Options Specifies the behaviour of the
TMyDump component.

SQL (inherited from TDADump) Used to set or get the dump script.

StoredProcNames Holds the list of procedures which
will be used in the script.

TableNames (inherited from TDADump) Used to set the names of the tables
to dump.

TriggerNames Holds the list of triggers which will
be used in the script.

Methods

Name Description

Backup (inherited from TDADump) Dumps database objects to the
TDADump.SQL property.

BackupQuery (inherited from TDADump) Dumps the results of a particular
query.

BackupToFile (inherited from TDADump) Dumps database objects to the
specified file.

BackupToStream (inherited from TDADump) Dumps database objects to the
stream.

Restore (inherited from TDADump) Executes a script contained in the
SQL property.

RestoreFromFile (inherited from TDADump) Executes a script from a file.

RestoreFromStream (inherited from TDADump) Executes a script received from the
stream.

Events

Name Description

OnBackupProgress (inherited from TDADump) Occurs to indicate the TDADump.
Backup, M:Devart.Dac.TDADump.
BackupToFile(System.String) or M:
Devart.Dac.TDADump.
BackupToStream(Borland.Vcl.
TStream) method execution
progress.

OnError (inherited from TDADump) Occurs when MySQL raises some
error on TDADump.Restore.

OnRestoreProgress (inherited from TDADump) Occurs to indicate the TDADump.
Restore, TDADump.RestoreFromFile
, or TDADump.RestoreFromStream
method execution progress.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMyDump class.
For a complete list of the TMyDump class members, see the TMyDump Members topic.

Public

Name Description

Backup (inherited from TDADump) Dumps database objects to the
TDADump.SQL property.

BackupQuery (inherited from TDADump) Dumps the results of a particular
query.

BackupToFile (inherited from TDADump) Dumps database objects to the
specified file.

555Data Access Components for MySQL

BackupToStream (inherited from TDADump) Dumps database objects to the
stream.

Restore (inherited from TDADump) Executes a script contained in the
SQL property.

RestoreFromFile (inherited from TDADump) Executes a script from a file.

RestoreFromStream (inherited from TDADump) Executes a script received from the
stream.

Published

Name Description

Connection Used to specify a connection object
that will be used to connect to a
data store.

Debug (inherited from TDADump) Used to display executing
statement, all its parameters'
values, and the type of parameters.

Objects Used to set the enumeration of
object types that will be described
on calling TDADump.Backup.

OnBackupProgress (inherited from TDADump) Occurs to indicate the TDADump.
Backup, M:Devart.Dac.TDADump.
BackupToFile(System.String) or M:
Devart.Dac.TDADump.
BackupToStream(Borland.Vcl.
TStream) method execution
progress.

OnError (inherited from TDADump) Occurs when MySQL raises some
error on TDADump.Restore.

OnRestoreProgress (inherited from TDADump) Occurs to indicate the TDADump.
Restore, TDADump.RestoreFromFile
, or TDADump.RestoreFromStream
method execution progress.

Options Specifies the behaviour of the
TMyDump component.

SQL (inherited from TDADump) Used to set or get the dump script.

StoredProcNames Holds the list of procedures which
will be used in the script.

TableNames (inherited from TDADump) Used to set the names of the tables
to dump.

TriggerNames Holds the list of triggers which will
be used in the script.

See Also
 TMyDump Class
 TMyDump Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify a connection object that will be used to connect to a data store.

Class

TMyDump

Syntax

property Connection: TCustomMyConnection;

Remarks

Use the Connection property to specify a connection object that will be used to connect to a data store.
Set at design-time by selecting from the list of provided TCustomMyConnection objects.
At runtime, set Connection property to reference an existing TCustomMyConnection object.

Data Access Components for MySQL556

See Also

 TCustomMyConnection

© 1997-2012 Devart. All Rights Reserved.

Used to set the enumeration of object types that will be described on calling TDADump.Backup.

Class

TMyDump

Syntax

property Objects: TMyDumpObjects default [doTables, doViews,
doData];

Remarks

Use the Object property to set the enumeration of object types that will be described on calling
TDADump.Backup.

See Also

 TDADump.Backup
 M:Devart.Dac.TDADump.BackupToFile(System.String,System.Boolean)
 M:Devart.Dac.TDADump.BackupToStream(Borland.Vcl.TStream,System.Boolean)
 TDADump.TableNames
 StoredProcNames

© 1997-2012 Devart. All Rights Reserved.

Specifies the behaviour of the TMyDump component.

Class

TMyDump

Syntax

property Options: TMyDumpOptions;

Remarks

Set the properties of Options to specify the behaviour of a TMyDump component.
Descriptions of all options are in the table below.

Option Name Description

AddLock Used to execute LOCK TABLE before data
insertion.

CommitBatchSize Used to add COMMIT statement to script after
inserting every CommitBatchSize strings when
dumping table data.

DisableKeys Allows disabling keys check when inserting
records.

HexBlob Used to present BLOB values in hexdecimal
notation.

UseDelayedIns Set to use INSERT DELAYED.

UseExtSyntax Set to use extended syntax of INSERT on data
insertion.

See Also

557Data Access Components for MySQL


Objects

©

 1997-2012 Devart. All Rights Reserved.

Holds the list of procedures which will be used in the script.

Class

TMyDump

Syntax

property StoredProcNames: string;

Remarks

Use the StoredProcNames property to hold the list of procedures which will be used in the script. Makes
sense only on execution TDADump.Backup, M:Devart.Dac.TDADump.BackupToFile(System.String), M:
Devart.Dac.TDADump.BackupToStream(Borland.Vcl.TStream) and doStoredProcs set at the Objects.
Names are separated by comma or semicolon. If it has an empty value, all procs presented in the
database will be processed.

See Also

 TDADump.Backup
 M:Devart.Dac.TDADump.BackupToFile(System.String,System.Boolean)
 M:Devart.Dac.TDADump.BackupToStream(Borland.Vcl.TStream,System.Boolean)
 Objects
 TCustomDAConnection.GetStoredProcNames

© 1997-2012 Devart. All Rights Reserved.

Holds the list of triggers which will be used in the script.

Class

TMyDump

Syntax

property TriggerNames: string;

Remarks

Use the TriggerNames property to hold the list of triggers which will be used in the script. Makes sense
only on execution of TMyDump.Backup, TMyDump.BackupToFile, TMyDump.BackupToStream, and
doTriggers set at the Objects. Names are separated by comma or semicolon. If it has an empty value
and the TMyDump.TableNames property is empty, then all triggers presented in the database will be
processed. If it has an empty value and the TMyDump.TableNames property is not empty, then all
triggers for the specified tables will be processed.

© 1997-2012 Devart. All Rights Reserved.

17.21.1.2 MyDump.TMyDumpOptions Class

This class allows setting up the behaviour of the TMyDump class.
For a list of all members of this type, see TMyDumpOptions members.

Unit

MyDump

Syntax

Data Access Components for MySQL558

TMyDumpOptions = class(TDADumpOptions);

Inheritance Hierarchy

TObject
 TDADumpOptions
 TMyDumpOptions

© 1997-2012 Devart. All Rights Reserved.

TMyDumpOptions class overview.

Properties

Name Description

AddDrop (inherited from TDADumpOptions) Used to add drop statements to a
script before creating statements.

AddLock Used to execute LOCK TABLE before
data insertion.

CommitBatchSize Used to add COMMIT statement to
script after inserting every
CommitBatchSize strings when
dumping table data.

DisableKeys Allows disabling keys check when
inserting records.

GenerateHeader (inherited from TDADumpOptions) Used to add a comment header to a
script.

HexBlob Used to present BLOB values in
hexdecimal notation.

QuoteNames (inherited from TDADumpOptions) Used for TDADump to quote all
database object names in generated
SQL statements.

UseDelayedIns Set to use INSERT DELAYED.

UseExtSyntax Set to use extended syntax of
INSERT on data insertion.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMyDumpOptions class.
For a complete list of the TMyDumpOptions class members, see the TMyDumpOptions Members topic.

Published

Name Description

AddDrop (inherited from TDADumpOptions) Used to add drop statements to a
script before creating statements.

AddLock Used to execute LOCK TABLE before
data insertion.

CommitBatchSize Used to add COMMIT statement to
script after inserting every
CommitBatchSize strings when
dumping table data.

DisableKeys Allows disabling keys check when
inserting records.

GenerateHeader (inherited from TDADumpOptions) Used to add a comment header to a
script.

HexBlob Used to present BLOB values in
hexdecimal notation.

QuoteNames (inherited from TDADumpOptions) Used for TDADump to quote all
database object names in generated
SQL statements.

UseDelayedIns Set to use INSERT DELAYED.

559Data Access Components for MySQL

UseExtSyntax Set to use extended syntax of
INSERT on data insertion.

See Also
 TMyDumpOptions Class
 TMyDumpOptions Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to execute LOCK TABLE before data insertion.

Class

TMyDumpOptions

Syntax

property AddLock: boolean default True;

Remarks

Use the AddLock property to execute LOCK TABLE before data insertion. Used only with doData in
TMyDump.Objects.

© 1997-2012 Devart. All Rights Reserved.

Used to add COMMIT statement to script after inserting every CommitBatchSize strings when dumping
table data.

Class

TMyDumpOptions

Syntax

property CommitBatchSize: integer default 0;

Remarks

Use the CommitBatchSize property to add COMMIT statement to script after inserting every
CommitBatchSize strings when dumping table data. Use this property to boost the productivity when
recovering large amounts of data.

© 1997-2012 Devart. All Rights Reserved.

Allows disabling keys check when inserting records.

Class

TMyDumpOptions

Syntax

property DisableKeys: boolean default False;

Remarks

Add /*!40000 ALTER TABLE ... DISABLE KEYS */ before inserting data. Used only with doData in
TMyDump.Objects.

© 1997-2012 Devart. All Rights Reserved.

Used to present BLOB values in hexdecimal notation.

Class

TMyDumpOptions

Syntax

Data Access Components for MySQL560

property HexBlob: boolean default False;

Remarks

If the HexBlob property is True, the BLOB values are presented in hexdecimal notation.

© 1997-2012 Devart. All Rights Reserved.

Set to use INSERT DELAYED.

Class

TMyDumpOptions

Syntax

property UseDelayedIns: boolean default False;

Remarks

Set the UseDelayedIns property to use INSERT DELAYED. Used only with doData in TMyDump.Objects.

© 1997-2012 Devart. All Rights Reserved.

Set to use extended syntax of INSERT on data insertion.

Class

TMyDumpOptions

Syntax

property UseExtSyntax: boolean default True;

Remarks

Set the UseExtSyntax propery to use extended syntax of INSERT on data insertion. Used only with
doData in TMyDump.Objects.

© 1997-2012 Devart. All Rights Reserved.

561Data Access Components for MySQL

17.21.2 Types

Types in the MyDump unit.

Types

Name Description

TMyDumpObjects Represents the set of
TMyDumpObject.

© 1997-2012 Devart. All Rights Reserved.

17.21.2.1 MyDump.TMyDumpObjects Set

Represents the set of TMyDumpObject.

Unit

MyDump

Syntax

TMyDumpObjects = set of TMyDumpObject;

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL562

17.21.3 Enumerations

Enumerations in the MyDump unit.

Enumerations

Name Description

TMyDumpObject Specifies the object enumeration.

© 1997-2012 Devart. All Rights Reserved.

17.21.3.1 MyDump.TMyDumpObject Enumeration

Specifies the object enumeration.

Unit

MyDump

Syntax

TMyDumpObject = (doDatabase, doUsers, doStoredProcs, doTables,
doData, doViews, doTriggers);

Values

Value Meaning

doData Stores data from the tables. The list of the tables is specified in
TDADump.TableNames. If TableNames is not set, all tables are used.

doDatabase Adds to the received script "CREATE DATABASE..." command.

doStoredProcs Stores stored procedures structure in the script. The list of procedures is
specified in TMyDump.StoredProcNames. If StoredProcNames is not set,
all procedures are used.

doTables Stores tables structure in the script. The list of tables is specified in
TDADump.TableNames. If TableNames is not set, all tables are used.

doTriggers Stores queries for creating triggers in the script. The list of triggers is
specified in TMyDump.TriggerNames. If TriggerNames is not set and the
TMyDump.TableNames property is empty, then all triggers of the
database will be processed. If TriggerNames is not set and the TMyDump.
TableNames property is not empty, then all triggers for the specified
tables will be processed.

doUsers Stores user privileges in the script.

doViews Stores queries for creating Views in a script. The Views list is taken from
TableNames.

© 1997-2012 Devart. All Rights Reserved.

563Data Access Components for MySQL

17.22 MyEmbConnection

This unit contains implementation of the TMyEmbConnection component.

Classes

Name Description

TMyEmbConnection A component for establishing
connection to Embedded MySQL
server.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL564

17.22.1 Classes

Classes in the MyEmbConnection unit.

Classes

Name Description

TMyEmbConnection A component for establishing
connection to Embedded MySQL
server.

© 1997-2012 Devart. All Rights Reserved.

17.22.1.1 MyEmbConnection.TMyEmbConnection Class

A component for establishing connection to Embedded MySQL server.
For a list of all members of this type, see TMyEmbConnection members.

Unit

MyEmbConnection

Syntax

TMyEmbConnection = class(TCustomMyConnection);

Remarks

TMyEmbConnection component is used to establish a connection to MySQL Embedded server and
provide its enhanced support.
Using TMyEmbConnection allows refusing from using configuration file (my.ini) and also lets you handle
MySQL server messages written into log files.

Inheritance Hierarchy

TObject
 TCustomDAConnection
 TCustomMyConnection
 TMyEmbConnection

See Also

 TCustomMyConnection
 TMyConnection
 Embedded Server

© 1997-2012 Devart. All Rights Reserved.

TMyEmbConnection class overview.

Properties

Name Description

BaseDir Used to set the base path for
MySQL Embedded server.

ClientVersion (inherited from TCustomMyConnection) Contains the version of the MySQL
Client library.

ConnectDialog (inherited from TCustomDAConnection) Allows to link a
TCustomConnectDialog component.

ConnectionTimeout (inherited from TCustomMyConnection) Used to specify the amount of time
to attempt to establish a
connection.

ConvertEOL (inherited from TCustomDAConnection) Allows customizing line breaks in
string fields and parameters.

565Data Access Components for MySQL

Database (inherited from TCustomMyConnection) Used to specify a database name
that is a default source of data for
SQL queries once a connection is
established.

DataDir Used to set the path to the data
directory.

InTransaction (inherited from TCustomDAConnection) Indicates whether the transaction is
active.

IsolationLevel (inherited from TCustomMyConnection) Used to specify extent to which all
outside transactions interfere with
subsequent transactions of current
connection.

LoginPrompt (inherited from TCustomDAConnection) Specifies whether a login dialog
appears immediately before
opening a new connection.

Options (inherited from TCustomMyConnection) Specifies the behaviour of the
TMyConnectionOptions object.

Params Used to specify the list of command
line parameters for Embedded
server.

Password (inherited from TCustomDAConnection) Serves to supply a password for
login.

Pooling (inherited from TCustomDAConnection) Enables or disables using
connection pool.

PoolingOptions (inherited from TCustomDAConnection) Specifies the behaviour of
connection pool.

Server (inherited from TCustomDAConnection) Serves to supply the server name
for login.

ServerVersion (inherited from TCustomMyConnection) Holds the version of MySQL server.

ThreadId (inherited from TCustomMyConnection) Used to return the thread ID of the
current connection.

Username (inherited from TCustomDAConnection) Used to supply a user name for
login.

Methods

Name Description

ApplyUpdates (inherited from TCustomDAConnection) Overloaded. Applies changes in
datasets.

AssignConnect (inherited from TCustomMyConnection) Shares database connection
between the TCustomMyConnection
components.

Commit (inherited from TCustomDAConnection) Commits current transaction.

Connect (inherited from TCustomDAConnection) Establishes a connection to the
server.

CreateDataSet (inherited from TCustomMyConnection) Returns a new instance of
TCustomMyDataSet class and
associates it with this connection
object.

CreateSQL (inherited from TCustomDAConnection) Creates a component for queries
execution.

Disconnect (inherited from TCustomDAConnection) Performs disconnect.

ExecProc (inherited from TCustomDAConnection) Allows to execute stored procedure
or function providing its name and
parameters.

ExecProcEx (inherited from TCustomDAConnection) Allows to execute a stored
procedure or function.

ExecSQL (inherited from TCustomMyConnection) Executes any SQL statement
outside TMyQuery or TMyCommand
components.

Data Access Components for MySQL566

ExecSQLEx (inherited from TCustomDAConnection) Executes any SQL statement
outside the TQuery or TSQL
components.

GetCharsetNames (inherited from TCustomMyConnection) Populates a string list with the
names of available charsets.

GetDatabaseNames (inherited from TCustomDAConnection) Returns a database list from the
server.

GetExecuteInfo (inherited from TCustomMyConnection) Returns the result of the last query
execution.

GetStoredProcNames (inherited from
TCustomDAConnection)

Returns a list of stored procedures
from the server.

GetTriggerNames (inherited from TCustomMyConnection) Returns a list of triggers from the
server.

MonitorMessage (inherited from TCustomDAConnection) Sends a specified message through
the TCustomDASQLMonitor
component.

Ping (inherited from TCustomMyConnection) Allows to avoid automatic
disconnection of the client by the
server.

ReleaseSavepoint (inherited from TCustomMyConnection) Releases the specified savepoint
without affecting any work that has
been performed after its creation.

RemoveFromPool (inherited from TCustomDAConnection) Marks the connection that should
not be returned to the pool after
disconnect.

Rollback (inherited from TCustomDAConnection) Discards all current data changes
and ends transaction.

RollbackToSavepoint (inherited from TCustomMyConnection
)

Cancels all updates for the current
transaction.

Savepoint (inherited from TCustomMyConnection) Defines a point in the transaction to
which you can roll back later.

StartTransaction (inherited from TCustomDAConnection) Begins a new user transaction.

Events

Name Description

OnConnectionLost (inherited from TCustomDAConnection) This event occurs when connection
was lost.

OnError (inherited from TCustomDAConnection) This event occurs when an error has
arisen in the connection.

OnLog Occurs when MySQL server writes
down to General Query Log.

OnLogError Occurs when MySQL server writes
down to Error Log.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMyEmbConnection class.
For a complete list of the TMyEmbConnection class members, see the TMyEmbConnection Members
topic.

Public

Name Description

ApplyUpdates (inherited from TCustomDAConnection) Overloaded. Applies changes in
datasets.

AssignConnect (inherited from TCustomMyConnection) Shares database connection
between the TCustomMyConnection
components.

ClientVersion (inherited from TCustomMyConnection) Contains the version of the MySQL
Client library.

567Data Access Components for MySQL

Commit (inherited from TCustomDAConnection) Commits current transaction.

Connect (inherited from TCustomDAConnection) Establishes a connection to the
server.

ConnectDialog (inherited from TCustomDAConnection) Allows to link a
TCustomConnectDialog component.

ConnectionTimeout (inherited from TCustomMyConnection) Used to specify the amount of time
to attempt to establish a
connection.

ConvertEOL (inherited from TCustomDAConnection) Allows customizing line breaks in
string fields and parameters.

CreateDataSet (inherited from TCustomMyConnection) Returns a new instance of
TCustomMyDataSet class and
associates it with this connection
object.

CreateSQL (inherited from TCustomDAConnection) Creates a component for queries
execution.

Database (inherited from TCustomMyConnection) Used to specify a database name
that is a default source of data for
SQL queries once a connection is
established.

Disconnect (inherited from TCustomDAConnection) Performs disconnect.

ExecProc (inherited from TCustomDAConnection) Allows to execute stored procedure
or function providing its name and
parameters.

ExecProcEx (inherited from TCustomDAConnection) Allows to execute a stored
procedure or function.

ExecSQL (inherited from TCustomMyConnection) Executes any SQL statement
outside TMyQuery or TMyCommand
components.

ExecSQLEx (inherited from TCustomDAConnection) Executes any SQL statement
outside the TQuery or TSQL
components.

GetCharsetNames (inherited from TCustomMyConnection) Populates a string list with the
names of available charsets.

GetDatabaseNames (inherited from TCustomDAConnection) Returns a database list from the
server.

GetExecuteInfo (inherited from TCustomMyConnection) Returns the result of the last query
execution.

GetStoredProcNames (inherited from
TCustomDAConnection)

Returns a list of stored procedures
from the server.

GetTriggerNames (inherited from TCustomMyConnection) Returns a list of triggers from the
server.

InTransaction (inherited from TCustomDAConnection) Indicates whether the transaction is
active.

IsolationLevel (inherited from TCustomMyConnection) Used to specify extent to which all
outside transactions interfere with
subsequent transactions of current
connection.

LoginPrompt (inherited from TCustomDAConnection) Specifies whether a login dialog
appears immediately before
opening a new connection.

MonitorMessage (inherited from TCustomDAConnection) Sends a specified message through
the TCustomDASQLMonitor
component.

OnConnectionLost (inherited from TCustomDAConnection) This event occurs when connection
was lost.

OnError (inherited from TCustomDAConnection) This event occurs when an error has
arisen in the connection.

Options (inherited from TCustomMyConnection) Specifies the behaviour of the
TMyConnectionOptions object.

Data Access Components for MySQL568

Password (inherited from TCustomDAConnection) Serves to supply a password for
login.

Ping (inherited from TCustomMyConnection) Allows to avoid automatic
disconnection of the client by the
server.

Pooling (inherited from TCustomDAConnection) Enables or disables using
connection pool.

PoolingOptions (inherited from TCustomDAConnection) Specifies the behaviour of
connection pool.

ReleaseSavepoint (inherited from TCustomMyConnection) Releases the specified savepoint
without affecting any work that has
been performed after its creation.

RemoveFromPool (inherited from TCustomDAConnection) Marks the connection that should
not be returned to the pool after
disconnect.

Rollback (inherited from TCustomDAConnection) Discards all current data changes
and ends transaction.

RollbackToSavepoint (inherited from TCustomMyConnection
)

Cancels all updates for the current
transaction.

Savepoint (inherited from TCustomMyConnection) Defines a point in the transaction to
which you can roll back later.

Server (inherited from TCustomDAConnection) Serves to supply the server name
for login.

ServerVersion (inherited from TCustomMyConnection) Holds the version of MySQL server.

StartTransaction (inherited from TCustomDAConnection) Begins a new user transaction.

ThreadId (inherited from TCustomMyConnection) Used to return the thread ID of the
current connection.

Username (inherited from TCustomDAConnection) Used to supply a user name for
login.

Published

Name Description

BaseDir Used to set the base path for
MySQL Embedded server.

DataDir Used to set the path to the data
directory.

Params Used to specify the list of command
line parameters for Embedded
server.

See Also
 TMyEmbConnection Class
 TMyEmbConnection Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to set the base path for MySQL Embedded server.

Class

TMyEmbConnection

Syntax

property BaseDir: string stored False;

Remarks

Use the BaseDir property to set the base path for MySQL Embedded server. All paths are usually
resolved relative to this. Corresponds to --basedir parameter. See MySQL Reference Manual for detailed
description.
The default value is '.' and all auxiliary files must be located in the same folder with the executable file of
the project.

569Data Access Components for MySQL

See Also

 DataDir
 Params
 Embedded Server

© 1997-2012 Devart. All Rights Reserved.

Used to set the path to the data directory.

Class

TMyEmbConnection

Syntax

property DataDir: string stored False;

Remarks

Use the DataDir property to set the path to the data directory. Corresponds to --datadir parameter. See
MySQL Reference Manual for a detailed description.
The default value is 'data' and all data files must be in the subfolder data by the path specified in
BaseDir.
It is convenient to use this property for cases when the program is started from ReadOnly data carrier
(CD-ROM, network etc). Also its usage can be suitable to separate data of different users.

See Also

 BaseDir
 Params
 Embedded Server

© 1997-2012 Devart. All Rights Reserved.

Used to specify the list of command line parameters for Embedded server.

Class

TMyEmbConnection

Syntax

property Params: TStrings;

Remarks

Use the Params property to specify the list of command line parameters for Embedded server.
Pay attention that all paths must be set through "/" but not "\".
Params property also stores values for BaseDir and DataDir.
If no parameters are set in Params property its value will be obtained from the file of configuration of
EmbServer (my.ini or my.cnf). Please see MySQL Reference for details.
libmysqld library is reloaded only on changing parameters.
Note, parameters names are case-sensitive.

See Also

 BaseDir
 DataDir
 Embedded Server

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL570

Events of the TMyEmbConnection class.
For a complete list of the TMyEmbConnection class members, see the TMyEmbConnection Members
topic.

Public

Name Description

ApplyUpdates (inherited from TCustomDAConnection) Overloaded. Applies changes in
datasets.

AssignConnect (inherited from TCustomMyConnection) Shares database connection
between the TCustomMyConnection
components.

ClientVersion (inherited from TCustomMyConnection) Contains the version of the MySQL
Client library.

Commit (inherited from TCustomDAConnection) Commits current transaction.

Connect (inherited from TCustomDAConnection) Establishes a connection to the
server.

ConnectDialog (inherited from TCustomDAConnection) Allows to link a
TCustomConnectDialog component.

ConnectionTimeout (inherited from TCustomMyConnection) Used to specify the amount of time
to attempt to establish a
connection.

ConvertEOL (inherited from TCustomDAConnection) Allows customizing line breaks in
string fields and parameters.

CreateDataSet (inherited from TCustomMyConnection) Returns a new instance of
TCustomMyDataSet class and
associates it with this connection
object.

CreateSQL (inherited from TCustomDAConnection) Creates a component for queries
execution.

Database (inherited from TCustomMyConnection) Used to specify a database name
that is a default source of data for
SQL queries once a connection is
established.

Disconnect (inherited from TCustomDAConnection) Performs disconnect.

ExecProc (inherited from TCustomDAConnection) Allows to execute stored procedure
or function providing its name and
parameters.

ExecProcEx (inherited from TCustomDAConnection) Allows to execute a stored
procedure or function.

ExecSQL (inherited from TCustomMyConnection) Executes any SQL statement
outside TMyQuery or TMyCommand
components.

ExecSQLEx (inherited from TCustomDAConnection) Executes any SQL statement
outside the TQuery or TSQL
components.

GetCharsetNames (inherited from TCustomMyConnection) Populates a string list with the
names of available charsets.

GetDatabaseNames (inherited from TCustomDAConnection) Returns a database list from the
server.

GetExecuteInfo (inherited from TCustomMyConnection) Returns the result of the last query
execution.

GetStoredProcNames (inherited from
TCustomDAConnection)

Returns a list of stored procedures
from the server.

GetTriggerNames (inherited from TCustomMyConnection) Returns a list of triggers from the
server.

InTransaction (inherited from TCustomDAConnection) Indicates whether the transaction is
active.

571Data Access Components for MySQL

IsolationLevel (inherited from TCustomMyConnection) Used to specify extent to which all
outside transactions interfere with
subsequent transactions of current
connection.

LoginPrompt (inherited from TCustomDAConnection) Specifies whether a login dialog
appears immediately before
opening a new connection.

MonitorMessage (inherited from TCustomDAConnection) Sends a specified message through
the TCustomDASQLMonitor
component.

OnConnectionLost (inherited from TCustomDAConnection) This event occurs when connection
was lost.

OnError (inherited from TCustomDAConnection) This event occurs when an error has
arisen in the connection.

Options (inherited from TCustomMyConnection) Specifies the behaviour of the
TMyConnectionOptions object.

Password (inherited from TCustomDAConnection) Serves to supply a password for
login.

Ping (inherited from TCustomMyConnection) Allows to avoid automatic
disconnection of the client by the
server.

Pooling (inherited from TCustomDAConnection) Enables or disables using
connection pool.

PoolingOptions (inherited from TCustomDAConnection) Specifies the behaviour of
connection pool.

ReleaseSavepoint (inherited from TCustomMyConnection) Releases the specified savepoint
without affecting any work that has
been performed after its creation.

RemoveFromPool (inherited from TCustomDAConnection) Marks the connection that should
not be returned to the pool after
disconnect.

Rollback (inherited from TCustomDAConnection) Discards all current data changes
and ends transaction.

RollbackToSavepoint (inherited from TCustomMyConnection
)

Cancels all updates for the current
transaction.

Savepoint (inherited from TCustomMyConnection) Defines a point in the transaction to
which you can roll back later.

Server (inherited from TCustomDAConnection) Serves to supply the server name
for login.

ServerVersion (inherited from TCustomMyConnection) Holds the version of MySQL server.

StartTransaction (inherited from TCustomDAConnection) Begins a new user transaction.

ThreadId (inherited from TCustomMyConnection) Used to return the thread ID of the
current connection.

Username (inherited from TCustomDAConnection) Used to supply a user name for
login.

Published

Name Description

OnLog Occurs when MySQL server writes
down to General Query Log.

OnLogError Occurs when MySQL server writes
down to Error Log.

See Also
 TMyEmbConnection Class
 TMyEmbConnection Class Members

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL572

Occurs when MySQL server writes down to General Query Log.

Class

TMyEmbConnection

Syntax

property OnLog: TMyLogEvent;

Remarks

The OnLog event occurs when MySQL server writes down to General Query Log, the same as on using --
log option. See MySQL Reference Manual for detailed
description.
On assigning handler for OnLog event MySQL server does not make output to common log-file.
This event is available only for Win32.

See Also

 OnLogError
 Embedded Server

© 1997-2012 Devart. All Rights Reserved.

Occurs when MySQL server writes down to Error Log.

Class

TMyEmbConnection

Syntax

property OnLogError: TMyLogEvent;

Remarks

The OnLogError event occurs when MySQL server writes down to Error Log, the same as on using --log-
error option. See MySQL Reference Manual for detailed description. It is convenient to use OnLogError
event to search errors in the server configuration, as often after error message is displayed an
application is terminated.
On assigning handler for OnLogError event MySQL server does not make output to common error log-
file.
This event is available only for Win32.

See Also

 OnLog
 Embedded Server

© 1997-2012 Devart. All Rights Reserved.

573Data Access Components for MySQL

17.23 MyLoader

This unit contains implementation of the TMyLoader component.

Classes

Name Description

TMyColumn A component representing the
attributes for column loading.

TMyLoader TMyLoader allows to load external
data into the server database.

Types

Name Description

TMyLoaderOptions Represents the set of
TMyLoaderOption.

Enumerations

Name Description

TMyDuplicateKeys Specifies the way conflicts with
duplicated key values will be
resolved.

TMyLoaderOption Specifies the behaviour of a
TMyLoader object.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL574

17.23.1 Classes

Classes in the MyLoader unit.

Classes

Name Description

TMyColumn A component representing the
attributes for column loading.

TMyLoader TMyLoader allows to load external
data into the server database.

© 1997-2012 Devart. All Rights Reserved.

17.23.1.1 MyLoader.TMyColumn Class

A component representing the attributes for column loading.
For a list of all members of this type, see TMyColumn members.

Unit

MyLoader

Syntax

TMyColumn = class(TDAColumn);

Remarks

Each TMyLoader uses TDAColumns to maintain a collection of TMSColumn objects. TMyColumn object
represents the attributes for column loading. Every TMyColumn object corresponds to one of the table
fields with the same name as its TDAColumn.Name property.
To create columns at design-time use column editor of the TMyLoader component.

Inheritance Hierarchy

TObject
 TDAColumn
 TMyColumn

See Also

 TMyLoader
 TDAColumns

© 1997-2012 Devart. All Rights Reserved.

TMyColumn class overview.

Properties

Name Description

FieldType (inherited from TDAColumn) Used to specify the types of values
that will be loaded.

Name (inherited from TDAColumn) Used to specify the field name of
loading table.

© 1997-2012 Devart. All Rights Reserved.

17.23.1.2 MyLoader.TMyLoader Class

TMyLoader allows to load external data into the server database.
For a list of all members of this type, see TMyLoader members.

Unit

MyLoader

575Data Access Components for MySQL

Syntax

TMyLoader = class(TDALoader);

Remarks

TMyLoader serves for fast loading of data to the server.
TMyLoader work is based on generation INSERT statements which insert data by several rows for one
time (see TMyLoader.RowsPerQuery).
This class is used to simplify INSERT statements generation.
To affect on performance set MyLoader.Connection.Options.Compression property to True.
The quicker way is to generate text file on the client side and load it using TMyBackup.Restore method
with Mode = bmText.

Inheritance Hierarchy

TObject
 TDALoader
 TMyLoader

See Also

 TMyBackup

© 1997-2012 Devart. All Rights Reserved.

TMyLoader class overview.

Properties

Name Description

Columns (inherited from TDALoader) Used to add a TDAColumn object
for each field that will be loaded.

Connection Used to specify a connection object
that will be used to connect to a
data store.

DuplicateKeys Used to specify in what way
conflicts with duplicated key values
will be resolved.

Options Specifies the behaviour of
TMyLoader object.

RowsPerQuery Used to get or set the number of
rows that will be send to the server
for one time.

TableName (inherited from TDALoader) Used to specify the name of the
table to which data will be loaded.

Methods

Name Description

CreateColumns (inherited from TDALoader) Creates TDAColumn objects for all
fields of the table with the same
name as TDALoader.TableName.

Load (inherited from TDALoader) Starts loading data.

LoadFromDataSet (inherited from TDALoader) Loads data from the specified
dataset.

PutColumnData (inherited from TDALoader) Overloaded. Puts the value of
individual columns.

Events

Name Description

OnGetColumnData (inherited from TDALoader) Occurs when it is needed to put
column values.

Data Access Components for MySQL576

OnProgress (inherited from TDALoader) Occurs if handling data loading
progress of the TDALoader.
LoadFromDataSet method is
needed.

OnPutData (inherited from TDALoader) Occurs when putting loading data
by rows is needed.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMyLoader class.
For a complete list of the TMyLoader class members, see the TMyLoader Members topic.

Public

Name Description

Columns (inherited from TDALoader) Used to add a TDAColumn object
for each field that will be loaded.

CreateColumns (inherited from TDALoader) Creates TDAColumn objects for all
fields of the table with the same
name as TDALoader.TableName.

Load (inherited from TDALoader) Starts loading data.

LoadFromDataSet (inherited from TDALoader) Loads data from the specified
dataset.

OnGetColumnData (inherited from TDALoader) Occurs when it is needed to put
column values.

OnProgress (inherited from TDALoader) Occurs if handling data loading
progress of the TDALoader.
LoadFromDataSet method is
needed.

OnPutData (inherited from TDALoader) Occurs when putting loading data
by rows is needed.

PutColumnData (inherited from TDALoader) Overloaded. Puts the value of
individual columns.

TableName (inherited from TDALoader) Used to specify the name of the
table to which data will be loaded.

Published

Name Description

Connection Used to specify a connection object
that will be used to connect to a
data store.

DuplicateKeys Used to specify in what way
conflicts with duplicated key values
will be resolved.

Options Specifies the behaviour of
TMyLoader object.

RowsPerQuery Used to get or set the number of
rows that will be send to the server
for one time.

See Also
 TMyLoader Class
 TMyLoader Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify a connection object that will be used to connect to a data store.

Class

TMyLoader

577Data Access Components for MySQL

Syntax

property Connection: TCustomMyConnection;

Remarks

Use the Connection property to specify a connection object that will be used to connect to a data store.
Set at design-time by selecting from the list of provided TMyConnection objects.
At runtime, set the Connection property to reference an existing TMyConnection object.

See Also

 TCustomMyConnection

© 1997-2012 Devart. All Rights Reserved.

Used to specify in what way conflicts with duplicated key values will be resolved.

Class

TMyLoader

Syntax

property DuplicateKeys: TMyDuplicateKeys default dkNone;

Remarks

Use the DuplicateKeys property to specify in what way conflicts with duplicated key values will be
resolved.

© 1997-2012 Devart. All Rights Reserved.

Specifies the behaviour of TMyLoader object.

Class

TMyLoader

Syntax

property Options: TMyLoaderOptions default [];

Remarks

Set the properties of Options to specify the behaviour of a TMyLoader object.

© 1997-2012 Devart. All Rights Reserved.

Used to get or set the number of rows that will be send to the server for one time.

Class

TMyLoader

Syntax

property RowsPerQuery: integer default 0;

Remarks

Use the RowsPerQuery property to get or set the number of rows that will be send to the server for one
time. The default value is 0. In this case rows will be grouped by 16Kb (the default value of
net_buffer_length).

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL578

17.23.2 Types

Types in the MyLoader unit.

Types

Name Description

TMyLoaderOptions Represents the set of
TMyLoaderOption.

© 1997-2012 Devart. All Rights Reserved.

17.23.2.1 MyLoader.TMyLoaderOptions Set

Represents the set of TMyLoaderOption.

Unit

MyLoader

Syntax

TMyLoaderOptions = set of TMyLoaderOption;

© 1997-2012 Devart. All Rights Reserved.

579Data Access Components for MySQL

17.23.3 Enumerations

Enumerations in the MyLoader unit.

Enumerations

Name Description

TMyDuplicateKeys Specifies the way conflicts with
duplicated key values will be
resolved.

TMyLoaderOption Specifies the behaviour of a
TMyLoader object.

© 1997-2012 Devart. All Rights Reserved.

17.23.3.1 MyLoader.TMyDuplicateKeys Enumeration

Specifies the way conflicts with duplicated key values will be resolved.

Unit

MyLoader

Syntax

TMyDuplicateKeys = (dkNone, dkIgnore, dkReplace);

Values

Value Meaning

dkIgnore The new record with duplicated key value will be ignored silently.

dkNone An error will be raised and loading process will be stopped after an
attempt to insert a record with already existing key value.

dkReplace The old record in database with duplicated key values will be silently
replaced with the new one.

© 1997-2012 Devart. All Rights Reserved.

17.23.3.2 MyLoader.TMyLoaderOption Enumeration

Specifies the behaviour of a TMyLoader object.

Unit

MyLoader

Syntax

TMyLoaderOption = (loLock, loDelayed);

Values

Value Meaning

loDelayed Uses INSERT DELAYED syntax.

loLock Locks tables while inserting data.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL580

17.24 MyScript

This unit contains implementation of the TMyScript component.

Classes

Name Description

TMyScript A component for executing several
SQL statements one by one.

© 1997-2012 Devart. All Rights Reserved.

581Data Access Components for MySQL

17.24.1 Classes

Classes in the MyScript unit.

Classes

Name Description

TMyScript A component for executing several
SQL statements one by one.

© 1997-2012 Devart. All Rights Reserved.

17.24.1.1 MyScript.TMyScript Class

A component for executing several SQL statements one by one.
For a list of all members of this type, see TMyScript members.

Unit

MyScript

Syntax

TMyScript = class(TDAScript);

Remarks

Often it is necessary to execute several SQL statements one by one. Known way is using a lot of
components such as TMyCommand. Usually it is not a good solution. With only one TMyScript component
you can execute several SQL statements as one. This sequence of statements is named script. To
separate single statements use semicolon (;), slash (/) ,and DELIMITER . Note that slash must be the
first character in line.
Errors that occur while execution can be processed in the TDAScript.OnError event handler. By default,
on error TMyScript shows exception and continues execution.
If you need to create several Stored Procedures (Functions) at a single script, use slash (/) to separate
commands for creating stored procedures.

Inheritance Hierarchy

TObject
 TDAScript
 TMyScript

See Also

 TMyCommand

© 1997-2012 Devart. All Rights Reserved.

TMyScript class overview.

Properties

Name Description

Connection Used to specify a connection object
that will be used to connect to a
data store.

DataSet Used to retrieve the results of
SELECT statements execution inside
a script.

Debug (inherited from TDAScript) Used to display the script execution
and all its parameter values.

Delimiter (inherited from TDAScript) Used to set the delimiter string that
separates script statements.

EndLine (inherited from TDAScript) Used to get the current statement
last line number in a script.

Data Access Components for MySQL582

EndOffset (inherited from TDAScript) Used to get the offset in the last
line of the current statement.

EndPos (inherited from TDAScript) Used to get the end position of the
current statement.

Macros (inherited from TDAScript) Used to change SQL script text in
design- or run-time easily.

SQL (inherited from TDAScript) Used to get or set script text.

StartLine (inherited from TDAScript) Used to get the current statement
start line number in a script.

StartOffset (inherited from TDAScript) Used to get the offset in the first
line of the current statement.

StartPos (inherited from TDAScript) Used to get the start position of the
current statement in a script.

Statements (inherited from TDAScript) Contains a list of statements
obtained from the SQL property.

UseOptimization Used to unit small queries into
blocks for block executing if
possible.

Methods

Name Description

BreakExec (inherited from TDAScript) Stops script execution.

ErrorOffset (inherited from TDAScript) Used to get the offset of the
statement if the Execute method
raised an exception.

Execute (inherited from TDAScript) Executes a script.

ExecuteFile (inherited from TDAScript) Executes SQL statements contained
in a file.

ExecuteNext (inherited from TDAScript) Executes the next statement in the
script and then stops.

ExecuteStream (inherited from TDAScript) Executes SQL statements contained
in a stream object.

FindMacro (inherited from TDAScript) Indicates whether a specified macro
exists in a dataset.

MacroByName (inherited from TDAScript) Finds a Macro with the name passed
in Name.

Events

Name Description

AfterExecute (inherited from TDAScript) Occurs after a SQL script execution.

BeforeExecute (inherited from TDAScript) Occurs when taking a specific action
before executing the current SQL
statement is needed.

OnError (inherited from TDAScript) Occurs when MySQL raises an error.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMyScript class.
For a complete list of the TMyScript class members, see the TMyScript Members topic.

Public

Name Description

BreakExec (inherited from TDAScript) Stops script execution.

EndLine (inherited from TDAScript) Used to get the current statement
last line number in a script.

EndOffset (inherited from TDAScript) Used to get the offset in the last
line of the current statement.

583Data Access Components for MySQL

EndPos (inherited from TDAScript) Used to get the end position of the
current statement.

ErrorOffset (inherited from TDAScript) Used to get the offset of the
statement if the Execute method
raised an exception.

Execute (inherited from TDAScript) Executes a script.

ExecuteFile (inherited from TDAScript) Executes SQL statements contained
in a file.

ExecuteNext (inherited from TDAScript) Executes the next statement in the
script and then stops.

ExecuteStream (inherited from TDAScript) Executes SQL statements contained
in a stream object.

FindMacro (inherited from TDAScript) Indicates whether a specified macro
exists in a dataset.

MacroByName (inherited from TDAScript) Finds a Macro with the name passed
in Name.

StartLine (inherited from TDAScript) Used to get the current statement
start line number in a script.

StartOffset (inherited from TDAScript) Used to get the offset in the first
line of the current statement.

StartPos (inherited from TDAScript) Used to get the start position of the
current statement in a script.

Statements (inherited from TDAScript) Contains a list of statements
obtained from the SQL property.

Published

Name Description

AfterExecute (inherited from TDAScript) Occurs after a SQL script execution.

BeforeExecute (inherited from TDAScript) Occurs when taking a specific action
before executing the current SQL
statement is needed.

Connection Used to specify a connection object
that will be used to connect to a
data store.

DataSet Used to retrieve the results of
SELECT statements execution inside
a script.

Debug (inherited from TDAScript) Used to display the script execution
and all its parameter values.

Delimiter (inherited from TDAScript) Used to set the delimiter string that
separates script statements.

Macros (inherited from TDAScript) Used to change SQL script text in
design- or run-time easily.

OnError (inherited from TDAScript) Occurs when MySQL raises an error.

SQL (inherited from TDAScript) Used to get or set script text.

UseOptimization Used to unit small queries into
blocks for block executing if
possible.

See Also
 TMyScript Class
 TMyScript Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify a connection object that will be used to connect to a data store.

Class

TMyScript

Data Access Components for MySQL584

Syntax

property Connection: TCustomMyConnection;

Remarks

Use the Connection property to specify a connection object that will be used to connect to a data store.
Set at design-time by selecting from the list of provided TMyConnection objects.
At run-time, set Connection property to reference an existing TMyConnection object.

See Also

 TCustomMyConnection

© 1997-2012 Devart. All Rights Reserved.

Used to retrieve the results of SELECT statements execution inside a script.

Class

TMyScript

Syntax

property DataSet: TCustomMyDataSet;

Remarks

Use the DataSet property if you need to retrieve the results of SELECT statements execution inside a
script.

See Also

 TDAScript.Execute

© 1997-2012 Devart. All Rights Reserved.

Used to unit small queries into blocks for block executing if possible.

Class

TMyScript

Syntax

property UseOptimization: boolean;

Remarks

Use the UseOptimization property to unit small queries into blocks for block executing if possible. The
UseOptimization option does not afect the TDAScript.ExecuteNext method performance. It works only for
the TDAScript.Execute method.

© 1997-2012 Devart. All Rights Reserved.

585Data Access Components for MySQL

17.25 MyServerControl

This unit contains implementation of the TMyServerControl component.

Classes

Name Description

TMyServerControl A component for server control and
standard service tasks execution.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL586

17.25.1 Classes

Classes in the MyServerControl unit.

Classes

Name Description

TMyServerControl A component for server control and
standard service tasks execution.

© 1997-2012 Devart. All Rights Reserved.

17.25.1.1 MyServerControl.TMyServerControl Class

A component for server control and standard service tasks execution.
For a list of all members of this type, see TMyServerControl members.

Unit

MyServerControl

Syntax

TMyServerControl = class(TCustomMyDataSet);

Remarks

TMyServerControl is a direct descendant of TCustomMyDataSet component. It serves to control the
server and execute standard service tasks. List of the functions can be divided in the following groups:
 Create and delete a database (TMyServerControl.CreateDatabase, TMyServerControl.DropDatabase

);
 Serves to manage MySQL services. available only for Windows (TMyServerControl.ServiceStart,

TMyServerControl.ServiceStop, TMyServerControl.GetServiceNames, TMyServerControl.
ServiceStatus);

 Manage MySQL server system variables (TMyServerControl.Variables, TMyServerControl.
ShowVariables)

 Flush server data (TMyServerControl.Flush);
 Manage tables (TMyServerControl.AnalyzeTable, TMyServerControl.OptimizeTable,

TMyServerControl.CheckTable, TMyServerControl.RepairTable);
 Manage processes (TMyServerControl.ShowProcessList, TMyServerControl.KillProcess);
 Obtain current information about the server (TMyServerControl.ShowStatus).

The last three groups show report as DataSet.

Inheritance Hierarchy

TObject
 TMemDataSet
 TCustomDADataSet
 TCustomMyDataSet
 TMyServerControl

See Also

 TMyQuery

© 1997-2012 Devart. All Rights Reserved.

TMyServerControl class overview.

Properties

Name Description

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

587Data Access Components for MySQL

CommandTimeout (inherited from TCustomMyDataSet) Used to specify the amount of time
to attempt execution of a
command.

Connection Used to specify a connection object
to use for connecting to a data
store.

Debug Used to display executing
statement.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet) Used to keep dataset opened after
connection is closed.

Encryption (inherited from TCustomDADataSet) Used to specify the options of the
data encryption in a dataset.

FetchAll (inherited from TCustomMyDataSet) Description is not available at the
moment.

FetchRows (inherited from TCustomDADataSet) Used to define the number of rows
to be transferred across the
network at the same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE clause
of SELECT statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

InsertId (inherited from TCustomMyDataSet) Returns the ID generated for an
AUTO_INCREMENT column by the
previous query.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

LockMode (inherited from TCustomMyDataSet) Specifies when to perform locking
of an editing record.

MacroCount (inherited from TCustomDADataSet) Used to get the number of macros
associated with the Macros
property.

Macros (inherited from TCustomDADataSet) Makes it possible to change SQL
queries easily.

MasterFields (inherited from TCustomDADataSet) Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

Data Access Components for MySQL588

MasterSource (inherited from TCustomDADataSet) Used to specify the data source
component which binds current
dataset to the master one.

Options (inherited from TCustomMyDataSet) Specifies the behaviour of
TCustomMyDataSet object.

ParamCheck (inherited from TCustomDADataSet) Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

ParamCount (inherited from TCustomDADataSet) Used to indicate how many
parameters are there in the Params
property.

Params (inherited from TCustomDADataSet) Used to view and set parameter
names, values, and data types
dynamically.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or deleting data
in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the editing
record is refreshed.

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SQL (inherited from TCustomDADataSet) Used to provide a SQL statement
that a query component executes
when its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying a
deletion to a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to perform a
record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying an
update to a dataset.

TableNames Holds a list of tables that will be
processed by the TMyServerControl.
AnalyzeTable, TMyServerControl.
OptimizeTable, TMyServerControl.
CheckTable, TMyServerControl.
RepairTable methods.

UniDirectional (inherited from TCustomDADataSet) Used if an application does not need
bidirectional access to records in
the result set.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

589Data Access Components for MySQL

Variables Used to get or set the values of
MySQL Server system variables.

Methods

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

AnalyzeTable Analyzes and stores the key
distribution for the table

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CheckTable Checks MyISAM and InnoDB tables
for failures.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

CreateBlobStream (inherited from TCustomDADataSet) Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

CreateDatabase Creates a new database with the
specified name.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteWhere (inherited from TCustomDADataSet) Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

DropDatabase Drops the specified database.

Execute (inherited from TCustomDADataSet) Executes a SQL statement on the
server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL statement is
still being executed.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has already
fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still fetching
rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a specified macro
exists in a dataset.

FindNearest (inherited from TCustomDADataSet) Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomDADataSet) Determines if a parameter with the
specified name exists in a dataset.

Flush Flushes server data from the
memory to disk.

Data Access Components for MySQL590

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet) Returns internal field types defined
in the MemData and accompanying
modules.

GetFieldEnum (inherited from TCustomMyDataSet) Retrieve the list of acceptable
values for a specified field given by
the FieldName parameter.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference shared
object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a number
field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a number
field.

GetOrderBy (inherited from TCustomDADataSet) Retrieves an ORDER BY clause from
a SQL statement.

GetServiceNames Populates a list of MySQL services
at the server to which Connection is
connected.

GotoCurrent (inherited from TCustomDADataSet) Sets the current record in this
dataset similar to the current record
in another dataset.

KillProcess Breaks the execution of the
specified process.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Lock (inherited from TCustomMyDataSet) Overloaded. Locks the current
record for the current connection.

LockTable (inherited from TCustomMyDataSet) Locks table for the current
connection.

MacroByName (inherited from TCustomDADataSet) Finds a Macro with the name passed
in Name.

OptimizeTable Packs tables deleting unused places
from the file at the disk and
defragmenting it.

ParamByName (inherited from TCustomDADataSet) Sets or uses parameter information
for a specific parameter based on
its name.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses cursor
for a query.

RefreshQuick (inherited from TCustomMyDataSet) Retrieves changes posted to the
server by another clients on the
client side quickly.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for the
current record.

RepairTable Repairs specified tables.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property modified
by AddWhere and SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

591Data Access Components for MySQL

Resync (inherited from TCustomDADataSet) Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property value to
BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

ServiceStart Starts the specified service at the
server to which Connection is
connected.

ServiceStatus Returns a status of the specified
service at the server to which
Connection is connected.

ServiceStop Stops the specified service at the
server to which Connection is
connected.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause of a
SELECT statement.

ShowProcessList Shows the list of the processes.

ShowStatus Shows the current state of the
server.

ShowVariables Shows the values of some MySQL
system variables that are in effect
for the current connection.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL property
value was saved to the BaseSQL
property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnLockTable (inherited from TCustomMyDataSet) Releases a table locked by the
TCustomMyDataSet.LockTable
method.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

Events

Name Description

AfterExecute (inherited from TCustomDADataSet) Occurs after a component has
executed a query to database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from TCustomDADataSet) Occurs after executing insert,
delete, update, lock and refresh
operations.

BeforeFetch (inherited from TCustomDADataSet) Occurs before dataset is going to
fetch block of records from the
server.

Data Access Components for MySQL592

BeforeUpdateExecute (inherited from TCustomDADataSet) Occurs before executing insert,
delete, update, lock, and refresh
operations.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMyServerControl class.
For a complete list of the TMyServerControl class members, see the TMyServerControl Members topic.

Public

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

AfterExecute (inherited from TCustomDADataSet) Occurs after a component has
executed a query to database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from TCustomDADataSet) Occurs after executing insert,
delete, update, lock and refresh
operations.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

BeforeFetch (inherited from TCustomDADataSet) Occurs before dataset is going to
fetch block of records from the
server.

BeforeUpdateExecute (inherited from TCustomDADataSet) Occurs before executing insert,
delete, update, lock, and refresh
operations.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommandTimeout (inherited from TCustomMyDataSet) Used to specify the amount of time
to attempt execution of a
command.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

CreateBlobStream (inherited from TCustomDADataSet) Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteWhere (inherited from TCustomDADataSet) Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

593Data Access Components for MySQL

DetailFields (inherited from TCustomDADataSet) Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet) Used to keep dataset opened after
connection is closed.

Encryption (inherited from TCustomDADataSet) Used to specify the options of the
data encryption in a dataset.

Execute (inherited from TCustomDADataSet) Executes a SQL statement on the
server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL statement is
still being executed.

FetchAll (inherited from TCustomMyDataSet) Description is not available at the
moment.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has already
fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still fetching
rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

FetchRows (inherited from TCustomDADataSet) Used to define the number of rows
to be transferred across the
network at the same time.

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE clause
of SELECT statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a specified macro
exists in a dataset.

FindNearest (inherited from TCustomDADataSet) Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomDADataSet) Determines if a parameter with the
specified name exists in a dataset.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet) Returns internal field types defined
in the MemData and accompanying
modules.

GetFieldEnum (inherited from TCustomMyDataSet) Retrieve the list of acceptable
values for a specified field given by
the FieldName parameter.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference shared
object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a number
field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a number
field.

Data Access Components for MySQL594

GetOrderBy (inherited from TCustomDADataSet) Retrieves an ORDER BY clause from
a SQL statement.

GotoCurrent (inherited from TCustomDADataSet) Sets the current record in this
dataset similar to the current record
in another dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

InsertId (inherited from TCustomMyDataSet) Returns the ID generated for an
AUTO_INCREMENT column by the
previous query.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Lock (inherited from TCustomMyDataSet) Overloaded. Locks the current
record for the current connection.

LockMode (inherited from TCustomMyDataSet) Specifies when to perform locking
of an editing record.

LockTable (inherited from TCustomMyDataSet) Locks table for the current
connection.

MacroByName (inherited from TCustomDADataSet) Finds a Macro with the name passed
in Name.

MacroCount (inherited from TCustomDADataSet) Used to get the number of macros
associated with the Macros
property.

Macros (inherited from TCustomDADataSet) Makes it possible to change SQL
queries easily.

MasterFields (inherited from TCustomDADataSet) Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

MasterSource (inherited from TCustomDADataSet) Used to specify the data source
component which binds current
dataset to the master one.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

Options (inherited from TCustomMyDataSet) Specifies the behaviour of
TCustomMyDataSet object.

595Data Access Components for MySQL

ParamByName (inherited from TCustomDADataSet) Sets or uses parameter information
for a specific parameter based on
its name.

ParamCheck (inherited from TCustomDADataSet) Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

ParamCount (inherited from TCustomDADataSet) Used to indicate how many
parameters are there in the Params
property.

Params (inherited from TCustomDADataSet) Used to view and set parameter
names, values, and data types
dynamically.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses cursor
for a query.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or deleting data
in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the editing
record is refreshed.

RefreshQuick (inherited from TCustomMyDataSet) Retrieves changes posted to the
server by another clients on the
client side quickly.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for the
current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property modified
by AddWhere and SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property value to
BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause of a
SELECT statement.

SQL (inherited from TCustomDADataSet) Used to provide a SQL statement
that a query component executes
when its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying a
deletion to a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

Data Access Components for MySQL596

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to perform a
record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL property
value was saved to the BaseSQL
property.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying an
update to a dataset.

UniDirectional (inherited from TCustomDADataSet) Used if an application does not need
bidirectional access to records in
the result set.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnLockTable (inherited from TCustomMyDataSet) Releases a table locked by the
TCustomMyDataSet.LockTable
method.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

Variables Used to get or set the values of
MySQL Server system variables.

Published

Name Description

Connection Used to specify a connection object
to use for connecting to a data
store.

Debug Used to display executing
statement.

TableNames Holds a list of tables that will be
processed by the TMyServerControl.
AnalyzeTable, TMyServerControl.
OptimizeTable, TMyServerControl.
CheckTable, TMyServerControl.
RepairTable methods.

See Also
 TMyServerControl Class
 TMyServerControl Class Members

© 1997-2012 Devart. All Rights Reserved.

597Data Access Components for MySQL

Used to specify a connection object to use for connecting to a data store.

Class

TMyServerControl

Syntax

property Connection: TCustomMyConnection;

Remarks

Use the Connection property to specify a connection object to use to connect to a data store.
Set at design-time by selecting from the list of provided TMyConnection objects.
At run-time, set Connection property to reference an existing TMyConnection object.

See Also

 TCustomMyConnection

© 1997-2012 Devart. All Rights Reserved.

Used to display executing statement.

Class

TMyServerControl

Syntax

property Debug: boolean;

Remarks

Set the Debug property to True to display executing statement.
The default value is False.
Note: To enable debug form display you should explicitly include MyDacVcl (MyDacClx under Kylix) unit
into your project.

See Also

 TCustomDADataSet.Debug

© 1997-2012 Devart. All Rights Reserved.

Holds a list of tables that will be processed by the AnalyzeTable, OptimizeTable, CheckTable, RepairTable
methods.

Class

TMyServerControl

Syntax

property TableNames: string;

Remarks

Contains a list of tables that will be processed by the AnalyzeTable, OptimizeTable, CheckTable,
RepairTable methods.
Table names are separated by comma or semicolon. If it has an empty value, all tables presented in the
database will be processed.

See Also

 AnalyzeTable
 OptimizeTable

Data Access Components for MySQL598

 CheckTable
 RepairTable
 M:Devart.Dac.TCustomDAConnection.GetTableNames(Borland.Vcl.TStrings,System.Boolean)

© 1997-2012 Devart. All Rights Reserved.

Used to get or set the values of MySQL Server system variables.

Class

TMyServerControl

Syntax

property Variables[const VarName: string]: string;
Parameters

VarName
Holds the name of MySQL server system variables.

Remarks

Use the Variables property to get or set the values of MySQL Server system variables. String values
should be assigned with quotes.

Example

For example:

 MyServerControl1.Variables['max_allowed_packet'] := '1234567890';
but:
 MyServerControl.Variables['time_format'] := '''%H:%i:%s''';

© 1997-2012 Devart. All Rights Reserved.

Methods of the TMyServerControl class.
For a complete list of the TMyServerControl class members, see the TMyServerControl Members topic.

Public

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

AfterExecute (inherited from TCustomDADataSet) Occurs after a component has
executed a query to database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from TCustomDADataSet) Occurs after executing insert,
delete, update, lock and refresh
operations.

AnalyzeTable Analyzes and stores the key
distribution for the table

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

BaseSQL (inherited from TCustomDADataSet) Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

BeforeFetch (inherited from TCustomDADataSet) Occurs before dataset is going to
fetch block of records from the
server.

599Data Access Components for MySQL

BeforeUpdateExecute (inherited from TCustomDADataSet) Occurs before executing insert,
delete, update, lock, and refresh
operations.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CheckTable Checks MyISAM and InnoDB tables
for failures.

CommandTimeout (inherited from TCustomMyDataSet) Used to specify the amount of time
to attempt execution of a
command.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

Connection (inherited from TCustomMyDataSet) Used to specify a connection object
that will be used to connect to a
data store.

CreateBlobStream (inherited from TCustomDADataSet) Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

CreateDatabase Creates a new database with the
specified name.

Debug (inherited from TCustomDADataSet) Used to display executing
statement, all its parameters'
values, and the type of parameters.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteWhere (inherited from TCustomDADataSet) Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

DetailFields (inherited from TCustomDADataSet) Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet) Used to keep dataset opened after
connection is closed.

DropDatabase Drops the specified database.

Encryption (inherited from TCustomDADataSet) Used to specify the options of the
data encryption in a dataset.

Execute (inherited from TCustomDADataSet) Executes a SQL statement on the
server.

Executing (inherited from TCustomDADataSet) Indicates whether SQL statement is
still being executed.

FetchAll (inherited from TCustomMyDataSet) Description is not available at the
moment.

Fetched (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet has already
fetched all rows.

Fetching (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is still fetching
rows.

FetchingAll (inherited from TCustomDADataSet) Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

FetchRows (inherited from TCustomDADataSet) Used to define the number of rows
to be transferred across the
network at the same time.

Data Access Components for MySQL600

FilterSQL (inherited from TCustomDADataSet) Used to change the WHERE clause
of SELECT statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet) Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

FindKey (inherited from TCustomDADataSet) Searches for a record which
contains specified field values.

FindMacro (inherited from TCustomDADataSet) Indicates whether a specified macro
exists in a dataset.

FindNearest (inherited from TCustomDADataSet) Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomDADataSet) Determines if a parameter with the
specified name exists in a dataset.

Flush Flushes server data from the
memory to disk.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet) Returns internal field types defined
in the MemData and accompanying
modules.

GetFieldEnum (inherited from TCustomMyDataSet) Retrieve the list of acceptable
values for a specified field given by
the FieldName parameter.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference shared
object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a number
field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a number
field.

GetOrderBy (inherited from TCustomDADataSet) Retrieves an ORDER BY clause from
a SQL statement.

GetServiceNames Populates a list of MySQL services
at the server to which Connection is
connected.

GotoCurrent (inherited from TCustomDADataSet) Sets the current record in this
dataset similar to the current record
in another dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

InsertId (inherited from TCustomMyDataSet) Returns the ID generated for an
AUTO_INCREMENT column by the
previous query.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyFields (inherited from TCustomDADataSet) Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

KillProcess Breaks the execution of the
specified process.

601Data Access Components for MySQL

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Lock (inherited from TCustomMyDataSet) Overloaded. Locks the current
record for the current connection.

LockMode (inherited from TCustomMyDataSet) Specifies when to perform locking
of an editing record.

LockTable (inherited from TCustomMyDataSet) Locks table for the current
connection.

MacroByName (inherited from TCustomDADataSet) Finds a Macro with the name passed
in Name.

MacroCount (inherited from TCustomDADataSet) Used to get the number of macros
associated with the Macros
property.

Macros (inherited from TCustomDADataSet) Makes it possible to change SQL
queries easily.

MasterFields (inherited from TCustomDADataSet) Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

MasterSource (inherited from TCustomDADataSet) Used to specify the data source
component which binds current
dataset to the master one.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

OptimizeTable Packs tables deleting unused places
from the file at the disk and
defragmenting it.

Options (inherited from TCustomMyDataSet) Specifies the behaviour of
TCustomMyDataSet object.

ParamByName (inherited from TCustomDADataSet) Sets or uses parameter information
for a specific parameter based on
its name.

ParamCheck (inherited from TCustomDADataSet) Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

ParamCount (inherited from TCustomDADataSet) Used to indicate how many
parameters are there in the Params
property.

Params (inherited from TCustomDADataSet) Used to view and set parameter
names, values, and data types
dynamically.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and parses cursor
for a query.

Data Access Components for MySQL602

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

ReadOnly (inherited from TCustomDADataSet) Used to prevent users from
updating, inserting, or deleting data
in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the editing
record is refreshed.

RefreshQuick (inherited from TCustomMyDataSet) Retrieves changes posted to the
server by another clients on the
client side quickly.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for the
current record.

RepairTable Repairs specified tables.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property modified
by AddWhere and SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

Resync (inherited from TCustomDADataSet) Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property value to
BaseSQL.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

ServiceStart Starts the specified service at the
server to which Connection is
connected.

ServiceStatus Returns a status of the specified
service at the server to which
Connection is connected.

ServiceStop Stops the specified service at the
server to which Connection is
connected.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause of a
SELECT statement.

ShowProcessList Shows the list of the processes.

ShowStatus Shows the current state of the
server.

ShowVariables Shows the values of some MySQL
system variables that are in effect
for the current connection.

SQL (inherited from TCustomDADataSet) Used to provide a SQL statement
that a query component executes
when its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying a
deletion to a record.

SQLInsert (inherited from TCustomDADataSet) Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

603Data Access Components for MySQL

SQLLock (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to perform a
record lock.

SQLRefresh (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

SQLSaved (inherited from TCustomDADataSet) Determines if the SQL property
value was saved to the BaseSQL
property.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL statement
that will be used when applying an
update to a dataset.

UniDirectional (inherited from TCustomDADataSet) Used if an application does not need
bidirectional access to records in
the result set.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnLockTable (inherited from TCustomMyDataSet) Releases a table locked by the
TCustomMyDataSet.LockTable
method.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

See Also
 TMyServerControl Class
 TMyServerControl Class Members

© 1997-2012 Devart. All Rights Reserved.

Analyzes and stores the key distribution for the table

Class

TMyServerControl

Syntax

procedure AnalyzeTable;

Remarks

Call the AnalyzeTable method to analyze and store the key distribution for the table. During the analysis,
the table is locked with a read lock. This works on MyISAM and BDB tables.
This is equivalent to running myisamchk -a on the table.
If the table hasn't changed since the last AnalyzeTable command, the table will not be analysed again.
The list of the tables is used from TableNames.
Refer to the ANALYZE TABLE detailed description at MySQL Reference Manual.

See Also

Data Access Components for MySQL604

 TableNames
 OptimizeTable
 CheckTable
 RepairTable

© 1997-2012 Devart. All Rights Reserved.

Checks MyISAM and InnoDB tables for failures.

Class

TMyServerControl

Syntax

procedure CheckTable(CheckTypes: TMyCheckTypes = [ctMedium]);
Parameters

CheckTypes
Holds the type of the checking that will be performed.

Remarks

Call the CheckTable method to check MyISAM and InnoDB tables for failures.
The list of the tables is used from TableNames.
Refer to the CHECK TABLE detailed description at MySQL Reference Manual.

See Also

 TableNames
 AnalyzeTable
 OptimizeTable
 RepairTable

© 1997-2012 Devart. All Rights Reserved.

Creates a new database with the specified name.

Class

TMyServerControl

Syntax

procedure CreateDatabase(DatabaseName: string; IfNotExists:
boolean = True; CharsetName: string = ''; CollationName: string
= '');
Parameters

DatabaseName
Holds the name of the database that will be created.

IfNotExists
True, if a database with the specified name does not exist.

CharsetName
Holds the charset name.

CollationName
Holds the collation name.

Remarks

Call the CreateDatabase method to create a new database with the specified name.
If IfNotExists is True, then a database will be created only if it did not exist.
CharsetName, CollationName parameters specify the language parameters of the created database.

See Also

605Data Access Components for MySQL

 DropDatabase

© 1997-2012 Devart. All Rights Reserved.

Drops the specified database.

Class

TMyServerControl

Syntax

procedure DropDatabase(DatabaseName: string; IfExists: boolean =
True);
Parameters

DatabaseName
Holds the database name.

IfExists
If a database with the specified name does not exist, an exception will be generated.

Remarks

Call the DropDatabase method to drop the specified database.
IfExists parameter is used to raise an error message if the specified database doesn't exist.
Note: Use this function very carefully!

See Also

 DropDatabase

© 1997-2012 Devart. All Rights Reserved.

Flushes server data from the memory to disk.

Class

TMyServerControl

Syntax

procedure Flush(FlushTypes: TMyFlushTypes);
Parameters

FlushTypes
Holds the options that define the actions to take while performing flush operation.

Remarks

Call the Flush method to flush forcedly server data from the memory to disk. Used if backup copy is
needed.
Refer to FLUSH detailed description at MySQL Reference Manual.

© 1997-2012 Devart. All Rights Reserved.

Populates a list of MySQL services at the server to which Connection is connected.

Class

TMyServerControl

Syntax

procedure GetServiceNames(List: TStrings);
Parameters

List

Data Access Components for MySQL606

Holds a list of MySQL services.

Remarks

Call the GetServiceNames property to populate a list of MySQL services at the server to which
Connection is connected.
List.Objects[] fields are filled with the status of services in TMyServiceStatus format.
This method is available only for Windows.
Note: Any contents already in the target string list object are eliminated and overwritten by the data
produced by GetServiceNames.

See Also

 ServiceStart
 ServiceStop
 ServiceStatus

© 1997-2012 Devart. All Rights Reserved.

Breaks the execution of the specified process.

Class

TMyServerControl

Syntax

procedure KillProcess(ThreadId: integer);
Parameters

ThreadId
Holds the thread ID of the current connection.

Remarks

Call the KillProcess method to break the execution of the specified process.
Refer to KILL detailed description at MySQL Reference Manual.

See Also

 ShowProcessList

© 1997-2012 Devart. All Rights Reserved.

Packs tables deleting unused places from the file at the disk and defragmenting it.

Class

TMyServerControl

Syntax

procedure OptimizeTable;

Remarks

Call the OptimizeTable method to pack tables deleting unused places from the file at the disk and
defragmenting it.
It makes sense to call it from time to time when working with a table actively, especially when deleting
frequently.
The list of the tables is used from TableNames.
Refer to OPTIMIZE TABLE detailed description at MySQL Reference Manual.

See Also

 TableNames

607Data Access Components for MySQL

 AnalyzeTable
 CheckTable
 RepairTable

© 1997-2012 Devart. All Rights Reserved.

Repairs specified tables.

Class

TMyServerControl

Syntax

procedure RepairTable(RepairTypes: TMyRepairTypes = []);
Parameters

RepairTypes
Holds the options that define the actions to take while performing repair operation on a table.

Remarks

Call the RepairTable method to repair specified tables.
Works only with MyISAM tables.
List of the tables is used from TableNames.
Refer to REPAIR TABLE detailed description at MySQL Reference Manual.

See Also

 TableNames
 AnalyzeTable
 OptimizeTable
 CheckTable

© 1997-2012 Devart. All Rights Reserved.

Starts the specified service at the server to which Connection is connected.

Class

TMyServerControl

Syntax

procedure ServiceStart(const ServiceName: string; ParamStr: string
= '');
Parameters

ServiceName
Holds the name of the service to start.

ParamStr
Holds the list of parameters with which service will be started.

Remarks

Starts the specified service at the server to which Connection with ParamStr parameters is connected.
This method is available only for Windows.

See Also

 ServiceStop
 GetServiceNames
 ServiceStatus

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL608

Returns a status of the specified service at the server to which Connection is connected.

Class

TMyServerControl

Syntax

function ServiceStatus(const ServiceName: string):
TMyServiceStatus;
Parameters

ServiceName
Holds the name of the service to start.

Return Value

a status of the specified service.

Remarks

Call the ServiceStatus method to return a status of the specified service at the server to which
Connection is connected.
To get a list of MySQL services you should use GetServiceNames function.
This method is available only for Windows.

See Also

 ServiceStart
 ServiceStop
 GetServiceNames

© 1997-2012 Devart. All Rights Reserved.

Stops the specified service at the server to which Connection is connected.

Class

TMyServerControl

Syntax

procedure ServiceStop(const ServiceName: string);
Parameters

ServiceName
Holds the name of the service to stop.

Remarks

Call the ServiceStop method to stop the specified service at the server to which Connection is connected.
This method is available only for Windows.

See Also

 ServiceStart
 GetServiceNames
 ServiceStatus

© 1997-2012 Devart. All Rights Reserved.

Shows the list of the processes.

Class

TMyServerControl

Syntax

609Data Access Components for MySQL

procedure ShowProcessList(Full: boolean = False);
Parameters

Full
True, if full query text will be shown.

Remarks

Call the ShowProcessList method to show the list of the processes. Full parameter specifies whether to
show the full text of the query or only the first 100 symbols.
To disconnect use the KillProcess method.
Refer to SHOW [FULL] PROCESSLIST detailed description at MySQL Reference Manual.

See Also

 KillProcess

© 1997-2012 Devart. All Rights Reserved.

Shows the current state of the server.

Class

TMyServerControl

Syntax

procedure ShowStatus;

Remarks

Call the ShowStatus method to show the current state of the server.

See Also

 ShowVariables

© 1997-2012 Devart. All Rights Reserved.

Shows the values of some MySQL system variables that are in effect for the current connection.

Class

TMyServerControl

Syntax

procedure ShowVariables;

Remarks

Call the ShowVariables method to show the values of some MySQL system variables that are in effect for
the current connection.

See Also

 ShowStatus

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL610

17.26 MySqlApi

This unit contains implementation of the class.

Types

Name Description

TMyLogEvent This type is used for the
TMyEmbConnection.OnLog and
TMyEmbConnection.OnLogError
events.

Variables

Name Description

MySQLClientLibrary When set, specifies path and name
of MySQL client library (libmysql.dll
or libmysqld.dll for embedded
server). Not exists for .NET
Framework.

© 1997-2012 Devart. All Rights Reserved.

611Data Access Components for MySQL

17.26.1 Types

Types in the MySqlApi unit.

Types

Name Description

TMyLogEvent This type is used for the
TMyEmbConnection.OnLog and
TMyEmbConnection.OnLogError
events.

© 1997-2012 Devart. All Rights Reserved.

17.26.1.1 MySqlApi.TMyLogEvent Procedure Reference

This type is used for the TMyEmbConnection.OnLog and TMyEmbConnection.OnLogError events.

Unit

MySqlApi

Syntax

TMyLogEvent = procedure (const Text: string) of object;
Parameters

Text
Holds the text of error, startup messages, entries that record client connections, and SQL statements.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL612

17.26.2 Variables

Variables in the MySqlApi unit.

Variables

Name Description

MySQLClientLibrary When set, specifies path and name
of MySQL client library (libmysql.dll
or libmysqld.dll for embedded
server). Not exists for .NET
Framework.

© 1997-2012 Devart. All Rights Reserved.

17.26.2.1 MySqlApi.MySQLClientLibrary Variable

When set, specifies path and name of MySQL client library (libmysql.dll or libmysqld.dll for embedded
server). Not exists for .NET Framework.

Unit

MySqlApi

Syntax

MySQLClientLibrary: string;

© 1997-2012 Devart. All Rights Reserved.

613Data Access Components for MySQL

17.27 MySQLMonitor

This unit contains implementation of the TMySQLMonitor component.

Classes

Name Description

TMySQLMonitor This component serves for
monitoring dynamic SQL execution
in MyDAC-based applications.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL614

17.27.1 Classes

Classes in the MySQLMonitor unit.

Classes

Name Description

TMySQLMonitor This component serves for
monitoring dynamic SQL execution
in MyDAC-based applications.

© 1997-2012 Devart. All Rights Reserved.

17.27.1.1 MySQLMonitor.TMySQLMonitor Class

This component serves for monitoring dynamic SQL execution in MyDAC-based applications.
For a list of all members of this type, see TMySQLMonitor members.

Unit

MySQLMonitor

Syntax

TMySQLMonitor = class(TCustomMySQLMonitor);

Remarks

Use TMySQLMonitor to monitor dynamic SQL execution in MyDAC-based applications.TMySQLMonitor
provides two ways of displaying debug information: with dialog window, DBMonitor or Borland SQL
Monitor. Furthermore to receive debug information the TCustomDASQLMonitor.OnSQL event can be
used. Also it is possible to use all these ways at the same time, though an application may have only one
TMySQLMonitor object. If an application has no TMySQLMonitor instance, the Debug window is available
to display SQL statements to be sent.

Inheritance Hierarchy

TObject
 TCustomDASQLMonitor
 TCustomMySQLMonitor
 TMySQLMonitor

© 1997-2012 Devart. All Rights Reserved.

TMySQLMonitor class overview.

© 1997-2012 Devart. All Rights Reserved.

615Data Access Components for MySQL

17.28 VirtualTable

This unit contains implementation of the TVirtualTable component.

Classes

Name Description

TVirtualTable A base class for storing data in
memory.

Types

Name Description

TVirtualTableOptions Represents the set of
TVirtualTableOption.

Enumerations

Name Description

TVirtualTableOption Specifies the actions to take on
fields data at the time of opening or
closing TVirtualTable dataset.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL616

17.28.1 Classes

Classes in the VirtualTable unit.

Classes

Name Description

TVirtualTable A base class for storing data in
memory.

© 1997-2012 Devart. All Rights Reserved.

17.28.1.1 VirtualTable.TVirtualTable Class

A base class for storing data in memory.
For a list of all members of this type, see TVirtualTable members.

Unit

VirtualTable

Syntax

TVirtualTable = class(TMemDataSet);

Remarks

TVirtualTable is inherited from the TMemDataSet component. TVirtualTable stores data in memory and
does not have linked data files. To add fields to virtual table at design time use Fields Editor. Call the
TVirtualTable.AddField method to add fields at run time.
Immediately after creating, virtual table will be empty. Then you define new fields or load existing table
files so that the virtual table object becomes initialized and ready to be opened.
When you close virtual table it will discard its record set. To keep the data you entered at design-time
for later use you may wish to include the voStored option in the TVirtualTable.Options property. At run
time you will need to call the TVirtualTable.SaveToFile method explicitly to store modifications to the file
that may be retrieved back into the virtual table by calling the TVirtualTable.LoadFromFile method later.
Note: TVirtualTable component is added to the Data Access page of the component palette, not to the
MySQL Access page.

Inheritance Hierarchy

TObject
 TMemDataSet
 TVirtualTable

© 1997-2012 Devart. All Rights Reserved.

TVirtualTable class overview.

Properties

Name Description

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

Options Used to specify actions to take on
the fields data at the time of
opening or closing TVirtualTable
dataset.

617Data Access Components for MySQL

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

Methods

Name Description

AddField Adds a new TFieldDef object with
the name determined by Name.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

Assign Copies fields and data from another
TDataSet component.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

Clear Removes all records from
TVirtualTable.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteField Deletes a field specified by name.

DeleteFields Deletes all fields.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

LoadFromFile Loads data from file into a
TVirtualTable component.

LoadFromStream Copies data of a stream into a
TVirtualTable component.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Prepare (inherited from TMemDataSet) Allocates resources and creates
field components for a dataset.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

SaveToFile Saves data of a TVirtualTable
component to a file.

SaveToStream Copies data from a TVirtualTable
component to a stream.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

Data Access Components for MySQL618

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

Events

Name Description

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TVirtualTable class.
For a complete list of the TVirtualTable class members, see the TVirtualTable Members topic.

Public

Name Description

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

619Data Access Components for MySQL

Prepare (inherited from TMemDataSet) Allocates resources and creates
field components for a dataset.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

Published

Name Description

Options Used to specify actions to take on
the fields data at the time of
opening or closing TVirtualTable
dataset.

See Also
 TVirtualTable Class
 TVirtualTable Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify actions to take on the fields data at the time of opening or closing TVirtualTable dataset.

Class

TVirtualTable

Syntax

property Options: TVirtualTableOptions default [voPersistentData,
voStored];

Remarks

The Options property specifies what actions to take on the fields data at the time of opening or closing
TVirtualTable dataset.

© 1997-2012 Devart. All Rights Reserved.

Methods of the TVirtualTable class.
For a complete list of the TVirtualTable class members, see the TVirtualTable Members topic.

Public

Data Access Components for MySQL620

Name Description

AddField Adds a new TFieldDef object with
the name determined by Name.

ApplyUpdates (inherited from TMemDataSet) Overloaded. Writes dataset's
pending cached updates to a
database.

Assign Copies fields and data from another
TDataSet component.

CachedUpdates (inherited from TMemDataSet) Used to enable or disable the use of
cached updates for a dataset.

CancelUpdates (inherited from TMemDataSet) Clears all pending cached updates
from cache and restores dataset in
its prior state.

Clear Removes all records from
TVirtualTable.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes to the
database server.

DeleteField Deletes a field specified by name.

DeleteFields Deletes all fields.

GetBlob (inherited from TMemDataSet) Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of fields
on which the recordset is sorted.

LoadFromFile Loads data from file into a
TVirtualTable component.

LoadFromStream Copies data of a stream into a
TVirtualTable component.

LocalConstraints (inherited from TMemDataSet) Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet) Used to prevent implicit update of
rows on database server.

Locate (inherited from TMemDataSet) Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

OnUpdateError (inherited from TMemDataSet) Occurs when an exception is
generated while cached updates are
applied to a database.

OnUpdateRecord (inherited from TMemDataSet) Occurs when a single update
component can not handle the
updates.

Prepare (inherited from TMemDataSet) Allocates resources and creates
field components for a dataset.

Prepared (inherited from TMemDataSet) Determines whether a query is
prepared for execution or not.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the cache of
updates as unapplied.

RevertRecord (inherited from TMemDataSet) Cancels changes made to the
current record when cached
updates are enabled.

621Data Access Components for MySQL

SaveToFile Saves data of a TVirtualTable
component to a file.

SaveToStream Copies data from a TVirtualTable
component to a stream.

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a
previously prepared query on the
server and client sides.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.

UpdateStatus (inherited from TMemDataSet) Indicates the current update status
for the dataset when cached
updates are enabled.

See Also
 TVirtualTable Class
 TVirtualTable Class Members

© 1997-2012 Devart. All Rights Reserved.

Adds a new TFieldDef object with the name determined by Name.

Class

TVirtualTable

Syntax

procedure AddField(Name: string; FieldType: TFieldType; Size:
integer = 0; Required: boolean = False);
Parameters

Name
Holds the name of the TFieldDef object to add.

FieldType
Holds the type of the TFieldDef object to add.

Size
Holds the size of the string (if the type of TFieldDef object was specifiad as ftString or ftWideString).

Required
Holds an indicator that determines whether filling the Size parameter is required.

Remarks

Call the AddField method to add a new TFieldDef object with the name determined by Name. FieldType
can be ftString, ftWideString, ftSmallint, ftInteger, ftAutoInc, ftWord, ftBoolean, ftLargeint, ftFloat,
ftCurrency, ftDate, ftTime, ftDateTime, ftBlob, or ftMemo. When you add ftString or ftWideString field
you should specify Size of the string.

Example

VirtualTable1.AddField('CODE', ftInteger, 0);
VirtualTable1.AddField('NAME', ftString, 30);

Data Access Components for MySQL622

See Also


DeleteField

 DeleteFields

© 1997-2012 Devart. All Rights Reserved.

Copies fields and data from another TDataSet component.

Class

TVirtualTable

Syntax

procedure Assign(Source: TPersistent); override;
Parameters

Source
Holds the TDataSet component to copy fields and data from.

Remarks

Call the Assign method to copy fields and data from another TDataSet component.
Note: Unsupported field types are skipped (i.e. destination dataset will contain less fields than the
source one). This may happen when Source is not a TVirtualTable component but some SQL server
oriented dataset.

Example

MyQuery1.SQL.Text := 'SELECT * FROM DEPT';
MyQuery1.Active := True;
VirtualTable1.Assign(MyQuery1);
VirtualTable1.Active := True;

See Also


TVirtualTable

© 1997-2012 Devart. All Rights Reserved.

Removes all records from TVirtualTable.

Class

TVirtualTable

Syntax

procedure Clear;

Remarks

Call the Clear method to remove all records from TVirtualTable.

© 1997-2012 Devart. All Rights Reserved.

Deletes a field specified by name.

Class

TVirtualTable

623Data Access Components for MySQL

Syntax

procedure DeleteField(Name: string);
Parameters

Name
Holds the name of the field to delete.

Remarks

Call the DeleteField method to delete a field specified by Name.

See Also

 AddField
 DeleteFields

© 1997-2012 Devart. All Rights Reserved.

Deletes all fields.

Class

TVirtualTable

Syntax

procedure DeleteFields;

Remarks

Call the DeleteFields method to delete all fields.

See Also

 DeleteField

© 1997-2012 Devart. All Rights Reserved.

Loads data from file into a TVirtualTable component.

Class

TVirtualTable

Syntax

procedure LoadFromFile(const FileName: string; LoadFields: boolean
= True);
Parameters

FileName
Holds the name of the file to load data from.

LoadFields
Indicates whether to load fields from the file.

Remarks

Call the LoadFromFile method to load data from file into a TVirtualTable component. Specify the name of
the file to load into the field as the value of the FileName parameter.This file may be an XML document
in ADO-compatible format or in virtual table data format. File format will be detected automatically.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL624

Copies data of a stream into a TVirtualTable component.

Class

TVirtualTable

Syntax

procedure LoadFromStream(Stream: TStream; LoadFields: boolean =
True);
Parameters

Stream
Holds the stream from which the field's value is copied.

LoadFields
Indicates whether to load fields from the stream.

Remarks

Call the LoadFromStream method to copy data of a stream into a TVirtualTable component. Specify the
stream from which the field's value is copied as the value of the Stream parameter. Data in the stream
may be in ADO-compatible format or in virtual table data format. Data format will be detected
automatically.

© 1997-2012 Devart. All Rights Reserved.

Saves data of a TVirtualTable component to a file.

Class

TVirtualTable

Syntax

procedure SaveToFile(const FileName: string; StoreFields: boolean
= True);
Parameters

FileName
Holds the name of the file to save data to.

StoreFields
Indicates whether to save fields to a file.

Remarks

Call the SaveToFile method to save data of a TVirtualTable component to a file. Specify the name of the
file as the value of the FileName parameter.

© 1997-2012 Devart. All Rights Reserved.

Copies data from a TVirtualTable component to a stream.

Class

TVirtualTable

Syntax

procedure SaveToStream(Stream: TStream; StoreFields: boolean =
True);
Parameters

Stream
Holds the name of the stream to which the field's value is saved.

StoreFields
Indicates whether to save the fields names to a file.

Remarks

625Data Access Components for MySQL

Call the SaveToStream method to copy data from a TVirtualTable component to a stream. Specify the
name of the stream to which the field's value is saved as the value of the Stream parameter.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL626

17.28.2 Types

Types in the VirtualTable unit.

Types

Name Description

TVirtualTableOptions Represents the set of
TVirtualTableOption.

© 1997-2012 Devart. All Rights Reserved.

17.28.2.1 VirtualTable.TVirtualTableOptions Set

Represents the set of TVirtualTableOption.

Unit

VirtualTable

Syntax

TVirtualTableOptions = set of TVirtualTableOption;

© 1997-2012 Devart. All Rights Reserved.

627Data Access Components for MySQL

17.28.3 Enumerations

Enumerations in the VirtualTable unit.

Enumerations

Name Description

TVirtualTableOption Specifies the actions to take on
fields data at the time of opening or
closing TVirtualTable dataset.

© 1997-2012 Devart. All Rights Reserved.

17.28.3.1 VirtualTable.TVirtualTableOption Enumeration

Specifies the actions to take on fields data at the time of opening or closing TVirtualTable dataset.

Unit

VirtualTable

Syntax

TVirtualTableOption = (voPersistentData, voStored);

Values

Value Meaning

voPersistentData Dataset will not dispose of its data at the time of dataset closing.

voStored Dataset will keep its data set at design-time in DFM file along with other
form's stored properties.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL628

Index
- _ -
__Strings65535ToMemo Variable 543

- 6 -
64-bit Development with Embarcadero RAD
Studio XE2 81

- A -
AbortOnKeyViol Property 95

AbortOnProblem Property 95

Active Property

TCustomDASQLMonitor 170

TDATransaction 301

TMacro 305

AddDBTypeRule Method 275

AddDrop Property 133

AddField Method 621

AddFieldNameRule Method 280

AddLock Property 559

AddRef Method 347

AddRule Method 281

AddWhere Method 226

AfterExecute Event

TCustomDADataSet 239

TCustomDASQL 253

TDAScript 159

AfterFetch Event 240

AfterUpdateExecute Event 240

AnalyzeTable Method 603

Apply Method 259

ApplyUpdates Method

ApplyUpdates 360, 361

TCustomDAConnection 195

TMemDataSet 360

AsBlob Property 291

AsBlobRef Property 292

AsDateTime Property 305

AsFloat Property

TDAParam 292

TMacro 305

AsInteger Property

TDAParam 292

TMacro 306

AsLargeInt Property 292

AsMemo Property 293

AsMemoRef Property 293

Assign Method

TBlob 336

TVirtualTable 622

AssignConnect Method 384

AssignField Method 295

AssignFieldValue Method 296

AssignValues Method 308

AsSQLTimeStamp Property 293

AsString Property

TBlob 334

TDAParam 293

TMacro 306

AsWideString Property

TBlob 335

TDAParam 294

AttributeByName Method 345

AttributeCount Property 343

AttributeNo Property 330

Attributes Property(Indexer) 343

AutoPrepare Property

TDADataSetOptions 265

TMyDataSetOptions 465

AutoRefresh Property 465

AutoRefreshInterval Property 466

- B -
Backup Method

TDADump 128

TMyBackup 528

BackupPriority Property 523

BackupQuery Method 128

BackupToFile Method 128

BackupToStream Method 129

BaseDir Property 568

BaseSQL Property 212

BaseSQLOldBehavior Variable 319

bdError 533

bdIgnore 533

bdReplace 533

BeforeExecute Event 159

BeforeFetch Event 240

Index 629

BeforeUpdateExecute Event 240

BinaryAsString Property 466

bmAppend 102

bmAppendUpdate 102

bmBinary 532

bmDelete 102

bmText 532

bmUpdate 102

bpConcurrent 532

bpDefault 532

bpLowPriority 532

BreakExec Method

TCustomDADataSet 226

TDAScript 155

TMyCommand 448

- C -
CACert Property 460

CacheCalcFields Property 265

CachedUpdates Property 356

CancelButton Property 184

CancelUpdates Method 361

Caption Property 184

Cert Property 460

ChangeCursor Property 243

ChangeCursor Variable 319

ChangedCount Property 96

Charset Property 390

CheckBackslashes Property 458

CheckRowVersion Property 466

CheckTable Method 604

ChipherList Property 461

clApply 350

clConnect 350

clConnectionApply 350

Clear Method

TBlob 337

TVirtualTable 622

clExecute 350

ClientVersion Property 379

clOpen 350

clRefresh 350

clServiceQuery 350

clTransStart 350

clUnknown 350

Columns Property 140

CommandTimeout Property

TCustomMyDataSet 401

TMyCommand 446

Commit Method

TCustomDAConnection 196

TDATransaction 302

CommitBatchSize Property 559

CommitCount Property 96

CommitUpdates Method 362

Compatibility 27

Compatibility with Previous Versions 74

Component List 23

Component Property 181

Compress Property 458

Connect Method 196

ConnectButton Property 185

ConnectDialog Property 190

Connection Pooling 62

Connection Property

TCustomDADataSet 212

TCustomDASQL 243

TCustomMyDataSet 401

TDADump 125

TDALoader 140

TDAMetaData 286

TDAScript 151

TMyBackup 523

TMyBuilder 536

TMyCommand 446

TMyConnectDialog 549

TMyDump 555

TMyLoader 576

TMyScript 583

TMyServerControl 597

ConnectionLifetime Property 311

ConnectionTimeout Property 380

ConvertEOL Property 190

CRAccess Unit Members 88

CRBatchMove Unit Members 92

CRDataTypeMap Unit Members 103

CreateBlobStream Method 227

CreateColumns Method 141

CreateConnection Property 466

CreateDatabase Method 604

CreateDataSet Method

TCustomDAConnection 197

TCustomMyConnection 384

CreateSQL Method 197

CREncryption Unit Members 110

Data Access Components for MySQL630

CRVio Unit Members 117

- D -
DADataAdapter Class 322

DADataAdapter.DataSet Property 323

DADataAdapter.Fill Method 323

DADataAdapter.Update Method 324

DADump Unit Members 123

DALoader Unit Members 135

DAScript Unit Members 148

DASQLMonitor Unit Members 168

Data Encryption 58

Data Type Mapping 54

Database Property 380

Database Specific Aspects of 64-bit
Development 85

DatabaseLabel Property 549

DataDir Property 569

DataHeader Property 112

DataSet Manager 66

DataSet Property

DADataAdapter 323

TCustomDAUpdateSQL 255

TDAScript 151

TMyScript 584

DataSize Property 331

DataType Property

TAttribute 331

TDAParam 294

TObjectType 344

DBAccess Unit Members 177

dbForge Fusion for MySQL 75

DBLengthMax Property

TDAMapRule 272

TMapRule 107

DBLengthMin Property

TDAMapRule 272

TMapRule 107

DBMonitor 71

DBMonitorOptions Property 170

DBScaleMax Property

TDAMapRule 273

TMapRule 107

DBScaleMin Property

TDAMapRule 273

TMapRule 108

DBType Property

TDAMapRule 273

TMapRule 108

Debug Property

TCustomDADataSet 212

TCustomDASQL 244

TDADump 126

TDAScript 152

TMyBackup 524

TMyServerControl 597

DefaultCloseAction Property 301

DefaultSortType Property 261

DefaultValues Property

TDADataSetOptions 265

TMyDataSetOptions 467

DeferredPost Method 362

DeleteField Method 622

DeleteFields Method 623

DeleteObject Property 255

DeleteSQL Property 255

DeleteWhere Method 227

Delimiter Property 152

Demo Projects 18

Deployment 32

Destination Property 96

DetailDelay Property 265

DetailFields Property 213

Devart.Dac.DataAdapter Unit Members
321

Devart.MyDac.DataAdapter Unit Members
325

DialogClass Property 185

Direct Property 458

DisableKeys Property 559

Disconnect Method 197

Disconnected Mode 53

Disconnected Property 213

DisconnectedMode Property 261

dkIgnore 579

dkNone 579

dkReplace 579

doData 562

doDatabase 562

DoNotRaiseExcetionOnUaFail Variable
372

doStoredProcs 562

doTables 562

doTriggers 562

doUsers 562

doViews 562

Index 631

DropDatabase Method 605

DuplicateKeys Property 577

Duplicates Property 524

- E -
eaAbort 167

eaAES128 115

eaAES192 115

eaAES256 115

eaBlowfish 115

eaCast128 115

eaContinue 167

eaException 167

eaFail 167

eaRC4 115

eaTripleDES 115

EDAError Class 181

EDAError.Component Property 181

EDAError.ErrorCode Property 182

EDataMappingError Class 104

EDataTypeMappingError Class 104

Editions 3

ehNone 115

ehTag 115

ehTagAndHash 115

EInvalidDBTypeMapping Class 105

EInvalidFieldTypeMapping Class 105

Embedded Property 459

Embedded Server 49

EmptyTable Method 442

EMyError Class 540

EMyError.LineNumber Property 541

EnableBoolean Property 467

EnclosedBy Property 524

Encryption Property 213

EncryptionAlgorithm Property 112

Encryptor Property 270

EndLine Property

TDAScript 152

TDAStatement 161

EndOffset Property

TDAScript 152

TDAStatement 161

EndPos Property

TDAScript 153

TDAStatement 161

ErrorCode Property 182

ErrorOffset Method 156

EscapedBy Property 525

EUnsupportedDataTypeMapping Class
106

ExecProc Method

TCustomDAConnection 198

TCustomMyStoredProc 426

ExecProcEx Method 199

ExecSQL Method

TCustomDAConnection 199

TCustomDAUpdateSQL 259

TCustomMyConnection 385

ExecSQLEx Method 200

Execute Method

Execute 248, 249

TCRBatchMove 99

TCustomConnectDialog 187

TCustomDADataSet 227

TCustomDASQL 248

TDAScript 156

ExecuteFile Method 156

ExecuteNext Method 157

ExecuteStream Method 157

Executing Method

TCustomDADataSet 228

TCustomDASQL 249

- F -
Features 9

FetchAll Property

TCustomMyDataSet 401

TMyQuery 484

TMyTable 506

Fetched Method 228

Fetching Method 229

FetchingAll Method 229

FetchRows Property 213

FieldLength Property

TDAMapRule 273

TMapRule 108

FieldMappingMode Property 96

FieldName Property

TDAMapRule 273

TMapRule 108

Fields Property

TDAEncryptionOptions 270

TMyBackup 525

Data Access Components for MySQL632

FieldsAsString Property 467

FieldScale Property

TDAMapRule 274

TMapRule 108

FieldsOrigin Property

TDADataSetOptions 266

TMyDataSetOptions 467

FieldsTerminatedBy Property 526

FieldType Property

TDAColumn 137

TDAMapRule 274

Fill Method 323

FilterSQL Property 214

FinalSQL Property

TCustomDADataSet 214

TCustomDASQL 244

FindAttribute Method 345

FindKey Method 229

FindMacro Method

TCustomDADataSet 230

TCustomDASQL 249

TDAScript 157

TMacros 309

FindNearest Method 230

FindParam Method

TCustomDADataSet 231

TCustomDASQL 250

TDAParams 299

FlatBuffers Property 266

Flush Method 605

Frequently Asked Questions 35

FullRefresh Property 468

- G -
GenerateHeader Property 133

GetBlob Method 362

GetCharsetNames Method 385

GetDatabaseNames Method 201

GetDataType Method 231

GetExecuteInfo Method 385

GetFieldEnum Method 408

GetFieldObject Method 231

GetFieldPrecision Method 232

GetFieldScale Method 232

GetMetaDataKinds Method 288

GetOrderBy Method 233

GetRestrictions Method 289

GetServerList Method 187

GetServiceNames Method 605

GetStoredProcNames Method 201

Getting Started 5

Getting Support 34

GetTriggerNames Method 386

GotoCurrent Method 233

- H -
haMD5 116

HandlerIndex Property 512

haSHA1 116

HashAlgorithm Property 112

HexBlob Property 559

Hierarchy Chart 25

Host Property 173

Hostname Property 121

HttpOptions Property 453

- I -
IgnoreErrors Property

TDAMapRule 274

TMapRule 108

IgnoreLines Property 526

ihFail 116

ihIgnoreError 116

ihSkipData 116

ilReadCommitted 91

ilReadUnCommitted 517

ilRepeatableRead 517

ilSerializable 517

Increasing Performance 60

IndexDefs Property 437

IndexFieldNames Property 357

InsertId Property

TCustomMyDataSet 402

TMyCommand 447

InsertObject Property 256

InsertSQL Property 256

Installation 29

Interactive Property 459

InTransaction Property 190

InvalidHashAction Property 113

IOHandler Property 453

IsEqual Method 309

Index 633

IsNull Property 294

IsolationLevel Property 380

IsQuery Property 214

IsUnicode Property 335

Items Property(Indexer)

TDAColumns 138

TDAParams 299

TDAStatements 164

TMacros 308

- K -
KeepDesignConnected Property 261

Key Property 461

KeyFields Property 215

KeyViolCount Property 97

KillProcess Method 606

- L -
LabelSet Property 185

Length Property 331

Licensing and Subscriptions 33

Limit Property 437

LineNumber Property 541

LinesTerminatedBy Property 526

lmNone 317

lmOptimistic 317

lmPessimistic 317

Load Method 141

LoadFromDataSet Method 142

LoadFromFile Method

TBlob 337

TDAParam 296

TVirtualTable 623

LoadFromStream Method

TBlob 337

TDAParam 297

TVirtualTable 624

Local Property 527

LocalConstraints Property 357

LocalFailover Property 262

LocalMasterDetail Property 266

LocalUpdate Property 357

Locate Method 363

LocateEx Method 365

Lock Method

Lock 409

TCustomDADataSet 233

TCustomMyDataSet 409

LockMode Property

TCustomMyDataSet 402

TMyQuery 484

TMyStoredProc 495

TMyTable 507

LockObject Property 256

LockSQL Property 257

LockTable Method 410

loDelayed 579

LoginPrompt Property 191

loLock 579

LongStrings Property 266

lrDelayed 516

lrImmediately 516

lsCustom 317

lsEnglish 317

lsFrench 317

lsGerman 317

lsItalian 317

lsPolish 317

lsPortuguese 317

lsRussian 317

lsSpanish 317

ltRead 516

ltReadLocal 516

ltWrite 516

ltWriteLowPriority 516

lxCaseInsensitive 351

lxNearest 351

lxNext 351

lxPartialCompare 351

lxPartialKey 351

lxUp 351

- M -
MacroByName Method

TCustomDADataSet 234

TCustomDASQL 250

TDAScript 158

TMacros 309

MacroChar Variable 320

MacroCount Property

TCustomDADataSet 215

TCustomDASQL 244

Data Access Components for MySQL634

Macros 64

Macros Property

TCustomDADataSet 215

TCustomDASQL 245

TDAScript 153

Mappings Property 97

Master/Detail Relationships 41

MasterFields Property 216

MasterSource Property 216

MaxPoolSize Property 311

MemData Unit Members 328

MemDS Unit Members 353

MetaDataKind Property 286

Migration from BDE 43

Migration Wizard 72

MinPoolSize Property 312

mmFieldIndex 102

mmFieldName 102

moCustom 175

moDBMonitor 175

Mode Property

TCRBatchMove 97

TMyBackup 527

moDialog 175

ModifyObject Property 257

ModifySQL Property 257

moHandled 175

MonitorMessage Method 202

moSQLMonitor 175

MovedCount Property 98

mpDefault 542

mpHttp 542

mpMemory 542

mpPipe 542

mpSocket 542

mpSSL 542

mpTCP 542

MyAccess Unit Members 373

MyBackup Unit Members 520

MyBuilder Add-In 80

MyBuilderClient Unit Members 534

MyClasses Unit Members 539

MyConnectionPool Unit Members 544

MyDacVcl Unit Members 546

MydacVersion Constant 519

MyDataAdapter Class 326

MyDump Unit Members 552

MyEmbConnection Unit Members 563

MyLoader Unit Members 573

MyScript Unit Members 580

MyServerControl Unit Members 585

MySqlApi Unit Members 610

MySQLClientLibrary Variable 612

MySQLMonitor Unit Members 613

- N -
Name Property

TDAColumn 137

TMacro 306

National Characters 51

Network Tunneling 47

ntBCD 351

ntFloat 351

ntFmtBCD 351

NullForZeroDate Property 468

NullForZeroDelphiDate Property 390

NumberRange Property

TDADataSetOptions 267

TMyDataSetOptions 468

NumericType Property 390

- O -
Objects Property 556

ObjectType Property 331

Offset Property

TAttribute 332

TCustomMyTable 437

Omit Property 162

OnBackupProgress Event 131

OnBatchMoveProgress Event 99

OnConnectionLost Event 204

OnError Event

TCustomDAConnection 204

TDADump 131

TDAScript 159

TDATransaction 303

OnGetColumnData Event 144

OnLog Event 572

OnLogError Event 572

OnProgress Event 144

OnPutData Event 145

OnRestoreProgress Event 132

OnSQL Event 171

Index 635

OnTableMsg Event 529

OnUpdateError Event 370

OnUpdateRecord Event 370

OptimizedBigInt Property 391

OptimizeTable Method 606

Options Property

TCustomDAConnection 191

TCustomDADataSet 217

TCustomDASQLMonitor 170

TCustomMyConnection 381

TCustomMyDataSet 402

TCustomMyTable 437

TDADump 126

TMyConnection 454

TMyDump 556

TMyLoader 577

TVirtualTable 619

OrderFields Property 507

Overview 1

Owner Property 332

- P -
ParamByName Method

TCustomDADataSet 234

TCustomDASQL 251

TDAParams 300

ParamCheck Property

TCustomDADataSet 218

TCustomDASQL 245

ParamCount Property

TCustomDADataSet 219

TCustomDASQL 245

Params Property

TCustomDADataSet 219

TCustomDASQL 246

TDAStatement 162

TMyEmbConnection 569

ParamType Property 294

ParamValues Property(Indexer) 246

Password Property

TCREncryptor 113

TCustomDAConnection 192

THttpOptions 119

TProxyOptions 121

PasswordLabel Property 185

Path Property 527

Ping Method 387

Pooling Property 192

PoolingOptions Property 193

Port Property

TDBMonitorOptions 173

TMyConnection 455

TProxyOptions 121

PortLabel Property 550

Prepare Method

TCustomDADataSet 235

TCustomDASQL 251

TMemDataSet 366

Prepared Property

TCustomDASQL 247

TMemDataSet 358

PrepareSQL Method 426

ProblemCount Property 98

Protocol Property 459

ProxyOptions Property 119

PutColumnData Method 142

- Q -
QueryRecCount Property

TDADataSetOptions 267

TMyDataSetOptions 468

QuoteNames Property

TDADataSetOptions 267

TDADumpOptions 133

TMyDataSetOptions 469

- R -
Read Method 338

ReadOnly Property 219

ReconnectTimeout Property 173

RecordCount Property 98

RefCount Property 347

RefreshObject Property 257

RefreshOptions Property 220

RefreshQuick Method 410

RefreshRecord Method 235

RefreshSQL Property 258

Release Method 348

ReleaseSavepoint Method 387

RemoveFromPool Method 202

RemoveOnRefresh Property

TDADataSetOptions 267

Data Access Components for MySQL636

RemoveOnRefresh Property

TMyDataSetOptions 469

RepairTable Method 607

RequiredFields Property

TDADataSetOptions 268

TMyDataSetOptions 469

Requirements 26

Restore Method

TDADump 129

TMyBackup 529

RestoreFromFile Method 130

RestoreFromStream Method 130

RestoreSQL Method 236

RestoreUpdates Method 367

Restrictions Property 287

Resync Method 236

Retries Property 186

ReturnParams Property

TDADataSetOptions 268

TMyDataSetOptions 469

RevertRecord Method 367

rmRaise 318

rmReconnect 318

rmReconnectExecute 318

roAfterInsert 318

roAfterUpdate 318

roBeforeEdit 318

Rollback Method

TCustomDAConnection 202

TDATransaction 302

RollbackToSavepoint Method 387

RowsAffected Property

TCustomDADataSet 220

TCustomDASQL 247

RowsPerQuery Property 577

- S -
SavePassword Property 186

Savepoint Method 388

SaveSQL Method 236

SaveToFile Method

TBlob 338

TVirtualTable 624

SaveToStream Method

TBlob 338

TVirtualTable 624

SaveToXML Method 367

Scale Property 332

Scan Method 310

Script Property 162

Secure Connections 45

SendDataSetChangeEventAfterOpen
Variable 372

SendTimeout Property 173

Server Property 193

ServerLabel Property 186

ServerVersion Property 382

ServiceStart Method 607

ServiceStatus Method 608

ServiceStop Method 608

SetBlobData 297

SetBlobData Method 297

SetFieldsReadOnly Property

TDADataSetOptions 268

TMyDataSetOptions 470

SetKey Method 113

SetOrderBy Method 237

Show Method 537

ShowDatabase Property 550

ShowModal Method 538

ShowPort Property 550

ShowProcessList Method 608

ShowStatus Method 609

ShowVariables Method 609

Size Property

TAttribute 332

TBlob 335

TDAParam 295

TObjectType 344

Source Property 99

SQL Property

TCustomDADataSet 220

TCustomDASQL 247

TDADump 127

TDAScript 153

TDAStatement 162

TMyBuilder 536

SQL Property(Indexer) 258

SQLDelete Property 221

SQLGeneratorCompatibility Variable 320

SQLInsert Property 221

SQLLock Property 221

SQLRefresh Property 222

SQLSaved Method 237

SQLUpdate Property 223

Index 637

SSLOptions Property 455

StartLine Property

TDAScript 153

TDAStatement 163

StartOffset Property

TDAScript 154

TDAStatement 163

StartPos Property

TDAScript 154

TDAStatement 163

StartTransaction Method

TCustomDAConnection 203

TDATransaction 303

Statements Property 154

stBinary 351

stCaseInsensitive 351

stCaseSensitive 351

StoredProcName Property 421

StoredProcNames Property 557

StoreLogInfo Property 186

StrictUpdate Property

TDADataSetOptions 269

TMyDataSetOptions 470

- T -
TableName Property

TDALoader 140

TMyTable 507

TableNames Property

TDADump 127

TMyBackup 528

TMyServerControl 597

taCommit 91

TAfterExecuteEvent Procedure Reference
313

TAfterFetchEvent Procedure Reference
313

TAfterStatementExecuteEvent Procedure
Reference 165

taRollback 91

TAttribute Class 329

TAttribute.AttributeNo Property 330

TAttribute.DataSize Property 331

TAttribute.DataType Property 331

TAttribute.Length Property 331

TAttribute.ObjectType Property 331

TAttribute.Offset Property 332

TAttribute.Owner Property 332

TAttribute.Scale Property 332

TAttribute.Size Property 332

TBeforeFetchEvent Procedure Reference
314

TBeforeFetchProc Procedure Reference
90

TBeforeStatementExecuteEvent Procedure
Reference 165

TBlob Class 333

TBlob.Assign Method 336

TBlob.AsString Property 334

TBlob.AsWideString Property 335

TBlob.Clear Method 337

TBlob.IsUnicode Property 335

TBlob.LoadFromFile Method 337

TBlob.LoadFromStream Method 337

TBlob.Read Method 338

TBlob.SaveToFile Method 338

TBlob.SaveToStream Method 338

TBlob.Size Property 335

TBlob.Truncate Method 339

TBlob.Write Method 339

TCompressedBlob Class 340

TConnectionLostEvent Procedure
Reference 314

TConnLostCause Enumeration 350

TCRBatchMode Enumeration 102

TCRBatchMove Class 93

TCRBatchMove.AbortOnKeyViol Property
95

TCRBatchMove.AbortOnProblem Property
95

TCRBatchMove.ChangedCount Property
96

TCRBatchMove.CommitCount Property 96

TCRBatchMove.Destination Property 96

TCRBatchMove.Execute Method 99

TCRBatchMove.FieldMappingMode
Property 96

TCRBatchMove.KeyViolCount Property 97

TCRBatchMove.Mappings Property 97

TCRBatchMove.Mode Property 97

TCRBatchMove.MovedCount Property 98

TCRBatchMove.OnBatchMoveProgress
Event 99

TCRBatchMove.ProblemCount Property
98

TCRBatchMove.RecordCount Property 98

TCRBatchMove.Source Property 99

Data Access Components for MySQL638

TCRBatchMoveProgressEvent Procedure
Reference 101

TCRCursor Class 89

TCRDataSource Class 182

TCREncDataHeader Enumeration 115

TCREncryptionAlgorithm Enumeration 115

TCREncryptor Class 111

TCREncryptor.DataHeader Property 112

TCREncryptor.EncryptionAlgorithm
Property 112

TCREncryptor.HashAlgorithm Property
112

TCREncryptor.InvalidHashAction Property
113

TCREncryptor.Password Property 113

TCREncryptor.SetKey Method 113

TCRFieldMappingMode Enumeration 102

TCRHashAlgorithm Enumeration 116

TCRInvalidHashAction Enumeration 116

TCRIsolationLevel Enumeration 91

TCRTransactionAction Enumeration 91

TCustomConnectDialog Class 182

TCustomConnectDialog.CancelButton
Property 184

TCustomConnectDialog.Caption Property
184

TCustomConnectDialog.ConnectButton
Property 185

TCustomConnectDialog.DialogClass
Property 185

TCustomConnectDialog.Execute Method
187

TCustomConnectDialog.GetServerList
Method 187

TCustomConnectDialog.LabelSet Property
185

TCustomConnectDialog.PasswordLabel
Property 185

TCustomConnectDialog.Retries Property
186

TCustomConnectDialog.SavePassword
Property 186

TCustomConnectDialog.ServerLabel
Property 186

TCustomConnectDialog.StoreLogInfo
Property 186

TCustomConnectDialog.UsernameLabel
Property 187

TCustomDAConnection Class 188

TCustomDAConnection.ApplyUpdates
Method 195

TCustomDAConnection.Commit Method
196

TCustomDAConnection.Connect Method
196

TCustomDAConnection.ConnectDialog
Property 190

TCustomDAConnection.ConvertEOL
Property 190

TCustomDAConnection.CreateDataSet
Method 197

TCustomDAConnection.CreateSQL Method
 197

TCustomDAConnection.Disconnect Method
 197

TCustomDAConnection.ExecProc Method
198

TCustomDAConnection.ExecProcEx
Method 199

TCustomDAConnection.ExecSQL Method
199

TCustomDAConnection.ExecSQLEx
Method 200

TCustomDAConnection.GetDatabaseName
s Method 201

TCustomDAConnection.GetStoredProcNa
mes Method 201

TCustomDAConnection.InTransaction
Property 190

TCustomDAConnection.LoginPrompt
Property 191

TCustomDAConnection.MonitorMessage
Method 202

TCustomDAConnection.OnConnectionLost
Event 204

TCustomDAConnection.OnError Event
204

TCustomDAConnection.Options Property
191

TCustomDAConnection.Password Property
 192

TCustomDAConnection.Pooling Property
192

TCustomDAConnection.PoolingOptions
Property 193

TCustomDAConnection.RemoveFromPool
Method 202

TCustomDAConnection.Rollback Method
202

TCustomDAConnection.Server Property
193

Index 639

TCustomDAConnection.StartTransaction
Method 203

TCustomDAConnection.Username Property
 194

TCustomDADataSet Class 204

TCustomDADataSet.AddWhere Method
226

TCustomDADataSet.AfterExecute Event
239

TCustomDADataSet.AfterFetch Event 240

TCustomDADataSet.AfterUpdateExecute
Event 240

TCustomDADataSet.BaseSQL Property
212

TCustomDADataSet.BeforeFetch Event
240

TCustomDADataSet.BeforeUpdateExecute
Event 240

TCustomDADataSet.BreakExec Method
226

TCustomDADataSet.Connection Property
212

TCustomDADataSet.CreateBlobStream
Method 227

TCustomDADataSet.Debug Property 212

TCustomDADataSet.DeleteWhere Method
227

TCustomDADataSet.DetailFields Property
213

TCustomDADataSet.Disconnected Property
 213

TCustomDADataSet.Encryption Property
213

TCustomDADataSet.Execute Method 227

TCustomDADataSet.Executing Method
228

TCustomDADataSet.Fetched Method 228

TCustomDADataSet.Fetching Method 229

TCustomDADataSet.FetchingAll Method
229

TCustomDADataSet.FetchRows Property
213

TCustomDADataSet.FilterSQL Property
214

TCustomDADataSet.FinalSQL Property
214

TCustomDADataSet.FindKey Method 229

TCustomDADataSet.FindMacro Method
230

TCustomDADataSet.FindNearest Method
230

TCustomDADataSet.FindParam Method
231

TCustomDADataSet.GetDataType Method
231

TCustomDADataSet.GetFieldObject
Method 231

TCustomDADataSet.GetFieldPrecision
Method 232

TCustomDADataSet.GetFieldScale Method
 232

TCustomDADataSet.GetOrderBy Method
233

TCustomDADataSet.GotoCurrent Method
233

TCustomDADataSet.IsQuery Property 214

TCustomDADataSet.KeyFields Property
215

TCustomDADataSet.Lock Method 233

TCustomDADataSet.MacroByName
Method 234

TCustomDADataSet.MacroCount Property
215

TCustomDADataSet.Macros Property 215

TCustomDADataSet.MasterFields Property
 216

TCustomDADataSet.MasterSource
Property 216

TCustomDADataSet.Options Property 217

TCustomDADataSet.ParamByName
Method 234

TCustomDADataSet.ParamCheck Property
 218

TCustomDADataSet.ParamCount Property
 219

TCustomDADataSet.Params Property 219

TCustomDADataSet.Prepare Method 235

TCustomDADataSet.ReadOnly Property
219

TCustomDADataSet.RefreshOptions
Property 220

TCustomDADataSet.RefreshRecord
Method 235

TCustomDADataSet.RestoreSQL Method
236

TCustomDADataSet.Resync Method 236

TCustomDADataSet.RowsAffected
Property 220

TCustomDADataSet.SaveSQL Method
236

TCustomDADataSet.SetOrderBy Method
237

TCustomDADataSet.SQL Property 220

Data Access Components for MySQL640

TCustomDADataSet.SQLDelete Property
221

TCustomDADataSet.SQLInsert Property
221

TCustomDADataSet.SQLLock Property
221

TCustomDADataSet.SQLRefresh Property
222

TCustomDADataSet.SQLSaved Method
237

TCustomDADataSet.SQLUpdate Property
223

TCustomDADataSet.UniDirectional
Property 223

TCustomDADataSet.UnLock Method 237

TCustomDASQL Class 241

TCustomDASQL.AfterExecute Event 253

TCustomDASQL.ChangeCursor Property
243

TCustomDASQL.Connection Property 243

TCustomDASQL.Debug Property 244

TCustomDASQL.Execute Method 248

TCustomDASQL.Executing Method 249

TCustomDASQL.FinalSQL Property 244

TCustomDASQL.FindMacro Method 249

TCustomDASQL.FindParam Method 250

TCustomDASQL.MacroByName Method
250

TCustomDASQL.MacroCount Property
244

TCustomDASQL.Macros Property 245

TCustomDASQL.ParamByName Method
251

TCustomDASQL.ParamCheck Property
245

TCustomDASQL.ParamCount Property
245

TCustomDASQL.Params Property 246

TCustomDASQL.ParamValues
Property(Indexer) 246

TCustomDASQL.Prepare Method 251

TCustomDASQL.Prepared Property 247

TCustomDASQL.RowsAffected Property
247

TCustomDASQL.SQL Property 247

TCustomDASQL.UnPrepare Method 252

TCustomDASQL.WaitExecuting Method
252

TCustomDASQLMonitor Class 169

TCustomDASQLMonitor.Active Property
170

TCustomDASQLMonitor.DBMonitorOptions
Property 170

TCustomDASQLMonitor.OnSQL Event
171

TCustomDASQLMonitor.Options Property
170

TCustomDASQLMonitor.TraceFlags
Property 171

TCustomDAUpdateSQL Class 253

TCustomDAUpdateSQL.Apply Method
259

TCustomDAUpdateSQL.DataSet Property
255

TCustomDAUpdateSQL.DeleteObject
Property 255

TCustomDAUpdateSQL.DeleteSQL
Property 255

TCustomDAUpdateSQL.ExecSQL Method
259

TCustomDAUpdateSQL.InsertObject
Property 256

TCustomDAUpdateSQL.InsertSQL
Property 256

TCustomDAUpdateSQL.LockObject
Property 256

TCustomDAUpdateSQL.LockSQL Property
 257

TCustomDAUpdateSQL.ModifyObject
Property 257

TCustomDAUpdateSQL.ModifySQL
Property 257

TCustomDAUpdateSQL.RefreshObject
Property 257

TCustomDAUpdateSQL.RefreshSQL
Property 258

TCustomDAUpdateSQL.SQL
Property(Indexer) 258

TCustomMyConnection Class 376

TCustomMyConnection.AssignConnect
Method 384

TCustomMyConnection.ClientVersion
Property 379

TCustomMyConnection.ConnectionTimeout
Property 380

TCustomMyConnection.CreateDataSet
Method 384

TCustomMyConnection.Database Property
 380

TCustomMyConnection.ExecSQL Method
385

Index 641

TCustomMyConnection.GetCharsetNames
Method 385

TCustomMyConnection.GetExecuteInfo
Method 385

TCustomMyConnection.GetTriggerNames
Method 386

TCustomMyConnection.IsolationLevel
Property 380

TCustomMyConnection.Options Property
381

TCustomMyConnection.Ping Method 387

TCustomMyConnection.ReleaseSavepoint
Method 387

TCustomMyConnection.RollbackToSavepoi
nt Method 387

TCustomMyConnection.Savepoint Method
388

TCustomMyConnection.ServerVersion
Property 382

TCustomMyConnection.ThreadId Property
382

TCustomMyConnectionOptions Class 388

TCustomMyConnectionOptions.Charset
Property 390

TCustomMyConnectionOptions.NullForZero
DelphiDate Property 390

TCustomMyConnectionOptions.NumericTy
pe Property 390

TCustomMyConnectionOptions.OptimizedB
igInt Property 391

TCustomMyConnectionOptions.UseUnicod
e Property 391

TCustomMyDataSet Class 391

TCustomMyDataSet.CommandTimeout
Property 401

TCustomMyDataSet.Connection Property
401

TCustomMyDataSet.FetchAll Property 401

TCustomMyDataSet.GetFieldEnum Method
 408

TCustomMyDataSet.InsertId Property 402

TCustomMyDataSet.Lock Method 409

TCustomMyDataSet.LockMode Property
402

TCustomMyDataSet.LockTable Method
410

TCustomMyDataSet.Options Property 402

TCustomMyDataSet.RefreshQuick Method
 410

TCustomMyDataSet.UnLockTable Method
411

TCustomMyStoredProc Class 411

TCustomMyStoredProc.ExecProc Method
426

TCustomMyStoredProc.PrepareSQL
Method 426

TCustomMyStoredProc.StoredProcName
Property 421

TCustomMyTable Class 427

TCustomMyTable.EmptyTable Method
442

TCustomMyTable.IndexDefs Property 437

TCustomMyTable.Limit Property 437

TCustomMyTable.Offset Property 437

TCustomMyTable.Options Property 437

TDABackupProgressEvent Procedure
Reference 134

TDAColumn Class 136

TDAColumn.FieldType Property 137

TDAColumn.Name Property 137

TDAColumns Class 137

TDAColumns.Items Property(Indexer) 138

TDAConnectionErrorEvent Procedure
Reference 314

TDAConnectionOptions Class 260

TDAConnectionOptions.DefaultSortType
Property 261

TDAConnectionOptions.DisconnectedMode
Property 261

TDAConnectionOptions.KeepDesignConne
cted Property 261

TDAConnectionOptions.LocalFailover
Property 262

TDADataSetOptions Class 262

TDADataSetOptions.AutoPrepare Property
 265

TDADataSetOptions.CacheCalcFields
Property 265

TDADataSetOptions.DefaultValues
Property 265

TDADataSetOptions.DetailDelay Property
265

TDADataSetOptions.FieldsOrigin Property
266

TDADataSetOptions.FlatBuffers Property
266

Data Access Components for MySQL642

TDADataSetOptions.LocalMasterDetail
Property 266

TDADataSetOptions.LongStrings Property
266

TDADataSetOptions.NumberRange
Property 267

TDADataSetOptions.QueryRecCount
Property 267

TDADataSetOptions.QuoteNames Property
 267

TDADataSetOptions.RemoveOnRefresh
Property 267

TDADataSetOptions.RequiredFields
Property 268

TDADataSetOptions.ReturnParams
Property 268

TDADataSetOptions.SetFieldsReadOnly
Property 268

TDADataSetOptions.StrictUpdate Property
269

TDADataSetOptions.UpdateAllFields
Property 269

TDADataSetOptions.UpdateBatchSize
Property 269

TDADump Class 124

TDADump.Backup Method 128

TDADump.BackupQuery Method 128

TDADump.BackupToFile Method 128

TDADump.BackupToStream Method 129

TDADump.Connection Property 125

TDADump.Debug Property 126

TDADump.OnBackupProgress Event 131

TDADump.OnError Event 131

TDADump.OnRestoreProgress Event 132

TDADump.Options Property 126

TDADump.Restore Method 129

TDADump.RestoreFromFile Method 130

TDADump.RestoreFromStream Method
130

TDADump.SQL Property 127

TDADump.TableNames Property 127

TDADumpOptions Class 132

TDADumpOptions.AddDrop Property 133

TDADumpOptions.GenerateHeader
Property 133

TDADumpOptions.QuoteNames Property
133

TDAEncryptionOptions Class 269

TDAEncryptionOptions.Encryptor Property
270

TDAEncryptionOptions.Fields Property
270

TDALoader Class 138

TDALoader.Columns Property 140

TDALoader.Connection Property 140

TDALoader.CreateColumns Method 141

TDALoader.Load Method 141

TDALoader.LoadFromDataSet Method
142

TDALoader.OnGetColumnData Event 144

TDALoader.OnProgress Event 144

TDALoader.OnPutData Event 145

TDALoader.PutColumnData Method 142

TDALoader.TableName Property 140

TDAMapRule Class 271

TDAMapRule.DBLengthMax Property 272

TDAMapRule.DBLengthMin Property 272

TDAMapRule.DBScaleMax Property 273

TDAMapRule.DBScaleMin Property 273

TDAMapRule.DBType Property 273

TDAMapRule.FieldLength Property 273

TDAMapRule.FieldName Property 273

TDAMapRule.FieldScale Property 274

TDAMapRule.FieldType Property 274

TDAMapRule.IgnoreErrors Property 274

TDAMapRules Class 274

TDAMapRules.AddDBTypeRule Method
276

TDAMapRules.AddFieldNameRule Method
 280

TDAMapRules.AddRule Method 281

TDAMetaData Class 282

TDAMetaData.Connection Property 286

TDAMetaData.GetMetaDataKinds Method
288

TDAMetaData.GetRestrictions Method
289

TDAMetaData.MetaDataKind Property 286

TDAMetaData.Restrictions Property 287

TDANumericType Enumeration 351

TDAParam Class 289

TDAParam.AsBlob Property 291

TDAParam.AsBlobRef Property 292

TDAParam.AsFloat Property 292

TDAParam.AsInteger Property 292

TDAParam.AsLargeInt Property 292

TDAParam.AsMemo Property 293

TDAParam.AsMemoRef Property 293

TDAParam.AssignField Method 295

Index 643

TDAParam.AssignFieldValue Method 296

TDAParam.AsSQLTimeStamp Property
293

TDAParam.AsString Property 293

TDAParam.AsWideString Property 294

TDAParam.DataType Property 294

TDAParam.IsNull Property 294

TDAParam.LoadFromFile Method 296

TDAParam.LoadFromStream Method 297

TDAParam.ParamType Property 294

TDAParam.SetBlobData 297

TDAParam.SetBlobData Method 297

TDAParam.Size Property 295

TDAParam.Value Property 295

TDAParams Class 298

TDAParams.FindParam Method 299

TDAParams.Items Property(Indexer) 299

TDAParams.ParamByName Method 300

TDAPutDataEvent Procedure Reference
146

TDARestoreProgressEvent Procedure
Reference 134

TDAScript Class 149

TDAScript.AfterExecute Event 159

TDAScript.BeforeExecute Event 159

TDAScript.BreakExec Method 155

TDAScript.Connection Property 151

TDAScript.DataSet Property 151

TDAScript.Debug Property 152

TDAScript.Delimiter Property 152

TDAScript.EndLine Property 152

TDAScript.EndOffset Property 152

TDAScript.EndPos Property 153

TDAScript.ErrorOffset Method 156

TDAScript.Execute Method 156

TDAScript.ExecuteFile Method 156

TDAScript.ExecuteNext Method 157

TDAScript.ExecuteStream Method 157

TDAScript.FindMacro Method 157

TDAScript.MacroByName Method 158

TDAScript.Macros Property 153

TDAScript.OnError Event 159

TDAScript.SQL Property 153

TDAScript.StartLine Property 153

TDAScript.StartOffset Property 154

TDAScript.StartPos Property 154

TDAScript.Statements Property 154

TDAStatement Class 159

TDAStatement.EndLine Property 161

TDAStatement.EndOffset Property 161

TDAStatement.EndPos Property 161

TDAStatement.Omit Property 162

TDAStatement.Params Property 162

TDAStatement.Script Property 162

TDAStatement.SQL Property 162

TDAStatement.StartLine Property 163

TDAStatement.StartOffset Property 163

TDAStatement.StartPos Property 163

TDAStatements Class 163

TDAStatements.Items Property(Indexer)
164

TDATraceFlag Enumeration 175

TDATraceFlags Set 174

TDATransaction Class 300

TDATransaction.Active Property 301

TDATransaction.Commit Method 302

TDATransaction.DefaultCloseAction
Property 301

TDATransaction.OnError Event 303

TDATransaction.Rollback Method 302

TDATransaction.StartTransaction Method
303

TDATransactionErrorEvent Procedure
Reference 315

TDBMonitorOptions Class 172

TDBMonitorOptions.Host Property 173

TDBMonitorOptions.Port Property 173

TDBMonitorOptions.ReconnectTimeout
Property 173

TDBMonitorOptions.SendTimeout Property
 173

TDBObject Class 341

TErrorAction Enumeration 167

tfBlob 175

tfConnect 175

tfError 175

tfMisc 175

tfObjDestroy 175

tfParams 175

tfPool 175

tfQExecute 175

tfQFetch 175

tfQPrepare 175

tfService 175

tfStmt 175

tfTransact 175

TGetColumnDataEvent Procedure
Reference 146

Data Access Components for MySQL644

ThreadId Property 382

THttpOptions Class 118

THttpOptions.Password Property 119

THttpOptions.ProxyOptions Property 119

THttpOptions.Url Property 119

THttpOptions.Username Property 120

TLabelSet Enumeration 317

TLoaderProgressEvent Procedure
Reference 147

TLocateExOption Enumeration 351

TLocateExOptions Set 349

TLockMode Enumeration 317

TLockRecordType Enumeration 516

TLockType Enumeration 516

TMacro Class 304

TMacro.Active Property 305

TMacro.AsDateTime Property 305

TMacro.AsFloat Property 305

TMacro.AsInteger Property 306

TMacro.AsString Property 306

TMacro.Name Property 306

TMacro.Value Property 306

TMacros Class 307

TMacros.AssignValues Method 308

TMacros.FindMacro Method 309

TMacros.IsEqual Method 309

TMacros.Items Property(Indexer) 308

TMacros.MacroByName Method 309

TMacros.Scan Method 310

TMapRule Class 106

TMapRule.DBLengthMax Property 107

TMapRule.DBLengthMin Property 107

TMapRule.DBScaleMax Property 107

TMapRule.DBScaleMin Property 108

TMapRule.DBType Property 108

TMapRule.FieldLength Property 108

TMapRule.FieldName Property 108

TMapRule.FieldScale Property 108

TMapRule.IgnoreErrors Property 108

TMemDataSet Class 354

TMemDataSet.ApplyUpdates Method 360

TMemDataSet.CachedUpdates Property
356

TMemDataSet.CancelUpdates Method
361

TMemDataSet.CommitUpdates Method
362

TMemDataSet.DeferredPost Method 362

TMemDataSet.GetBlob Method 363

TMemDataSet.IndexFieldNames Property
357

TMemDataSet.LocalConstraints Property
357

TMemDataSet.LocalUpdate Property 357

TMemDataSet.Locate Method 364

TMemDataSet.LocateEx Method 365

TMemDataSet.OnUpdateError Event 370

TMemDataSet.OnUpdateRecord Event
370

TMemDataSet.Prepare Method 366

TMemDataSet.Prepared Property 358

TMemDataSet.RestoreUpdates Method
367

TMemDataSet.RevertRecord Method 367

TMemDataSet.SaveToXML Method 368

TMemDataSet.UnPrepare Method 368

TMemDataSet.UpdateRecordTypes
Property 358

TMemDataSet.UpdateResult Method 369

TMemDataSet.UpdatesPending Property
358

TMemDataSet.UpdateStatus Method 369

TMonitorOption Enumeration 175

TMonitorOptions Set 174

TMyBackup Class 521

TMyBackup.Backup Method 528

TMyBackup.BackupPriority Property 523

TMyBackup.Connection Property 523

TMyBackup.Debug Property 524

TMyBackup.Duplicates Property 524

TMyBackup.EnclosedBy Property 524

TMyBackup.EscapedBy Property 525

TMyBackup.Fields Property 525

TMyBackup.FieldsTerminatedBy Property
526

TMyBackup.IgnoreLines Property 526

TMyBackup.LinesTerminatedBy Property
526

TMyBackup.Local Property 527

TMyBackup.Mode Property 527

TMyBackup.OnTableMsg Event 529

TMyBackup.Path Property 527

TMyBackup.Restore Method 529

TMyBackup.TableNames Property 528

TMyBackupMode Enumeration 532

TMyBackupPriority Enumeration 532

TMyBuilder Class 535

TMyBuilder.Connection Property 536

TMyBuilder.Show Method 537

Index 645

TMyBuilder.ShowModal Method 538

TMyBuilder.SQL Property 536

TMyBuilder.Version Property 537

TMyColumn Class 574

TMyCommand Class 443

TMyCommand.BreakExec Method 448

TMyCommand.CommandTimeout Property
 446

TMyCommand.Connection Property 446

TMyCommand.InsertId Property 447

TMyConnectDialog Class 547

TMyConnectDialog.Connection Property
549

TMyConnectDialog.DatabaseLabel Property
 549

TMyConnectDialog.PortLabel Property
550

TMyConnectDialog.ShowDatabase
Property 550

TMyConnectDialog.ShowPort Property
550

TMyConnection Class 449

TMyConnection.HttpOptions Property 453

TMyConnection.IOHandler Property 453

TMyConnection.Options Property 454

TMyConnection.Port Property 455

TMyConnection.SSLOptions Property 455

TMyConnectionOptions Class 455

TMyConnectionOptions.CheckBackslashes
Property 458

TMyConnectionOptions.Compress Property
 458

TMyConnectionOptions.Direct Property
458

TMyConnectionOptions.Embedded
Property 459

TMyConnectionOptions.Interactive Property
 459

TMyConnectionOptions.Protocol Property
459

TMyConnectionPoolManager Class 545

TMyConnectionSSLOptions Class 459

TMyConnectionSSLOptions.CACert
Property 460

TMyConnectionSSLOptions.Cert Property
460

TMyConnectionSSLOptions.ChipherList
Property 461

TMyConnectionSSLOptions.Key Property
461

TMyDataSetOptions Class 461

TMyDataSetOptions.AutoPrepare Property
465

TMyDataSetOptions.AutoRefresh Property
465

TMyDataSetOptions.AutoRefreshInterval
Property 466

TMyDataSetOptions.BinaryAsString
Property 466

TMyDataSetOptions.CheckRowVersion
Property 466

TMyDataSetOptions.CreateConnection
Property 466

TMyDataSetOptions.DefaultValues Property
 467

TMyDataSetOptions.EnableBoolean
Property 467

TMyDataSetOptions.FieldsAsString
Property 467

TMyDataSetOptions.FieldsOrigin Property
467

TMyDataSetOptions.FullRefresh Property
468

TMyDataSetOptions.NullForZeroDate
Property 468

TMyDataSetOptions.NumberRange
Property 468

TMyDataSetOptions.QueryRecCount
Property 468

TMyDataSetOptions.QuoteNames Property
 469

TMyDataSetOptions.RemoveOnRefresh
Property 469

TMyDataSetOptions.RequiredFields
Property 469

TMyDataSetOptions.ReturnParams
Property 469

TMyDataSetOptions.SetFieldsReadOnly
Property 470

TMyDataSetOptions.StrictUpdate Property
470

TMyDataSetOptions.TrimFixedChar
Property 470

TMyDataSource Class 470

TMyDump Class 553

TMyDump.Connection Property 555

TMyDump.Objects Property 556

TMyDump.Options Property 556

TMyDump.StoredProcNames Property
557

TMyDump.TriggerNames Property 557

TMyDumpObject Enumeration 562

TMyDumpObjects Set 561

Data Access Components for MySQL646

TMyDumpOptions Class 557

TMyDumpOptions.AddLock Property 559

TMyDumpOptions.CommitBatchSize
Property 559

TMyDumpOptions.DisableKeys Property
559

TMyDumpOptions.HexBlob Property 559

TMyDumpOptions.UseDelayedIns Property
 560

TMyDumpOptions.UseExtSyntax Property
560

TMyDuplicateKeys Enumeration 579

TMyEmbConnection Class 564

TMyEmbConnection.BaseDir Property 568

TMyEmbConnection.DataDir Property 569

TMyEmbConnection.OnLog Event 572

TMyEmbConnection.OnLogError Event
572

TMyEmbConnection.Params Property 569

TMyEncryptor Class 471

TMyIsolationLevel Enumeration 517

TMyLoader Class 574

TMyLoader.Connection Property 576

TMyLoader.DuplicateKeys Property 577

TMyLoader.Options Property 577

TMyLoader.RowsPerQuery Property 577

TMyLoaderOption Enumeration 579

TMyLoaderOptions Set 578

TMyLogEvent Procedure Reference 611

TMyMetaData Class 472

TMyProtocol Enumeration 542

TMyQuery Class 474

TMyQuery.FetchAll Property 484

TMyQuery.LockMode Property 484

TMyQuery.UpdatingTable Property 484

TMyRestoreDuplicates Enumeration 533

TMyScript Class 581

TMyScript.Connection Property 583

TMyScript.DataSet Property 584

TMyScript.UseOptimization Property 584

TMyServerControl Class 586

TMyServerControl.AnalyzeTable Method
603

TMyServerControl.CheckTable Method
604

TMyServerControl.Connection Property
597

TMyServerControl.CreateDatabase Method
 604

TMyServerControl.Debug Property 597

TMyServerControl.DropDatabase Method
605

TMyServerControl.Flush Method 605

TMyServerControl.GetServiceNames
Method 605

TMyServerControl.KillProcess Method 606

TMyServerControl.OptimizeTable Method
606

TMyServerControl.RepairTable Method
607

TMyServerControl.ServiceStart Method
607

TMyServerControl.ServiceStatus Method
608

TMyServerControl.ServiceStop Method
608

TMyServerControl.ShowProcessList
Method 608

TMyServerControl.ShowStatus Method
609

TMyServerControl.ShowVariables Method
609

TMyServerControl.TableNames Property
597

TMyServerControl.Variables
Property(Indexer) 598

TMySQLMonitor Class 614

TMyStoredProc Class 485

TMyStoredProc.LockMode Property 495

TMyStoredProc.UpdatingTable Property
496

TMyTable Class 496

TMyTable.FetchAll Property 506

TMyTable.LockMode Property 507

TMyTable.OrderFields Property 507

TMyTable.TableName Property 507

TMyTableMsgEvent Procedure Reference
531

TMyTableOptions Class 508

TMyTableOptions.HandlerIndex Property
512

TMyTableOptions.UseHandler Property
512

TMyTransaction Class 513

TMyUpdateExecuteEvent Procedure
Reference 515

TMyUpdateSQL Class 513

TObjectType Class 342

TObjectType.AttributeByName Method
345

TObjectType.AttributeCount Property 343

Index 647

TObjectType.Attributes Property(Indexer)
343

TObjectType.DataType Property 344

TObjectType.FindAttribute Method 345

TObjectType.Size Property 344

TOnErrorEvent Procedure Reference 165

TOnSQLEvent Procedure Reference 174

TPoolingOptions Class 310

TPoolingOptions.ConnectionLifetime
Property 311

TPoolingOptions.MaxPoolSize Property
311

TPoolingOptions.MinPoolSize Property
312

TPoolingOptions.Validate Property 312

TProxyOptions Class 120

TProxyOptions.Hostname Property 121

TProxyOptions.Password Property 121

TProxyOptions.Port Property 121

TProxyOptions.Username Property 121

TraceFlags Property 171

TRefreshOption Enumeration 318

TRefreshOptions Set 315

TRetryMode Enumeration 318

TriggerNames Property 557

TrimFixedChar Property 470

Truncate Method 339

TSharedObject Class 346

TSharedObject.AddRef Method 347

TSharedObject.RefCount Property 347

TSharedObject.Release Method 348

TSortType Enumeration 351

TUpdateExecuteEvent Procedure
Reference 315

TUpdateRecKind Enumeration 352

TUpdateRecKinds Set 349

TVirtualTable Class 616

TVirtualTable.AddField Method 621

TVirtualTable.Assign Method 622

TVirtualTable.Clear Method 622

TVirtualTable.DeleteField Method 622

TVirtualTable.DeleteFields Method 623

TVirtualTable.LoadFromFile Method 623

TVirtualTable.LoadFromStream Method
624

TVirtualTable.Options Property 619

TVirtualTable.SaveToFile Method 624

TVirtualTable.SaveToStream Method 624

TVirtualTableOption Enumeration 627

TVirtualTableOptions Set 626

- U -
ukDelete 352

ukInsert 352

ukUpdate 352

UniDirectional Property 223

UnLock Method 237

UnLockTable Method 411

UnPrepare Method

TCustomDASQL 252

TMemDataSet 368

Update Method 324

UpdateAllFields Property 269

UpdateBatchSize Property 269

UpdateRecordTypes Property 358

UpdateResult Method 369

UpdatesPending Property 358

UpdateStatus Method 369

Updating Data with MyDAC Dataset
Components 40

UpdatingTable Property

TMyQuery 484

TMyStoredProc 496

Url Property 119

UseDelayedIns Property 560

UseExtSyntax Property 560

UseHandler Property 512

UseOptimization Property 584

Username Property

TCustomDAConnection 194

THttpOptions 120

TProxyOptions 121

UsernameLabel Property 187

UseUnicode Property 391

Using Several DAC Products in One IDE
65

- V -
Validate Property 312

Value Property

TDAParam 295

TMacro 306

Variables Property(Indexer) 598

Version Property 537

VirtualTable Unit Members 615

Data Access Components for MySQL648

voPersistentData 627

voStored 627

- W -
WaitExecuting Method 252

What's New 12

Working in an Unstable Network 52

Write Method 339

Writing GUI Applications with MyDAC 73

	Overview
	Editions
	Getting Started
	Features
	What's New
	Demo Projects
	Component List
	Hierarchy Chart
	Requirements
	Compatibility
	Installation
	Deployment
	Licensing and Subscriptions
	Getting Support
	Frequently Asked Questions
	Using MyDAC
	Updating Data with MyDAC Dataset Components
	Master/Detail Relationships
	Migration from BDE
	Secure Connections
	Network Tunneling
	Embedded Server
	National Characters
	Working in an Unstable Network
	Disconnected Mode
	Data Type Mapping
	Data Encryption
	Increasing Performance
	Connection Pooling
	Macros
	Using Several DAC Products in One IDE
	DataSet Manager
	DBMonitor
	Migration Wizard
	Writing GUI Applications with MyDAC
	Compatibility with Previous Versions
	dbForge Fusion for MySQL
	MyBuilder Add-In
	64-bit Development with Embarcadero RAD Studio XE2
	Database Specific Aspects of 64-bit Development

	Reference
	CRAccess
	Classes
	TCRCursor Class
	Members

	Types
	TBeforeFetchProc Procedure Reference

	Enumerations
	TCRIsolationLevel Enumeration
	TCRTransactionAction Enumeration

	CRBatchMove
	Classes
	TCRBatchMove Class
	Members
	Properties
	AbortOnKeyViol Property
	AbortOnProblem Property
	ChangedCount Property
	CommitCount Property
	Destination Property
	FieldMappingMode Property
	KeyViolCount Property
	Mappings Property
	Mode Property
	MovedCount Property
	ProblemCount Property
	RecordCount Property
	Source Property

	Methods
	Execute Method

	Events
	OnBatchMoveProgress Event

	Types
	TCRBatchMoveProgressEvent Procedure Reference

	Enumerations
	TCRBatchMode Enumeration
	TCRFieldMappingMode Enumeration

	CRDataTypeMap
	Classes
	EDataMappingError Class
	Members

	EDataTypeMappingError Class
	Members

	EInvalidDBTypeMapping Class
	Members

	EInvalidFieldTypeMapping Class
	Members

	EUnsupportedDataTypeMapping Class
	Members

	TMapRule Class
	Members
	Properties
	DBLengthMax Property
	DBLengthMin Property
	DBScaleMax Property
	DBScaleMin Property
	DBType Property
	FieldLength Property
	FieldName Property
	FieldScale Property
	IgnoreErrors Property

	CREncryption
	Classes
	TCREncryptor Class
	Members
	Properties
	DataHeader Property
	EncryptionAlgorithm Property
	HashAlgorithm Property
	InvalidHashAction Property
	Password Property

	Methods
	SetKey Method

	Enumerations
	TCREncDataHeader Enumeration
	TCREncryptionAlgorithm Enumeration
	TCRHashAlgorithm Enumeration
	TCRInvalidHashAction Enumeration

	CRVio
	Classes
	THttpOptions Class
	Members
	Properties
	Password Property
	ProxyOptions Property
	Url Property
	Username Property

	TProxyOptions Class
	Members
	Properties
	Hostname Property
	Password Property
	Port Property
	Username Property

	DADump
	Classes
	TDADump Class
	Members
	Properties
	Connection Property
	Debug Property
	Options Property
	SQL Property
	TableNames Property

	Methods
	Backup Method
	BackupQuery Method
	BackupToFile Method
	BackupToStream Method
	Restore Method
	RestoreFromFile Method
	RestoreFromStream Method

	Events
	OnBackupProgress Event
	OnError Event
	OnRestoreProgress Event

	TDADumpOptions Class
	Members
	Properties
	AddDrop Property
	GenerateHeader Property
	QuoteNames Property

	Types
	TDABackupProgressEvent Procedure Reference
	TDARestoreProgressEvent Procedure Reference

	DALoader
	Classes
	TDAColumn Class
	Members
	Properties
	FieldType Property
	Name Property

	TDAColumns Class
	Members
	Properties
	Items Property(Indexer)

	TDALoader Class
	Members
	Properties
	Columns Property
	Connection Property
	TableName Property

	Methods
	CreateColumns Method
	Load Method
	LoadFromDataSet Method
	PutColumnData Method
	PutColumnData Method
	PutColumnData Method

	Events
	OnGetColumnData Event
	OnProgress Event
	OnPutData Event

	Types
	TDAPutDataEvent Procedure Reference
	TGetColumnDataEvent Procedure Reference
	TLoaderProgressEvent Procedure Reference

	DAScript
	Classes
	TDAScript Class
	Members
	Properties
	Connection Property
	DataSet Property
	Debug Property
	Delimiter Property
	EndLine Property
	EndOffset Property
	EndPos Property
	Macros Property
	SQL Property
	StartLine Property
	StartOffset Property
	StartPos Property
	Statements Property

	Methods
	BreakExec Method
	ErrorOffset Method
	Execute Method
	ExecuteFile Method
	ExecuteNext Method
	ExecuteStream Method
	FindMacro Method
	MacroByName Method

	Events
	AfterExecute Event
	BeforeExecute Event
	OnError Event

	TDAStatement Class
	Members
	Properties
	EndLine Property
	EndOffset Property
	EndPos Property
	Omit Property
	Params Property
	Script Property
	SQL Property
	StartLine Property
	StartOffset Property
	StartPos Property

	TDAStatements Class
	Members
	Properties
	Items Property(Indexer)

	Types
	TAfterStatementExecuteEvent Procedure Reference
	TBeforeStatementExecuteEvent Procedure Reference
	TOnErrorEvent Procedure Reference

	Enumerations
	TErrorAction Enumeration

	DASQLMonitor
	Classes
	TCustomDASQLMonitor Class
	Members
	Properties
	Active Property
	DBMonitorOptions Property
	Options Property
	TraceFlags Property

	Events
	OnSQL Event

	TDBMonitorOptions Class
	Members
	Properties
	Host Property
	Port Property
	ReconnectTimeout Property
	SendTimeout Property

	Types
	TDATraceFlags Set
	TMonitorOptions Set
	TOnSQLEvent Procedure Reference

	Enumerations
	TDATraceFlag Enumeration
	TMonitorOption Enumeration

	DBAccess
	Classes
	EDAError Class
	Members
	Properties
	Component Property
	ErrorCode Property

	TCRDataSource Class
	Members

	TCustomConnectDialog Class
	Members
	Properties
	CancelButton Property
	Caption Property
	ConnectButton Property
	DialogClass Property
	LabelSet Property
	PasswordLabel Property
	Retries Property
	SavePassword Property
	ServerLabel Property
	StoreLogInfo Property
	UsernameLabel Property

	Methods
	Execute Method
	GetServerList Method

	TCustomDAConnection Class
	Members
	Properties
	ConnectDialog Property
	ConvertEOL Property
	InTransaction Property
	LoginPrompt Property
	Options Property
	Password Property
	Pooling Property
	PoolingOptions Property
	Server Property
	Username Property

	Methods
	ApplyUpdates Method
	ApplyUpdates Method
	ApplyUpdates Method

	Commit Method
	Connect Method
	CreateDataSet Method
	CreateSQL Method
	Disconnect Method
	ExecProc Method
	ExecProcEx Method
	ExecSQL Method
	ExecSQLEx Method
	GetDatabaseNames Method
	GetStoredProcNames Method
	MonitorMessage Method
	RemoveFromPool Method
	Rollback Method
	StartTransaction Method

	Events
	OnConnectionLost Event
	OnError Event

	TCustomDADataSet Class
	Members
	Properties
	BaseSQL Property
	Connection Property
	Debug Property
	DetailFields Property
	Disconnected Property
	Encryption Property
	FetchRows Property
	FilterSQL Property
	FinalSQL Property
	IsQuery Property
	KeyFields Property
	MacroCount Property
	Macros Property
	MasterFields Property
	MasterSource Property
	Options Property
	ParamCheck Property
	ParamCount Property
	Params Property
	ReadOnly Property
	RefreshOptions Property
	RowsAffected Property
	SQL Property
	SQLDelete Property
	SQLInsert Property
	SQLLock Property
	SQLRefresh Property
	SQLUpdate Property
	UniDirectional Property

	Methods
	AddWhere Method
	BreakExec Method
	CreateBlobStream Method
	DeleteWhere Method
	Execute Method
	Executing Method
	Fetched Method
	Fetching Method
	FetchingAll Method
	FindKey Method
	FindMacro Method
	FindNearest Method
	FindParam Method
	GetDataType Method
	GetFieldObject Method
	GetFieldPrecision Method
	GetFieldScale Method
	GetOrderBy Method
	GotoCurrent Method
	Lock Method
	MacroByName Method
	ParamByName Method
	Prepare Method
	RefreshRecord Method
	RestoreSQL Method
	Resync Method
	SaveSQL Method
	SetOrderBy Method
	SQLSaved Method
	UnLock Method

	Events
	AfterExecute Event
	AfterFetch Event
	AfterUpdateExecute Event
	BeforeFetch Event
	BeforeUpdateExecute Event

	TCustomDASQL Class
	Members
	Properties
	ChangeCursor Property
	Connection Property
	Debug Property
	FinalSQL Property
	MacroCount Property
	Macros Property
	ParamCheck Property
	ParamCount Property
	Params Property
	ParamValues Property(Indexer)
	Prepared Property
	RowsAffected Property
	SQL Property

	Methods
	Execute Method
	Execute Method
	Execute Method

	Executing Method
	FindMacro Method
	FindParam Method
	MacroByName Method
	ParamByName Method
	Prepare Method
	UnPrepare Method
	WaitExecuting Method

	Events
	AfterExecute Event

	TCustomDAUpdateSQL Class
	Members
	Properties
	DataSet Property
	DeleteObject Property
	DeleteSQL Property
	InsertObject Property
	InsertSQL Property
	LockObject Property
	LockSQL Property
	ModifyObject Property
	ModifySQL Property
	RefreshObject Property
	RefreshSQL Property
	SQL Property(Indexer)

	Methods
	Apply Method
	ExecSQL Method

	TDAConnectionOptions Class
	Members
	Properties
	DefaultSortType Property
	DisconnectedMode Property
	KeepDesignConnected Property
	LocalFailover Property

	TDADataSetOptions Class
	Members
	Properties
	AutoPrepare Property
	CacheCalcFields Property
	DefaultValues Property
	DetailDelay Property
	FieldsOrigin Property
	FlatBuffers Property
	LocalMasterDetail Property
	LongStrings Property
	NumberRange Property
	QueryRecCount Property
	QuoteNames Property
	RemoveOnRefresh Property
	RequiredFields Property
	ReturnParams Property
	SetFieldsReadOnly Property
	StrictUpdate Property
	UpdateAllFields Property
	UpdateBatchSize Property

	TDAEncryptionOptions Class
	Members
	Properties
	Encryptor Property
	Fields Property

	TDAMapRule Class
	Members
	Properties
	DBLengthMax Property
	DBLengthMin Property
	DBScaleMax Property
	DBScaleMin Property
	DBType Property
	FieldLength Property
	FieldName Property
	FieldScale Property
	FieldType Property
	IgnoreErrors Property

	TDAMapRules Class
	Members
	Methods
	AddDBTypeRule Method
	AddDBTypeRule Method
	AddDBTypeRule Method
	AddDBTypeRule Method
	AddDBTypeRule Method
	AddDBTypeRule Method
	AddDBTypeRule Method
	AddDBTypeRule Method

	AddFieldNameRule Method
	AddFieldNameRule Method
	AddFieldNameRule Method
	AddFieldNameRule Method

	AddRule Method

	TDAMetaData Class
	Members
	Properties
	Connection Property
	MetaDataKind Property
	Restrictions Property

	Methods
	GetMetaDataKinds Method
	GetRestrictions Method

	TDAParam Class
	Members
	Properties
	AsBlob Property
	AsBlobRef Property
	AsFloat Property
	AsInteger Property
	AsLargeInt Property
	AsMemo Property
	AsMemoRef Property
	AsSQLTimeStamp Property
	AsString Property
	AsWideString Property
	DataType Property
	IsNull Property
	ParamType Property
	Size Property
	Value Property

	Methods
	AssignField Method
	AssignFieldValue Method
	LoadFromFile Method
	LoadFromStream Method
	SetBlobData Method
	SetBlobData Method
	SetBlobData Method

	TDAParams Class
	Members
	Properties
	Items Property(Indexer)

	Methods
	FindParam Method
	ParamByName Method

	TDATransaction Class
	Members
	Properties
	Active Property
	DefaultCloseAction Property

	Methods
	Commit Method
	Rollback Method
	StartTransaction Method

	Events
	OnError Event

	TMacro Class
	Members
	Properties
	Active Property
	AsDateTime Property
	AsFloat Property
	AsInteger Property
	AsString Property
	Name Property
	Value Property

	TMacros Class
	Members
	Properties
	Items Property(Indexer)

	Methods
	AssignValues Method
	FindMacro Method
	IsEqual Method
	MacroByName Method
	Scan Method

	TPoolingOptions Class
	Members
	Properties
	ConnectionLifetime Property
	MaxPoolSize Property
	MinPoolSize Property
	Validate Property

	Types
	TAfterExecuteEvent Procedure Reference
	TAfterFetchEvent Procedure Reference
	TBeforeFetchEvent Procedure Reference
	TConnectionLostEvent Procedure Reference
	TDAConnectionErrorEvent Procedure Reference
	TDATransactionErrorEvent Procedure Reference
	TRefreshOptions Set
	TUpdateExecuteEvent Procedure Reference

	Enumerations
	TLabelSet Enumeration
	TLockMode Enumeration
	TRefreshOption Enumeration
	TRetryMode Enumeration

	Variables
	BaseSQLOldBehavior Variable
	ChangeCursor Variable
	MacroChar Variable
	SQLGeneratorCompatibility Variable

	Devart.Dac.DataAdapter
	Classes
	DADataAdapter Class
	Members
	Properties
	DataSet Property

	Methods
	Fill Method
	Update Method

	Devart.MyDac.DataAdapter
	Classes
	MyDataAdapter Class
	Members

	MemData
	Classes
	TAttribute Class
	Members
	Properties
	AttributeNo Property
	DataSize Property
	DataType Property
	Length Property
	ObjectType Property
	Offset Property
	Owner Property
	Scale Property
	Size Property

	TBlob Class
	Members
	Properties
	AsString Property
	AsWideString Property
	IsUnicode Property
	Size Property

	Methods
	Assign Method
	Clear Method
	LoadFromFile Method
	LoadFromStream Method
	Read Method
	SaveToFile Method
	SaveToStream Method
	Truncate Method
	Write Method

	TCompressedBlob Class
	Members

	TDBObject Class
	Members

	TObjectType Class
	Members
	Properties
	AttributeCount Property
	Attributes Property(Indexer)
	DataType Property
	Size Property

	Methods
	AttributeByName Method
	FindAttribute Method

	TSharedObject Class
	Members
	Properties
	RefCount Property

	Methods
	AddRef Method
	Release Method

	Types
	TLocateExOptions Set
	TUpdateRecKinds Set

	Enumerations
	TConnLostCause Enumeration
	TDANumericType Enumeration
	TLocateExOption Enumeration
	TSortType Enumeration
	TUpdateRecKind Enumeration

	MemDS
	Classes
	TMemDataSet Class
	Members
	Properties
	CachedUpdates Property
	IndexFieldNames Property
	LocalConstraints Property
	LocalUpdate Property
	Prepared Property
	UpdateRecordTypes Property
	UpdatesPending Property

	Methods
	ApplyUpdates Method
	ApplyUpdates Method
	ApplyUpdates Method

	CancelUpdates Method
	CommitUpdates Method
	DeferredPost Method
	GetBlob Method
	GetBlob Method
	GetBlob Method

	Locate Method
	Locate Method
	Locate Method

	LocateEx Method
	LocateEx Method
	LocateEx Method

	Prepare Method
	RestoreUpdates Method
	RevertRecord Method
	SaveToXML Method
	SaveToXML Method
	SaveToXML Method

	UnPrepare Method
	UpdateResult Method
	UpdateStatus Method

	Events
	OnUpdateError Event
	OnUpdateRecord Event

	Variables
	DoNotRaiseExcetionOnUaFail Variable
	SendDataSetChangeEventAfterOpen Variable

	MyAccess
	Classes
	TCustomMyConnection Class
	Members
	Properties
	ClientVersion Property
	ConnectionTimeout Property
	Database Property
	IsolationLevel Property
	Options Property
	ServerVersion Property
	ThreadId Property

	Methods
	AssignConnect Method
	CreateDataSet Method
	ExecSQL Method
	GetCharsetNames Method
	GetExecuteInfo Method
	GetTriggerNames Method
	Ping Method
	ReleaseSavepoint Method
	RollbackToSavepoint Method
	Savepoint Method

	TCustomMyConnectionOptions Class
	Members
	Properties
	Charset Property
	NullForZeroDelphiDate Property
	NumericType Property
	OptimizedBigInt Property
	UseUnicode Property

	TCustomMyDataSet Class
	Members
	Properties
	CommandTimeout Property
	Connection Property
	FetchAll Property
	InsertId Property
	LockMode Property
	Options Property

	Methods
	GetFieldEnum Method
	Lock Method
	Lock Method
	Lock Method

	LockTable Method
	RefreshQuick Method
	UnLockTable Method

	TCustomMyStoredProc Class
	Members
	Properties
	StoredProcName Property

	Methods
	ExecProc Method
	PrepareSQL Method

	TCustomMyTable Class
	Members
	Properties
	IndexDefs Property
	Limit Property
	Offset Property
	Options Property

	Methods
	EmptyTable Method

	TMyCommand Class
	Members
	Properties
	CommandTimeout Property
	Connection Property
	InsertId Property

	Methods
	BreakExec Method

	TMyConnection Class
	Members
	Properties
	HttpOptions Property
	IOHandler Property
	Options Property
	Port Property
	SSLOptions Property

	TMyConnectionOptions Class
	Members
	Properties
	CheckBackslashes Property
	Compress Property
	Direct Property
	Embedded Property
	Interactive Property
	Protocol Property

	TMyConnectionSSLOptions Class
	Members
	Properties
	CACert Property
	Cert Property
	ChipherList Property
	Key Property

	TMyDataSetOptions Class
	Members
	Properties
	AutoPrepare Property
	AutoRefresh Property
	AutoRefreshInterval Property
	BinaryAsString Property
	CheckRowVersion Property
	CreateConnection Property
	DefaultValues Property
	EnableBoolean Property
	FieldsAsString Property
	FieldsOrigin Property
	FullRefresh Property
	NullForZeroDate Property
	NumberRange Property
	QueryRecCount Property
	QuoteNames Property
	RemoveOnRefresh Property
	RequiredFields Property
	ReturnParams Property
	SetFieldsReadOnly Property
	StrictUpdate Property
	TrimFixedChar Property

	TMyDataSource Class
	Members

	TMyEncryptor Class
	Members

	TMyMetaData Class
	Members

	TMyQuery Class
	Members
	Properties
	FetchAll Property
	LockMode Property
	UpdatingTable Property

	TMyStoredProc Class
	Members
	Properties
	LockMode Property
	UpdatingTable Property

	TMyTable Class
	Members
	Properties
	FetchAll Property
	LockMode Property
	OrderFields Property
	TableName Property

	TMyTableOptions Class
	Members
	Properties
	HandlerIndex Property
	UseHandler Property

	TMyTransaction Class
	Members

	TMyUpdateSQL Class
	Members

	Types
	TMyUpdateExecuteEvent Procedure Reference

	Enumerations
	TLockRecordType Enumeration
	TLockType Enumeration
	TMyIsolationLevel Enumeration

	Routines
	GetServerList Procedure

	Constants
	MydacVersion Constant

	MyBackup
	Classes
	TMyBackup Class
	Members
	Properties
	BackupPriority Property
	Connection Property
	Debug Property
	Duplicates Property
	EnclosedBy Property
	EscapedBy Property
	Fields Property
	FieldsTerminatedBy Property
	IgnoreLines Property
	LinesTerminatedBy Property
	Local Property
	Mode Property
	Path Property
	TableNames Property

	Methods
	Backup Method
	Restore Method

	Events
	OnTableMsg Event

	Types
	TMyTableMsgEvent Procedure Reference

	Enumerations
	TMyBackupMode Enumeration
	TMyBackupPriority Enumeration
	TMyRestoreDuplicates Enumeration

	MyBuilderClient
	Classes
	TMyBuilder Class
	Members
	Properties
	Connection Property
	SQL Property
	Version Property

	Methods
	Show Method
	ShowModal Method

	MyClasses
	Classes
	EMyError Class
	Members
	Properties
	LineNumber Property

	Enumerations
	TMyProtocol Enumeration

	Variables
	__Strings65535ToMemo Variable

	MyConnectionPool
	Classes
	TMyConnectionPoolManager Class
	Members

	MyDacVcl
	Classes
	TMyConnectDialog Class
	Members
	Properties
	Connection Property
	DatabaseLabel Property
	PortLabel Property
	ShowDatabase Property
	ShowPort Property

	MyDump
	Classes
	TMyDump Class
	Members
	Properties
	Connection Property
	Objects Property
	Options Property
	StoredProcNames Property
	TriggerNames Property

	TMyDumpOptions Class
	Members
	Properties
	AddLock Property
	CommitBatchSize Property
	DisableKeys Property
	HexBlob Property
	UseDelayedIns Property
	UseExtSyntax Property

	Types
	TMyDumpObjects Set

	Enumerations
	TMyDumpObject Enumeration

	MyEmbConnection
	Classes
	TMyEmbConnection Class
	Members
	Properties
	BaseDir Property
	DataDir Property
	Params Property

	Events
	OnLog Event
	OnLogError Event

	MyLoader
	Classes
	TMyColumn Class
	Members

	TMyLoader Class
	Members
	Properties
	Connection Property
	DuplicateKeys Property
	Options Property
	RowsPerQuery Property

	Types
	TMyLoaderOptions Set

	Enumerations
	TMyDuplicateKeys Enumeration
	TMyLoaderOption Enumeration

	MyScript
	Classes
	TMyScript Class
	Members
	Properties
	Connection Property
	DataSet Property
	UseOptimization Property

	MyServerControl
	Classes
	TMyServerControl Class
	Members
	Properties
	Connection Property
	Debug Property
	TableNames Property
	Variables Property(Indexer)

	Methods
	AnalyzeTable Method
	CheckTable Method
	CreateDatabase Method
	DropDatabase Method
	Flush Method
	GetServiceNames Method
	KillProcess Method
	OptimizeTable Method
	RepairTable Method
	ServiceStart Method
	ServiceStatus Method
	ServiceStop Method
	ShowProcessList Method
	ShowStatus Method
	ShowVariables Method

	MySqlApi
	Types
	TMyLogEvent Procedure Reference

	Variables
	MySQLClientLibrary Variable

	MySQLMonitor
	Classes
	TMySQLMonitor Class
	Members

	VirtualTable
	Classes
	TVirtualTable Class
	Members
	Properties
	Options Property

	Methods
	AddField Method
	Assign Method
	Clear Method
	DeleteField Method
	DeleteFields Method
	LoadFromFile Method
	LoadFromStream Method
	SaveToFile Method
	SaveToStream Method

	Types
	TVirtualTableOptions Set

	Enumerations
	TVirtualTableOption Enumeration

