Contents |

Table of Contents

OVBIVIBW e 1
EAITIONS s 3
GOIING STAMEA ||| 5
FEATUIES e 9
WAt S NOW oo sese s 12
DEMO PIOJECES ||| ..oooooooooeooeoeoeeeeeososoeeeeee s 18
COMPONENTLIST ||| 23
Hierarchy Chart | ossssosssssssssssssssssssssssssssssssseeneeeeeeeeeeeee s 25
RO U OIS oo s e et e et 26
COMPATDIIITY ||| 27
INSTAIATION e 29
D DOy I NIt ettt et 32
Licensing and SUDSCIIPUIONS | | ... 33
GELUNG SUPPOIT oo 34
Frequently Asked QUESTIONS, | ||| .. 35
USING MY DA C e 40
Updating Data with MyDAC Dataset COMPONENTScooiiuiiiiiiiiiaaiaiiiieit ettt e e e ere e e e e e e snnreaeeeaeas 40
Master/Detail REIAIONSIIPSooiiiii et e e e e e e bbb e e e e e e e s e aannbeaeeeaeas 41
MiIgration frOM BDE ..ttt e e oottt e e e e e e e b bbbt e e e e e e e e e bbb e e e e e e e e s e aanrraeeaaans 43
STeTo 8| (N Ofe] o T=Tox Ao] o K- PSP PP PP PPPPRPP 45
NI Ao T S I T 1o =1 I o o IR TR PRI 47
(S pp] e =Te [0 [=To IRST=T V= PO PSP PP PPPPPPUPPPPOPPRPN 49
NAIONAI CHAKACTEIS ..ottt e e et e e ekt e e sk b et e e sk bt e e e e ke et e e sk b et e e abbe e e e aabbeeeeaanrneeeaa 51
Working in an UNStable NETWOTK it e e e aeeeaeas 52
(D] E=ToTo]] aT=Ted (=T 1Y To Lo [RO PO T PP PPPPPPPPUPPPPPPPPPN 53
D= 1= N YA o N1V F=T o] o1 o o [N RP PRI 54
(D= 1= W = g (o1 Y/ o] o] o KPP UPP PRI 58
INCreasing PEeITOIMANCEoiii ettt e e e e et e e et e e e e s e e e b bt et e e e e e e e e annbbbeeeeaeeseaannnbeaeaeaans 60
(6%e] ol g [=ToxuTo] g I =feTo] [T o Vo[RS TP UUPUPRPT R 62

1] Data Access Components for MySQL

1, = T o 13 64
Using Several DAC ProductS iN ONE IDEcccuiiiiiie e s et e s st ee e e e e e s snnaan e e e e e s s s nnnnnnaneeees 65
DataSEl MaANAGEI oo ———— 66
DB ONIIOr o ———— 71
T = L o] @ YAV - o RSO 72
Writing GUI Applications WIth MYDACoooiiiieiee ettt e e e e e e ee e e e e e s s s st eeeeeeeseasnnnnnneeeeees 73
Compatibility With PreVioUS VEISIONSuiiiiiiieiiiciiieieeee ettt e e e e e seae e e e e s s st ae e s e e e s s anannaeneeeeeesansnnnnes 74
(o o1 =lo T e T3 U 1] o] o I o gl 1Y/ V2] L USSR 75
Y4 = 10T o [=T 7N Lo I RSO 80
64-bit Development with Embarcadero RAD StUdio XE2ccuviiiiiiiiiiiiieie e e e 81
Database Specific Aspects Of 64-bit DEVEIOPMENTceviiiiiii e 85
RO O I e e 86
(O 2 Y o o =1 RN 88
(O P Y=
.TCRCursor Class
Members.......ccccceeennne.
LY/ ¢ L5 TP PPTPTPR PP
.TBeforeFetchProc Procedure Reference
=g TU o =T =V io] o LR PPPRPPPRPPRPIR
TCRISOIAtIONLEVE] ENUMETALIONeiiiieiiiiiiiiieeeee ettt e e e s sttt e e e e s st eeeeesassteaeeeeeaessabaeeeaeeaantaaeeaeeaesssaaeeeeeesasssseneeennanes 91
TCRTranSacCtioNACHON ENUMEBIALION. ... viiiiee e i ettt e e e s sttt e e e e e e st eeeeesa e e e eeaessabaeeeeeeaasntssaeaeeaesssraeeeeeesasnsnnenaeeseses 91
CRBAtCNMOVE 92
(O P Y= 93
TCRBAICHMOVE ClaSS .. . uuuiiiieeiiiiiiiiite e e eette et e e e e e st ae e e eeesateeeeeeeaa s ssbaeeeaeeaassteseeaeeaesnsssaeeeeeeaasstaseeaeeaesnssbaeaeeeesassssneneeenennes 93
1= 0 0T PRSP
Properties.
Methods.......
Events......cccccvvvevevviennnns
Y PSS i
...TCRBatchMoveProgresSEVeNnt Procedure REEIENCE............uuiiiii e ettt e e e s e e e e e e e e e e s b e e e e e e snnraaeeaeenas 101
ENUMETAtIONSuviiiiiiiiiiiiiiiiriieiiieierersrersrrrsrererererererererererer————..

...TCRBatchMode Enumeration
...TCRFieldMappingMode Enumeration

(042 B = = 1Y o 11 1Y/ - o L

(O TSP OTPPPPTPPRN

... EDALAMAPPINGEITOr CIASS.......eeiitiieiiiiie ettt ettt oot e bt e ekttt e e st e e e bt e e e bt e e e abb e e e s et e e bn e e e
=T 0] o =T £ PSPPSR PR

... EDAtaTYPEMAPPINGEITON CIASS ... eeiiiuiiiieiitite ittt ettt ettt e ettt e e et e ekt e e e sttt e ea bt e et e e e e abe e e e nab e e e nbneeeeanns
=T 0] o =T £ PSPPSR PR

EINVAliADBTYPEMAPPING ClASS ... eeiiuitiieiitiee ittt ettt e ettt et e bt e e e sttt e eab et e et e e e abn e e e nab e e e nbneeeennns
=T 0] o =T £ PSPPSR PR

...EInvalidFieldTypeMapping Class............cccceeennnnee.
MEMDENS......cviiiiiiiie e

...EUnsupportedDataTypeMapping Class
Members

...TMapRule Class.......
Members

Contents 1l

Properties.
L@ =1 o 1Y/ o 1 [0 o TSR
O3 TS PSR 111
I O = g Tod Y o (o G O o TSP PT PP OPPPPON 111
=T 0] 1T £ T TP T PSP U PR OTPPPP 111
[(0] o= 41T OSSP T PSP U PR OTPPPOP 111
=] (oo RSO TPPOT PSP U PP OPPPPP 113
T T g 1= =i o PR 115
... TCRENCDAtaHEAAEr ENUMEIATION.eiiiutiieiiiit ettt ettt ettt ettt e et e bt e ekt e e st e e e b et e e bt e e e abn e e e nab e e e nbneeeennnes 115
... TCRENCIyptioNAIGOrthIm ENUMEIALIONeiiiiiiiiiiie ettt ettt et e e e e e nbee e e 115
... TCRHAShAIGOItRM ENUMEIALION.ttt ettt e bt e e e sttt e et e ettt e e et e e nab e e e nbn e e e 116
... TCRINVAlIdHASHACHON ENUMETALION......coutiiiiiiie ettt et e bt e e e st et e et e e e et e e nab et e nbeeeeennns 116
CRVio
O TS P PERRR
...THttpOptions Class... .
=T 0] 1T £ T OSSO TP PU PP OTPPROP
[(0] o= 41T ST TSP TP OTPPPOP
...TProxyOptions Class. .
=T 0] 01T £ T TSP TSP TP OPPPPOP
[(0] o= 41T ST TSP TP OTPPPOP
[7 11 1 ¢ o] 1T TP PP
O TS PSRRI
R B 7 B U] q o IO - L ST SOTPPOPPPPOIN
=T 0] 01T £ T TSP TSP TP OPPPPOP
[(0] o= 41T ST TSP TP OTPPPOP
=] (oo R PSP PSU PSP U PR OPPPPOO
[=T KPP P PRSP PPRTRPRRIN:
.. TDADUMPOPLIONS CIASS ... tteeitiie ettt ettt ettt et e bt e et e ea bt e ekttt e aabe et oo s bt e ekt e e esbb e e e ea bt e e e abe e e e e nbr e e e nab e e e nbneeeenens 132
=T 0] 01T £ T TSP TSP TP OPPPPOP 132
[(0] o= 41T ST T PSP U PR OTPPROP 132
1577 1= 134
...TDABackupProgressEvent Procedure REFEIENCE...........uii ittt 134
...TDARestoreProgressEVeNnt ProCcedure REFEIENCE.uiiiiiiiiiiiii et 134
Y I Y- U (-1 SRR 135
L TS P SRRRR
N I B 7 0] 1] 341 O = T PSPPSR OPPPPPON
=T 0] 1T £ T PSP U PR PU PR OPPPPOPN
Properties...
...TDAColumns Class
=T 0] 1T £ T PSP U PR PU PR OPPPPOPN
Properties...
B o - Lo] B O T PSP OT PP OPPPPON

=T 0] 1T £ T PSP U PR PU PR OPPPPOPN
Properties...
=] (oo R OSSP U PSP UPROTPPPOP
[=T KPP TPPRTRRRRIN:

Types

DAScript
O F= 11 149

v Data Access Components for MySQL

B B TS ol o] O - 1] TSP PPOPPPPOT
Members
[0 o= 41T OSSO TSP U PPOTPPROP 150
Methods

Members.... .

[(0] o= 41T O ST PR PU PR OPPPPOP 160

1o TDASIALEMENTS ClASS.... . eeiitiee ittt ettt ettt h ettt oo et e ettt £ ea ket oo e bt a4kt e e esbe e e e ea bt e e e bt e e e e nbn e e e nab e e e nbn e e e ennns 163
Members.......

Properties.

B3/ 015 T PP PPPPPPPTRRP

... TAfterStatementExecuteEvent Procedure Reference...... .

...TBeforeStatementExecuteEvent Procedure Reference

.. TONEIOrEVENt ProCedUIe REFEIENCE.eiiiiiiiiiit ettt ettt et e e sbe e e e

L g TU g =T =i o] o L PPPRPRPPPPPPRPRS
B I =0 (T o] T = 10Ty T=T = U) o PRSP RSR

DASOQLMONITON oo —————

ClaSSES eeviiiiiiiie it
...TCustomDASQLMonitor Class
=T 0] 01T £ T TSP TSP TP OPPPPOP

[(0] o= 41T ST TSP TP OTPPPOP

[=T KPP P PRSP PPRTRPRRIN:

B D] =] 1Y o] 1) (o] (@] o] o] S @1 - T S ST PU PP OPPPPON
=T 0] 01T £ T TSP TSP TP OPPPPOP

B3/ 015 TSP TP PPPPTPPTR P
B 7 I - Tt =Y = T T PRSP RSRR

O Y [T 11 (o] (@] o) o] TSI ST=] A ST TPSPT PP OPPPPO

... TONSQLEVENT ProCEAUIE RETEIENCE. ... eiviiiie e ettt e ettt e e e ettt e e e e e sttt eeaeesanaeeeeaeeeesssbaeeaaeesanteseeaeesesnsnraneeeeenas 174
Enumerations.........cccccceeeeeveinnnnen,

...TDATraceFlag Enumeration

Y [T a1 (o] (@] o) fo] W =1 g TU 0 1T = Lo o N S TSSO U PP OPPPPOI 175

DBAccess

(O P Y=
...EDAETrror Class...

=T 0] 1T £ T PSP U PR PU PR OPPPPOPN

[(0] 0= 41T PSP TP PU PR OTPPPP 181
...TCRDataSource Class.. .

=T 0] 1T £ T PSP U PR PU PR OPPPPOPN 182
B 1 OU TSy o] 4 0o o T T=Td T 1L Yo [- U PR STRRSS 182

Members........cccceeennnen.

Properties.

=] (oo R OSSP U PSP UPROTPPPOP
...TCustomDAConnection Class... .

=T 0] 1T £ T PSP U PR PU PR OPPPPOPN 188

[(0] 0= 41T PSP TP PU PR OTPPPP 189

Methods

Members.........ccceeennes
Properties.
=] (oo R OSSP U PSP UPROTPPPOP
Events

Contents V

...TCustomDASQL Class

LY1= 00T £ PSSR
[0 o= 41T OSSO TSP U PPOTPPROP
Methods

.. TCUSTOMDAUPAAESQL ClASS. ... et eiuttieeiitete ettt ettt b e e e sttt e e bt e ekttt e es b et e e e bt e e e bt e e e abe e e e nab e e e nbneeeennnes 253

Members........ccoeveennnen.
Properties.

MEBLNOAS ...t
...TDAConnectionOptions Class... ... 260
=T 0] o =T £ PSPPSR PR 260
[(0] o= 41T O ST PR PU PR OPPPPOP 260
...TDADataSetOptions Class .. 262
=T 0] o =T £ PSPPSR PR 262
[(0] o= 41T O ST PR PU PR OPPPPOP 263
...TDAEncryptionOptions Class.... ... 269
=T 0] o =T £ PSPPSR PR 270
[(0] o= 41T ST TSP TP OTPPPOP 270
...TDAMapRule Class... . 271
=T 0] o =T £ PSPPSR PR 271
[(0] o= 41T ST TSP TP OTPPPOP 272
...TDAMapRules Class. .. 274
=T 0] o =T £ PSPPSR PR 275
MEBLNOAS ...t E et 275
...TDAMetaData Class.. .. 282
=T 0] o =T £ PSPPSR PR 283

...TDAParam Class

[(0] o= 41T ST TSP TP OTPPPOP 284
Methods......

Members
Properties... ... 290
=] (oo R PSP PSU PSP U PR OPPPPOO 295
R B T =T =T 4 S O - T T TP T TS PT PP OPPPPOI 298
Members.... ... 298
[(0] o= 41T OSSO TP PU PR OPPPPOP 298
=] (oo R OSSO TSP U PR OPPPPOP 299
...TDATransaction Class............ ... 300
=T 0] 1T £ T PSP U PR PU PR OPPPPOPN 300
[(0] 0= 41T PSP TP PU PR OTPPPP 301
Methods . 302
[=T KPP PP TPPRTRPRRINS 303
N I - 1ol (o @ - 1] S ST PT PP OPPPPRPON 304
Members.... ... 304
[(0] 0= 41T PSP TP PU PR OTPPPP 304
N I - 1ol (o O - L S ST TSOTPPOPPPPPO 307
Members.... ... 307
[(0] 0= 41T PSP TP PU PR OTPPPP 307
=] (oo R OSSP U PSP UPROTPPPOP 308
...TPoolingOptions Class.. . 310
=T 0] 1T £ T PSP U PR PU PR OPPPPOPN 310
[(0] 0= 41T PSP TP PU PR OTPPPP 311
... 313
TAfterEXeCUtEEVENt ProCeaUIe REFEIENCEiiiiiiiii ittt e e 313

Types

VI Data Access Components for MySQL

...TConnectionLOStEVENt ProCedUIe REFEIENCE.cc.uiiiiiiii it b e
...TDAConnectionErrorEvent Procedure Reference
...TDATransactionErrorEvent ProCedure REFEIENCEuii it 315
... TRefreshOptions Set.........ccocvvviiiiiiiiiiciiieeee
...TUpdateExecuteEvent Procedure Reference
T T g 1= =i o PR
...TLabelSet Enumeration
...TLockMode Enumeration
1. TREFTESNOPLION ENUMEIALIONtiiiiiitie ettt ettt e ettt e e st e e eab et e ettt e e e sttt e ea bt e e bb e e e e abn e e e nab e e e abeeeeennns
...TRetryMode Enumeration .
V2= L4 = o] =SSP
...BasSeSQLOIABENAVIOr VANADIE........co..eiiiiiiie ittt et e et e e e enbe e e
...ChangeCursor Variable
o MACTOCKNAN VATADIE.ottt ettt e bttt e e st e e e bt e e bt e et e e e nab et e nbn e e et
..SQLGeneratorCompatibility VarADI.cciiiiiiiiiiieie e

DIV LM D= ToR DT -V AN £ o) (] SRR

(O = TSP PPUPSPPTPPRN 322
B D B =YX T (=] O o T T ST PT PP OPPPPOIN 322
=T 0] 01T £ T TSP TSP TP OPPPPOP
[(0] o= 41T ST TSP TP OTPPPOP
=] (oo R PSP PSU PSP U PR OPPPPOO

Devart.MyDac.DataAdapter

(O TS PP PPOTPPPPTPPRN
...MyDataAdapter Class...
=T 0] 01T £ T TSP TSP TP OPPPPOP
MEMDALE
Classes ...cccoeceveennnnn
... TAttribute Class
=T 0] 01T £ T TSP TSP TP OPPPPOP 329
[(0] o= 41T ST T PSP U PR OTPPROP 330
N I =1 (o] o 1 T ST OT PP OPPPPO 333
=T 0] 01T £ T TSP TSP TP OPPPPOP 333
[(0] o= 41T OSSO TP PU PR OPPPPOP 334
=] (oo R OSSO TSP U PR OPPPPOP 335
P O] g o] (=TS TST=To | 21 o] o O o T TP SPT PP OPPPPOT 340
=T 0] 1T £ T PSP U PR PU PR OPPPPOPN 340
N B 10 o (=T 1 o T PSP SU PP OPPPPOIN 341
=T 0] 1T £ T PSP U PR PU PR OPPPPOPN 342
I O] [=Tet Y o T O o T ST OT PP OPPPPO 342
=T 0] 1T £ T PSP U PR PU PR OPPPPOPN 342
[(0] 0= 41T PSP TP PU PR OTPPPP 343
=] (oo R OSSP U PSP UPROTPPPOP 344
P IS o T Te (@ o) [Tt A O o ST PT PP PPPPPOI 346
=T 0] 1T £ T PSP U PR PU PR OPPPPOPN 346
[(0] 0= 41T PSP TP PU PR OTPPPP 346
=] (oo R OSSP U PSP UPROTPPPOP 347
1577 1= 349
B o T L= (@ o] 1T S = A TSP PPOPPPPON 349
o TUPAIERECKINGS SEL......eiiiiiiiiiiie ettt b e oo ettt oo et e ekt e e sttt e ea bt e e bt e e e nbn e e e nab e e e nbneeeennns 349
S 100 L= =i o] o SR PR PSR 350
1. TCONNLOSTCAUSE ENUMEIALION.eeiiitieeiitee ettt ettt et e ettt e e et e et e skt e e e sttt e ea et e et e e e et e e e nab e e e ebne e e nnns 350
... TDANUMETCTYPE ENUMETIATION.ceeiuttieeiitite ittt ettt ettt e et e ettt e e e s et e e e bt e ettt e e e sttt e eab et e ettt e e abn e e e nab e e e abneeeennnes 351

.. TLOCAtEEXOPLION ENUMETALION.ciiiiitii ettt ettt e e st e e e et e et e e e e abn e e e nab et e nbneeeennns 351

Contents VI

B S To L g Y] o = g TU 03T = Ui o o ST OT PP OPPPPO
...TUpdateRecKind Enumeration

1Y/ 1=Y .10

Classes ...ccoccceeeieieeenennnn,
...TMemDataSet Class

LY1= 00T £ PSSR
[(0] o= 41T OSSP T PSP U PR OTPPPOP
1= 10 T Lo PSSR

Variables
...DoNotRaiseExcetionOnUaFail Variable.

...SendDataSetChangeEventAfterOPENn Variable...........oocuiii i 372
MyAccess

(O TSP PPOTPPPPPRPPRN
...TCustomMyConnection Class...
=T 0] o =T £ PSPPSR PR
[(0] o= 41T ST TSP TP OTPPPOP
Methods
...TCustomMyConnectionOptions Class
=T 0] o =T £ PSPPSR PR
Properties.
...TCustomMyDataSet Class
=T 0] o =T £ PSPPSR PR
Properties... .
MEBLNOAS ...t E et
P O DS o] 4011V 1A (o] (=T | o o ol O o P OO T PP OPPPPPO
Members..........ccevevenne
Properties.
MEBLNOAS ...t E et
...TCustomMyTable Class
=T 0] o =T £ PSPPSR PR
[(0] o= 41T ST T PSP U PR OTPPROP
Methods......
...TMyCommand Class
=T 0] o =T £ PSPPSR PR
Properties... .
MEBLNOAS ...ttt
B Y YO g TCTod o] W O L O USSP OPPPPON
Members.......
Properties.
. TMYCONNECHONOPLONS CIASSttiieiiiiie ettt ettt et e e bttt e e sttt oot e ekt e e e sttt e ea b et e e be e e e et e e e nab e e e nbeeeeennnes
Members.......c..ccevnenne
Properties.
. TMYCONNECHONSSLOPLONS CIASS.......tieeiutiteiitieeait ettt ettt e e et e e bt e skttt e as bt e e aa b et e e be e e e eabe e e e nab e e e nbneeeannnes
Members.........cccvvienenns
Properties.
Y D £= IS (@] o 1T N O o T TP OT PP OPPPPOI
Members...........co......
Properties.
1 TIMYDAIASOUICE CIASS. ... eeeiteeeittie ettt ettt ekttt oo a bt e ekttt e e skt e oo e bt e 4kt e e es b bt e e eab et e e b et e e e abe e e e nab e e e snbneeeennnes
Members.......
...TMyEncryptor Class
=T 0] o =T £ PSPPSR PR
...TMyMetaData Class

VI

VI Data Access Components for MySQL

Members

B Y O U= O o TSP PU PP OPPPPO
Members
Properties...

...TMyStoredProc Class.
=T 0] 1T £ T TP T PSP U PR OTPPPP
Properties...

B T I T o L 1 T PSPPSR
=T 0] 1T £ T TP T PSP U PR OTPPPP
Properties..........

...TMyTableOptions Class
=T 0] 1T £ T TP T PSP U PR OTPPPP
Properties......

...TMyTransaction Class

=T 0] 1T £ T TP T PSP U PR OTPPPP
...TMyUpdateSQL Class...
=T 0] 1T £ T OSSO TP PU PP OTPPROP
B3/ 015 TSP TP PPPPTPPTR P
...TMyUpdateExecuteEvent Procedure Reference.. .
S 1U 0 L= =i o] o PP PR PSR
... TLOCKRECOrATYPE ENUMEIALION ...ttt ittt ettt ettt ettt ettt e skttt e st e e ea et e ekt e e e nbn e e e nab e e e nbneeeennnes
...TLockType Enumeration............
...TMylsolationLevel Enumeration
ROULINES ittt ettt e e st bt e e e ottt e e e ea b bt e e e aab bt e e e aa b bt e e s anbbe e e s anbbeeeeanbbeeeeanbeeeeenntee
...GetServerList Procedure .
(00] 1151 1= | £ TP PP PPPTPPPPPPR
oMY AACVEISION CONSLANLtiiiiitie ettt ettt ea et e ekttt e ea b et e ea bt e ekt e e es et eea b et e e bt e e e abe e e e nab e e e abneeeanens
Y= = T U | o SRR
(O TS PP OTUSPPTPPRN 521
B Y 1Y 2= Ted B o O - L] PSPPSR OPPPPON 521
=T 0] 01T £ T TSP TSP TP OPPPPOP 521
[(0] o= 41T ST T PSP U PR OTPPROP 522
=] (oo R OSSO TSP U PR OPPPPOP 528
[=T KPP PRSP PPRTRRRTINS 529
1577 1= 531
... TMyTableMSgEVENt ProCedUre REFEIENCEoiiiiiiiiiii ettt e e 531
ENUMErationS........cccccevvveeeeiiiieee e
...TMyBackupMode Enumeration
.. TMYBACKUPPTIONEY ENUMEIALION......cuitiiiiitiee ittt ettt ettt e bt e e sttt e et e et e e e e abn e e e s e e nbne e e 532
.. TMyReStOreDUPliCAtES ENUMETALIONcutiiiiiiii ettt ettt ettt e et e e e e st e e e 533
Y4 =TT o 1= O 1 =T o) SRR 534
(O TSP OTPPPPTPPRN 535
B 81177 = TUT1 o T O o T3PS 535
=T 0] 1T £ T PSP U PR PU PR OPPPPOPN 535
Properties... ... 536
=] (oo R OSSP U PSP UPROTPPPOP 537
Y@ P =TS =SSR
Classes ..cccovveeennnnn
...EMyError Class
=T 0] 1T £ T PSP U PR PU PR OPPPPOPN 540
[(0] 0= 41T PSP TP PU PR OTPPPP 540
g TU g =T =i o] o L POPPPPPPPPRPRR 542

B 1Y (o] (o oo I =t T [g T=T = 4o o PRSP RSR 542

Contents IX

V= L= Lo LY PP 543

veo_ StrINGS65535TOMEMO VATTADIE......ccceiiiiiiiiiie ettt e e e e e e e e e e e e e ssssbee e e e e e e sssbaeeeaeesasnseaaeaeeeesnsnraneaeeenns 543

/Y7 @] o o T=Tox 1 7]] o T | SRR 544
(O P Y= 545

.. TMyCoNNECtIONPOOIMANAGET CIASS. ... ceeiutiteiiiit ettt ettt ettt ekt e e e st e e et e et e e e e abn e e e nab et e nbneeenanns 545

=T 0] 1T £ T TP T PSP U PR OTPPPP 545
1Y = Vo o 1SR 546
(O P Y= 547
B 1Yo o =Tt = [o - LRSS 547
=T 0] 1T £ T TP T PSP U PR OTPPPP 547
[(0] o= 41T O ST PR PU PR OPPPPOP 548
Y DU D i ————— 552
O TS PSRRI 553
B 1Y 1Y DT o 1 o TSP PT PP OPPPPPO 553
=T 0] 1T £ T TP T PSP U PR OTPPPP 553
[(0] o= 41T ST TSP TP OTPPPOP 554
. TMYDUMPOPLONS CIASS. ...ttt ettt ettt ettt e ettt e oa bt e ekttt e ea ket e e s bt e ekt e e e s bb et e ea b et e et e e e e nbe e e e nab e e e nbneeeannnes 557
Members..........
Properties.
B3/ 015 TSP TP PPPPTPPTR P
o TMYDUMPODJECES SEL.......eiiitieeitiie ettt b ettt e a bt e ettt e ea b et e ea bt a4kt e e e s bb et e eab et e e be e e e e nbn e e e nab e e e abneeeennnes
T T g 1= =0 PR
...TMyDumpObject Enumeration...
VY4 =1 2 0] 0T @X0] o 1 1= o 1 T o 1SR
O TS PSRRI
. TMYEMDBCONNECHON CIASS.....cei ittt ettt ettt ettt ekt e e sttt oo e bt e ekttt e e sttt e ea et e et e e e e abn e e e nab e e nbneeeennnes
=T 0] 01T £ T TSP TSP TP OPPPPOP
[(0] o= 41T ST T PSP U PR OTPPROP
[=T KPP P PRSP PPRTRPRRIN:
YY1 Y- T = SRR
O TS PSRRI
B Y YO] 00T IO - T TSP PPOPPPPOIN
=T 0] 01T £ T TSP TSP TP OPPPPOP
B 1/ 0 = Vo 1= 1 T PSRRI
Members....
[(0] 0= 41T PSP TP PU PR OTPPPP
B3/ 0155 T PP PPPPPPPTR P
O Y)Y Mo Lo (=T (@] o) o] g ST AP ST T PP OPPPPO 578
T T g 1= =0 PR 579
. TMYDUPICAtEKEYS ENUMEIALION. ...ttt ittt ettt et e bt e e sttt e s bt e et e e e et e e nab et e nbn e e e entns 579
P Y)Y Mo To LT @ T o) o] T =y o TW] 00 LT = Lo o ST PT PP OPPPPON 579
Y2 Yo 1 o1 SRR 580
L TS P SRRRR
...TMyScript Class...........
Members....
[(0] 0= 41T PSP TP PU PR OTPPPP
YA T V7T @] o | 1 o | SRR
L TS P SRRRR 586
B Y VS 1=tV =T (oL (o I O - T TSP PPOPPPPOO 586
=T 0] 1T £ T PSP U PR PU PR OPPPPOPN 586
[(0] 0= 41T PSP TP PU PR OTPPPP 592

X Data Access Components for MySQL

1= 10 T Lo PSSR 598
Y2 T |72 o SRR 610
1577 1= 611
... TMYLOQEVENT PrOCEAUIE RETEIEINCE. ... iiiieiie e e ettt e e e e e e e et e e e e e ssatee et e e e e e s ssbeeeeaeesantenanaeeeesnsnraneaaeenas 611
V2= L4 = o] =SSP 612
. MYSQLCIENTLIDIArY VAri@bI.........uviiiiieii ittt e e e e st e e e e e st eeeeeesasnteseeeeees s ssbeeeeaeesasnsesaeaeeeesnsnsaneaeeenns 612
Y251 1Y/ o o T o 1 SRR 613
O TS SRR 614
B 1210 LT T (o O T PSRRI 614
LY1= 00T £ PSSR 614
RV 00 T L = o 1S 615
O TS PSRRI
B V15 (8 = 1= Lo T= T 1 SRS
LY1= 00T £ PSSR
[(0] o= 41T O ST PR PU PR OPPPPOP
1= 10 T Lo PSSR
B3/ 015 TSP TP PPPPTPPTR P
...TVirtualTableOptions Set
T T g 1= =0 PR

L TVIrtUal TableOPtioN ENUMETALION.........eiiiiiie ittt e et e st e e bt e e et e e nab e e nbee e e 627

Data Access Components for MySQL 1

1 Overview

Data Access Components for MySQL (MyDAC) is a library of components that provides direct access to
MySQL database servers from Delphi, Delphi for .NET, C++Builder, Free Pascal, and Kylix. MyDAC can
connect directly to MySQL server or work through the MySQL client library. The MyDAC library is
designed to help programmers develop faster and cleaner MySQL database applications. MyDAC is a
complete replacement for standard MySQL connectivity solutions and presents an efficient alternative to
the Borland Database Engine for access to MySQL.

The MyDAC library is actively developed and supported by the Devart Team. If you have any questions
about MyDAC, email the developers at mydac@devart.com or visit MyDAC online at http://www.devart.

com/mydac/.

Advantages of MyDAC Technology

MyDAC is a direct database connectivity wrapper built specifically for the MySQL server. MyDAC offers
wide coverage of the MySQL feature set, supports both client and direct connection modes, and
emphasizes optimized data access strategies.

Wide Coverage of MySQL Features

By providing access to the most advanced database functionality, MyDAC allows developers to harness
the full capabilities of the MySQL server and optimize their database applications. MyDAC provides a
complete support of MySQL Embedded Server, row-level locking, using HANDLER statements, MySQL
administration tasks. Get a full list of supported MySQL features in the Features topic.

Native Connection Options

MyDAC offers two connection modes to the MySQL server: Direct connection and connection through the
standard MySQL Client in Client mode. MyDAC-based database applications are easy to deploy, do not
require installation of other data provider layers (such as BDE), and tend to be faster than those that use
standard data connectivity solutions. See the How does MyDAC work section.

Optimized Code

The goal of MyDAC is to enable developers to write efficient and flexible database applications. The
MyDAC library is implemented using optimized code and advanced data access algorithms. Component
interfaces undergo comprehensive performance tests and are designed to help you write thin and
efficient product data access layers. Find out more about how to use MyDAC to optimize your database
applications in Increasing Performance.

Compatibility with other Connectivity Methods

The MyDAC interface retains compatibility with standard VCL data access components BDE. Existing
BDE-based applications can be easily migrated to MyDAC and enhanced to take advantage of MySQL-
specific features. Migration of a Delphi project can be automated with the BDE Migration Wizard. Find out
more about Migration Wizard in the Migration from BDE topic.

Development and Support

MyDAC is a MySQL connectivity solution that is actively developed and supported. MyDAC comes with
full documentation, demo projects, and fast (usually within one business day) technical support by the
MyDAC development team. Find out more about how to get help or submit feedback and suggestions to
the MyDAC Development Team in the Getting Support topic.

A description of the MyDAC components is provided in the Component List.

Key Features
Direct access to server data without using client library. Does not require installation of other data
provider layers (such as BDE and ODBC)
VCL, VCL.NET, and CLX versions of library available
Full support of the latest versions of MySOQL Server
Support for all MySQL Server data types
Disconnected Model with automatic connection control for working with data offline
Local Failover for detecting connection loss and implicitly reexecuting certain operations
All types of local sorting and filtering, including by calculated and lookup fields
Automatic data updating with TMyQuery, TMyTable, and TMyStoredProc components
Unicode and national charset support
Supports many MySQL-specific features, such as locking, SET and ENUM types

mailto:mydac@devart.com
http://www.devart.com/mydac/
http://www.devart.com/mydac/

2 Data Access Components for MySQL

Advanced script execution functionality with TMyScript component
Support for using macros in SQL

Integration with dbForge Fusion for MySQL Standard Edition for performing advanced database
development and administration tasks

Easy migration from BDE with Migration Wizard

Lets you use Professional Edition of Delphi and C++Builder to develop client/server applications
Included annual MyDAC Subscription with Priority Support

Licensed royalty-free per developer, per team, or per site

The full list of MyDAC features are available in the Features topic.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 3

2 Editions

Data Access Components for MySQL comes in four basic editions levels: MyDAC Standard Edition,
MyDAC Professional Edition, MyDAC Developer Edition, and MyDAC Trial Edition.

MyDAC Standard Edition includes the MyDAC basic connectivity components and the MyDAC Migration
Wizard. MyDAC Standard Edition is a good choice for beginning MySQL developers and a cost-effective
solution for database application developers who only need basic connectivity functionality for MySQL.
MyDAC Professional Edition shows off the full power of MyDAC, enhancing MyDAC Standard Edition with
support for MySQL-specific functionality, and some advanced connection management features. MyDAC
Professional Edition is intended for serious application developers who want to take advantage of all the
MySQL-specific functionality support provided by MyDAC.

MyDAC Developer Edition is a bundle package of MyDAC Professional Edition with dbForgeFusion for
MySQL Standard Edition, an advanced add-in for MySQL database development and administration.
MyDAC Developer Edition is the best choice for enterprises and database industry professionals.

MyDAC Trial Edition is the evaluation version of MyDAC. It includes all the functionality of MyDAC
Professional Edition with a trial limitation of 60 days. Kylix, C++Builder, and supported .NET IDEs have
additional trial limitations™.

You can get source code of all the component classes in MyDAC by purchasing the special MyDAC
Professional Edition with Source Code or MyDAC Developer Edition with Source Code**.

For more information about how to get the MyDAC edition you want, visit the How to Order section.

MyDAC Edition Matrix

Devel Profe Stand

Feature oper* ssion d Trial

Base Components

TMyConnection

TMyQuer

TMyCommand

TMyTable

TMyStoredProc + + + +
TMyUpdateSQL

TMyConnectDialog

TMySQLMonitor

TMyScript

TMyDataSource
TVirtualTable

TCRDBGrid
MyDataAdapter

Additional Components
TMyEncryptor

TMyLoader

TMyDump

TMyBackup . . .
TMyServerControl

TMyEmbConnection
TMyBuilder

TMyMetaData
TCRBatchMove

+
.
.
+

Direct connectivity (without MySQL client)

Design-time features, including
component editors and property editors

DataSet Manager*** + +

Data Access Components for MySQL

Migration Wizard*** + + + +
dbForge Fusion for MySQL Standard . .
Edition****

Trial limitations* +

* Trial Edition is a fully working version of MyDAC Professional Edition for a trial period of 60 days on
most supported IDEs. After the trial period expires you must either register or uninstall MyDAC. MyDAC
Trial Edition for Kylix has an additional nag screen trial limitation. MyDAC Trial Edition requires the IDE to
be launched on the target workstation when testing .NET applications and applications written on C+
+Builder. For more information about trial limitations see the Ordering topic.

** Developer and Professional editions with source code are available. Migration Wizard, DataSet
Manager source code, and code for other products, including dbForge Fusion for MySQL Standard Edition
and SQL Builder for MySQL, is not distributed.

*** Not available for C++Builder, Delphi 8, FreePascal or Kylix.

**** List of environments this feature is compatible with you can find in the Using dbForge Fusion for

MySOL topic

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 5

3 Getting Started

This page contains a quick introduction to setting up and using the Data Access Components for MySQL
library. It gives a walkthrough for each part of the MyDAC usage process and points out the most
relevant related topics in the documentation.

What is MyDAC?
How does MyDAC work?

Installing MyDAC.

Working with the MyDAC demo projects.
Compiling and deploying your MyDAC project.
Using the MyDAC documentation.

How to get help with MyDAC.

What is MyDAC?

Data Access Components for MySQL (MyDAC) is a component library which provides direct connectivity
to MySQL for Delphi, Delphi for .NET, C++Builder, and Kylix, and helps you develop fast MySQL-based
database applications with these environments.

Many MyDAC classes are based on VCL, VCL for .NET, and CLX classes and interfaces. MyDAC is a
replacement for the Borland Database Engine, it provides native database connectivity, and is specifically
designed as an interface to the MySQL database.

An introduction to MyDAC is provided in the Overview section.

A list of the MyDAC features you may find useful is listed in the Features section.

An overview of the MyDAC component classes is provided in the Components List section.

How does MyDAC work?

MyDAC allows you to connect to MySQL in two ways: in Client mode, using MySQL Client software, or in
Direct mode. The chosen connection mode is regulated by the Direct option.

In Direct mode, MyDAC connects to MySQL directly without using MySQL client software.

In Client mode, MyDAC connects to MySQL through the MySQL client library. MySQL client library is
supplied with MySQL server.

In comparison, the Borland Database Engine (BDE) uses several layers to access MySQL, and requires
additional data access software to be installed on client machines.

The BDE data transfer protocol is shown below.

ODEBC BDE Application

BDE Connection Protocol

MyDAC works directly through native MySQL interface. It allows to avoid using BDE and ODBC:

Application

MyDAC Connection Flow [Client Mode]

Using MySQL network protocol provides optimal transfer way:

Application

http://info.borland.com/devsupport/bde/

Data Access Components for MySQL

MyDAC Connection Flow [Direct Mode]

Installing MyDAC

To install MyDAC, complete the following steps.
1. Choose and download the version of the MyDAC installation program that is compatible with your
IDE. For instance, if you are installing MyDAC 5.00, you should use the following files:

For BDS 2006 and Turbo - mydac500d10*.exe
For Delphi 7 - mydac500d7*.exe
For more information, visit the the MyDAC download page.
2. Close all running Borland applications.
3. Launch the MyDAC installation program you downloaded in the first step and follow the instructions
to install MyDAC.

By default, the MyDAC installation program should install compiled MyDAC libraries automatically on all
IDEs except for Kylix. View the installation instructions for Kylix here.

To check if MyDAC has been installed properly, launch your IDE and make sure that a MySQL Access
page has been added to the Component palette and that a MySQL menu was added to the Menu bar.
If you have bought MyDAC Professional Edition with Source Code or MyDAC Developer Edition with
Source Code, you will be able to download both the compiled version of MyDAC and the MyDAC source
code. The installation process for the compiled version is standard, as described above.The MyDAC
source code must be compiled and installed manually. Consult the supplied ReadmeSrc.txt file for more
details.

To find out what gets installed with MyDAC or to troubleshoot your MyDAC installation, visit the
Installation topic.

Working with the MyDAC demo projects

The MyDAC installation package includes a number of demo projects that demonstrate MyDAC
capabilities and use patterns. The MyDAC demo projects are automatically installed in the MyDAC
installation folder.

To quickly get started working with MyDAC, launch and explore the introductory MyDAC demo project,
MyDacDemo, from your IDE. This demo project is a collection of demos that show how MyDAC can be
used. The project creates a form which contains an explorer panel for browsing the included demos and
a view panel for launching and viewing the selected demo.

MyDACDemo Walkthrough
1. Launch your IDE.
2. Choose File | Open Project from the menu bar
3. Find the MyDAC directory and open the MyDacDemo project. This project should be located in the

Demos\MyDacDemo folder.

For example, if you are using Borland Developer Studio 2006, the demo project may be found at
\Program Files\Devart\MyDac for Delphi 2006\Demos\Win32\MyDacDemo\MyDacDemo.
bdsproj

4. Select Run | Run or press F9 to compile and launch the demo project. MyDacDemo should start,
and a full-screen MyDAC Demo window with a toolbar, an explorer panel, and a view panel will
open. The explorer panel will contain the list of all demo sub-projects included in MyDACDemo, and
the view panel will contain an overview of each included demo.

At this point, you will be able to browse through the available demos, read their descriptions, view
their source code, and see the functionality provided by each demo for interacting with MySQL.
However, you will not be able to actually retrieve data from MySQL or execute commands until you
connect to the database.

5. Click on the "Connect" button in the MyDacDemo toolbar. A Connect dialog box will open. Enter the
connection parameters you use to connect to your MySQL server and click "Connect" in the dialog
box.

Now you have a fully functional interface to your MySQL server. You will be able to go through the

different demos, to browse tables, create and drop objects, and execute SQL commands.
Warning! All changes you make to the database you are connected to, including creating and
dropping objects used by the demo, will be permanent. Make sure you specify a test database

in the connection step.
6. Click on the "Create" butR)n to create all the objects that will be used by MyDacDemo. If some of

these objects already exist in the database you have connected to, the following error message will
appear.

An error has occurred:

#42S01Table 'dept’ already exists

You can manually create objects required for demo by using the following file: %MyDAC%
\Demos\InstallDemoObijects.sq|l

http://www.devart.com/odac/download.html

Data Access Components for MySQL 7

%MyDAC% is the MyDAC installation path on your computer.
Ignore this exception?

This is a standard warning from the object execution script. Click "Yes to All" to ignore this
message. MyDacDemo will create the MyDacDemo objects on the server you have connected to.
7.Choose a demo that demonstrates an aspect of working with MySQL that you are interested in, and
play with the demo frame in the view window on the right. For example, to find out more about

how to work with MySQL tables, select the Table demo from the "Working with Components"
folder. A simple MySQL table browser will open in the view panel which will let you open a table in
your database by specifying its name and clicking on the Open button.

8. Click on the "Demo source" button in the MyDacDemo toolbar to find out how the demo you
selected was implemented. The source code behind the demo project will appear in the view panel.
Try to find the places where MyDAC components are used to connect to the database.

9. Click on the "Form as text" button in the MyDacDemo toolbar to view the code behind the interface
to the demo. Try to find the places where MyDAC components are created on the demo form.

10.Repeat these steps for other demos listed in the explorer window. The available demos are
organized in three folders.

Working with components

A collection of projects that show how to work with the basic MyDAC components.

General demos

A collection of projects that show off the MyDAC technology and demonstrate some ways to
work with data.

MySQL-specific demos

A collection of projects that demonstrate how to incorporate MySQL features in database

applications
11.Wheﬁ‘§/ou are finished working with the project, click on the "Drop" button in the MyDacDemo

toolbar to remove all the schema objects added in Step 6.

Other MyDAC demo projects

MyDAC is accompanied by a number of other demo projects. A description of all the MyDAC demos is
located in the Demo Projects topic.

Compiling and deploying your MyDAC project

Compiling MyDAC-based projects

By default, to compile a project that uses MyDAC classes, your IDE compiler needs to have access to the
MyDAC dcu (obj) files. If you are compiling with runtime packages, the compiler will also need to have
access to the MyDAC bpl files. All the appropriate settings for both these scenarios should take
place automatically during installation of MyDAC. You should only need to modify your
environment manually if you are using one of the MyDAC editions that comes with source code - MyDAC
Professional Edition with Source Code or MyDAC Developer Edition with Source Code.

You can check that your environment is properly configured by trying to compile one of the MyDAC
demo projects. If you have no problems compiling and launching the MyDAC demos, your environment
has been properly configured.

For more information about which library files and environment changes are needed for compiling
MyDAC-based projects, consult the Installation topic.

Deploying MyDAC-based projects

To deploy an application that uses MyDAC, you will need to make sure the target workstation has access
to the following files.

The MySQL client library, if connecting using MySQL client.

The MyDAC bpl files, if compiling with runtime packages.

The MyDAC assembly files, if are using VCL for .NET components.

If you are evaluating deploying projects with MyDAC Trial Edition, you will also need to deploy some
additional bpl files with your application even if you are compiling without runtime packages. As another
trial limitation for C++Builder, applications written MyDAC Trial Edition for C++Builder will only work if
the C++Builder IDE is launched. More information about MyDAC Trial Edition limitations is provided here.
A list of the files which may need to be deployed with MyDAC-based applications is included in the

Deployment topic.

Using the MyDAC documentation

The MyDAC documentation describes how to install and configure MyDAC, how to use MyDAC Demo
Projects, and how to use the MyDAC libraries.

Data Access Components for MySQL

The MyDAC documentation includes a detailed reference of all the MyDAC components and classes. Many
of the MyDAC components and classes inherit or implement members from other VCL, VCL for .NET, CLX
classes and interfaces. The product documentation also includes a summary of all members within each
of these classes. To view a detailed description of a particular component, look it up in the Components
List section. To find out more about a specific standard VCL/CLX class an MyDAC component is inherited
from, see the corresponding topic in your IDE documentation.

At install time, the MyDAC documentation is integrated into your IDE. It can be invoked from the MySQL
menu added to the Menu Bar, or by pressing F1 in an object inspector or on a selected code segment.

How to get help with MyDAC

There are a number of resources for finding help on using MyDAC classes in your project.

If you have a question about MyDAC installation or licensing, consult the
Licensing
and

FAQ
sections.

You can get community assistance and MyDAC technical support on the
MyDAC Support Forum

To get help through the MyDAC Priority Support program, send an email to the MyDAC development
team at mydac@devart.com.

If you have a question about ordering MyDAC or any other Devart product, contact sales@devart.
com.

For more information, consult the Getting Support topic.

© 1997-2012 Devart. All Rights Reserved.

http://www.devart.com/forums/viewforum.php?f=5
mailto:mydac@devart.com
mailto:sales@devart.com
mailto:sales@devart.com

Data Access Components for MySQL 9

4 Features

General usability:

Direct access to server data without using client library. Does not require installation of other data
provider layers (such as BDE and ODBC)

Interface compatible with standard data access methods, such as BDE and ADO

VCL, VCL for .NET, and CLX versions of library available

Separated run-time and GUI specific parts allow you to create pure console applications such as CGlI
Unicode and national charset support

Network and connectivity:

Disconnected Model with automatic connection control for working with data offline

Local Failover for detecting connection loss and implicitly reexecuting certain operations
Support for all existing MySQL protocols including the prepared statement (binary) protocol
SSH and SSL encrypted connection support with Devart SecureBridge

Full support for all current authentication protocols

Ability to search for installed MySQL servers in a local network

Connection timeout and command timeout management

Compatibility:

Full support of the latest versions of MySQL

Support for Embedded MySOQOL server

Support for all MySQL Server data types

Compatible with all IDE versions starting with Delphi 5, C++Builder 5, FreePascal, and Kylix 2
(except Delphi 8)

Includes provider for UniDAC Standard Edition

Wide reporting component support, including support for InfoPower, ReportBuilder, FastReport
Wide support of all standard Borland and third-party visual data-aware controls

Allows you to use Professional Edition of Delphi and C++Builder to develop client/server applications

MySQL Server technology support:

Fast record insertion with TMyLoader component
HANDLER syntax support

Transaction isolation level support

Possibility to retrieve last auto-incremented value
Session identifer retrieval

Server object information retrieval

Row-level and table-level locking support

Performance:

Local

High overall performance
Fast controlled fetch of large data blocks

Optimized string data storing

Advanced connection pooling

High performance applying of cached updates with batches
Caching of calculated and lookup fields

Fast Locate in a sorted DataSet

Preparing of user-defined update statements

data storage operations:

Database-independent data storage with TVirtualTable component
CachedUpdates operation mode

Local sorting and filtering, including by calculated and lookup fields
Local master/detail relationship

Master/detail relationship in CachedUpdates mode

Data access and data management automation:

Automatic data updating with TMyQuery, TMyTable and TMyStoredProc components
Automatic record refreshing
Automatic query preparing

http://devart.com/sbridge/

Data Access Components for MySQL

Automatic checking for row modifications by another user
Support for ftWideMemo field type in Delphi 2006 and higher

Extended data access functionality:
Separate component for executing SQL statements
Simplified access to table data with TMyTable component
BLOB compression support
Support for using macros in SQL
FmtBCD fields support
Ability to customize update commands by attaching external components to TMyUpdateSQL objects
Ability to perform MySQL administration tasks with the TMyServerControl component
Value range retrieval for ENUM and SET fields
Retrieval of output parameters from stored procedures and functions
Automatic retrieval of default field values
Deferred detail DataSet refresh in master/detail relationships
MIDAS technology support
MyDataAdapter component for WinForms and ASP.NET applications

Data exchange:
Transferring data between all types of TDataSet descendants with TCRBatchMove component
Data export and import to/from XML (ADO format)
Ability to synchronize positions in different DataSets
Extended data management with TMyDump, TMyBackup components

Script execution:
Advanced script execution features with TMyScript component
Support for executing individual statements in scripts
Support for executing huge scripts stored in files with dynamic loading
Optimized multi-statement script execution
Ability to use standard MySQL client tool syntax in scripts
Ability to break long-running query execution

SQL execution monitoring:
Extended SQL tracing capabilities provided by TMySQLMonitor component and DBMonitor
Borland SQL Monitor support
Ability to send messages to DBMonitor from any point in your program
Ability to retrieve information about the last query execution

Visual extensions:
Includes source code of enhanced TCRDBGrid data-aware grid control
Customizable connection dialog
Cursor changes during non-blocking execution

Design-time enhancements:
DataSet Manager tool to control DataSet instances in the project
Advanced design-time component and property editors
Integration with dbForge Fusion for MySQL for browsing database schemas, manipulating database
objects and visual building of queries
Automatic design-time component linking
Easy migration from BDE with Migration Wizard
More convenient data source setup with the TMyDataSource component
Syntax highlighting in design-time editors

dbForge Fusion for MySQL main features
Integration with MyDirect .NET for enhanced component designers and drag-and-drop features
Stored routines and SQL script debugger
SQL code completion and navigation
Visual query builder
Database Explorer
Visual object editors
Database search engine
Code template library
Security Manager
Session Manager
Export/Import Wizards

Data Access Components for MySQL

Product clarity:
Complete documentation sets
Printable documentation in PDF format
A large amount of helpful demo projects

Licensing and support:
Included annual MyDAC Subscription with Priority Support
Licensed royalty-free per developer, per team, or per site

11

© 1997-2012 Devart. All Rights Reserved.

12

Data Access Components for MySQL

5 What's New

05-Sep-12 New Features in MyDAC 7.5:
Rad Studio XE3 is supported
Windows 8 is supported

21-Jun-12 New Features in MyDAC 7.2:
Update 4 Hotfix 1 for RAD Studio XE2, Delphi XE2, and C++Builder XE2 is now required
Data Type Mapping support is added
Data encryption in a client application is added
The TMyEncryptor component for data encryption is added
Calling of the TCustomDASQL.BeforeExecute event is added

23-Nov-11 New Features in MyDAC 7.1:
Update 4 for RAD Studio XE2, Delphi XE2, and C++Builder XE2 is now required
Mac OS X and iOS in RAD Studio XE2 is supported
FireMonkey support is improved
Lazarus 0.9.30.4 and FPC 2.6.0 are supported
Mac OS X in Lazarus is supported
Linux x64 in Lazarus is supported
FreeBSD in Lazarus is supported
Performance of SQL query generation for stored procedure execution is improved

15-Sep-11 New Features in Data Access Components for MySQL 7.00:
Embarcadero RAD Studio XE2 is supported
Application development for 64-bit Windows is supported
FireMonkey application development platform is supported
Support of master/detail relationship for TVirtualTable is added
OnProgress event in TVirtualTable is added
TDADataSetOptions.SetEmptyStrToNull property that allows inserting NULL value instead of empty
string is added

28-Apr-11 New Features in Data Access Components for MySQL 6.10:
Lazarus 0.9.30 and FPC 2.4.2 is supported
Now the BreakExec method also stops working when getting record count if QueryRecCount=True

13-Sep-10 New Features in Data Access Components for MySQL 6.00:
Embarcadero RAD Studio XE suppored

10-Sep-09 New Features in Data Access Components for MySQL 5.90:
Embarcadero RAD Studio 2010 supported

02-Apr-09 New Features in Data Access Components for MySQL 5.80:
Free Pascal under Linux supported
Added NoPreconnect property to TMyScript for executing CONNECT and CREATE DATABASE
commands

23-0ct-08 New Features in Data Access Components for MySQL 5.70:
Delphi 2009 and C++Builder 2009 supported
Extended Unicode support for Delphi 2007 added (special Unicode build)
Free Pascal 2.2 supported
Powerful design-time editors implemented in Lazarus
Completed with more comprehensive structured Help

21-Aug-08 New Features in Data Access Components for MySQL 5.55:
dbForge Fusion for MySQL support added

23-May-08 New Features in Data Access Components for MySQL 5.50:
Added compatibility with UniDAC
Improved support of default field values
The new component for metadata receiving added

Data Access Components for MySQL 13

Added ability to specify key fields for a dataset
Added support of automatic records locking

27-Sep-07 New Features in Data Access Components for MySQL 5.20:
CodeGear RAD Studio 2007 supported
Added the OnProgress event in TMyLoader

12-Jun-07 New Features in MySQL Data Access Components 5.10:
C++Builder 2007 supported

22-Mar-07 New Features in MySQL Data Access Components 5.00:

New functionality:
Delphi 2007 for Win32 supported
Implemented Disconnected Model for working offline and automatically connecting and
disconnecting
Implemented Local Failover for detecting connection loss and implicitly re-executing some
operations
Support for SSH protocol via SecureBridge component set added
Added_DataSet Manager to control project datasets
Integration with MyDeveloper Tools 2.00 added
New TCRBatchMove component for transferring data between all types of TDataSet descendants
added
Output parameters from stored procedures and functions retrieval supported
Data export and import to/from XML supported
WideMemo field type in Delphi 2006 supported
AutoRefresh mode support added
Option to break long-duration query execution added
Ability to search for installed MySQL servers on the network added
Support for sending messages to DBMonitor from any point in your program added

Support for more MySQL server functionality:
HANDLER syntax support in TMyTable added
Enumeration value retrieval for ENUM and SET fields added

Extensions and improvements to existing functionality:
General performance improved
Master/detail functionality extensions:
Local master/detail relationship support added
Support for master/detail relationships in CachedUpdates mode added
TMyScript component improvements:
Support for executing individual statements in scripts added
Support for executing huge scripts stored in files with dynamic loading added
Ability to use standard MySQL client tool syntax added
Working with calculated and lookup fields improvements:
Local sorting and filtering added
Record location speed increased
Improved working with lookup fields
Greatly increased performance of applying updates in CachedUpdates mode
Connection pool functionality improvements:
Efficiency significantly improved
API for draining the connection pool added
Option to ignore or replace records with duplicated key values in TMyLoader added
Enhanced TMyServerControl functionality for working with server values
Ability to customize update commands by attaching external components to TMyUpdateSQL objects
added
Ability to include all fields in automatically generated update SQLs added

Usability improvements:
Syntax highlighting in design-time editors added
Completely restructured and clearer demo projects

28-Aug-06 New Features in MySQL Data Access Components 4.40:
Optimized TDALoader.CreateColumns method
Support for Professional editions of Turbo Delphi, Turbo Delphi for .NET, Turbo C++ added
Added support for macros names in which first symbol is digit
Added capability to use quoted field names in IndexFieldNames property

http://www.devart.com/sbridge/

Data Access Components for MySQL

18-May-06 New Features in MySQL Data Access Components 4.30.1:
MyDAC is now compatible with InterBase Data Access Components
Modifying FieldDefs in TVirtualTable component accelerated
Performance of SaveToFile and LoadFromFile functions in TVirtualTable improved

26-Jan-06 New Features in MySQL Data Access Components 4.30:
Support for Delphi 2006 added
BIT fields of MySQL 5.0 and above are now represented as TLargeintField
FastReport 3.20 support added
Added server version checking on Prepare method
Added capability to close DataSet quicker when FetchAll property is False
Improved performance of updating recordsets with multiple fields
TCustomDADataSet.Locate now centers position in DBGrid
Added support for MIDAS TDataSet.PSExecuteStatement ResultSet parameter

07-Dec-05 New Features in MySQL Data Access Components 4.00.2:
Added 'delimiter' keyword support in TMyScript
TCustomDADataSet.FindKey, TCustomDADataSet.FindNearest methods added for BDE compatibility
Added BIT and INTEGER types support in parameters of stored procedures

02-Sep-05 New Features in MySQL Data Access Components 4.00.1:
Deferred detail dataset refresh feature with TCustomDADataSet.Options.DetailDelay property added
TCustomMyConnection.Ping behavior in case connection loss improved
FieldDefs.Update behavior in case of temporary tables improved
Added capability to prevent simultaneous access of several MyEmbConnection instances to single
data folder

29-Jul-05 New Features in MySQL Data Access Components 4.00:
Unicode support added
Enhanced support for Embedded MySQL Server with TMyEmbConnection component added
Binary protocol support for MySQL 4.1 and above added
Encrypted SSL connections support with OpenSSL added
Enhanced support for national charsets added with TMyConnectionOptions.Charset property
BLOB compression support added
RefreshQuick for TCustomMyDataSet added
Retrieve field's default value added with TCustomMyDataSet.Options.DefaultValues property
Large amount of data support for TMyDump added
Server start/stop ability for TMyServerControl added
TMyBuilder component added for easy using SQL Builder for MySQL at run-time
Optimized macros processing
FAQ added
Tested with MySQL server 5.0.9

30-May-05 New Features in MySQL Data Access Components 3.55:
MySQL 5.0.3 BIT type support added
Optimized MySQLMonitor BLOB parameters processing
Ability of automatic preparing query with TCustomDADataSet.Options.AutoPrepare property added
Ability to synchronize position at different DataSets with TCustomDADataSet.GotoCurrent method
added

21-Jan-05 MySQL Data Access Components 3.50:
Support for Delphi 2005 added
TMySQLMonitor.OnSQL can return statement encoded to an escaped SQL string
Support for ConnectionTimeout in TMyConnection.ExecSQL added
CommandTimeout default value set to O (infinite)
TCustomDADataSet.UpdateObject support for MIDAS added
Lock Demo added
DECIMAL column type in MySQL 5.0.3 support added
Update Pack 3 is required for Delphi 8

21-Oct-04 New Features in MySQL Data Access Components 3.30:
Full support for all current authentication protocols added
Generating update SQL for tables from other database added
TCustomMyDataSet.Options.EnableBoolean property added
TMyConnection.Threadld property added

Data Access Components for MySQL

IxPartialCompare option for DataSet.LocateEx added

FastReport3 engine and demo added

Ability to store only a part of data in TMyDump.BackupQuery added
Creating additional connection for TMyDump disabled
TCustomMyDataSet.CommandTimeout property added

"True" value for boolean fields and parameters stored as "1"

10-Sep-04 New Features in MySQL Data Access Components 3.10.2:
Common class DADataAdapter isolated to Devart.Dac.AdoNet.dll library

22-Jul-04 New Features in MySQL Data Access Components 3.10.1 new features:
Assembly Devart.MyDac.Data renamed to Devart.MyDac.AdoNet
Fatal errors processing improved
TINYINT(21) fields now represented as TBooleanField

08-Jul-04 New Features in MySQL Data Access Components 3.10:
Local sorting ability with TMemDataSet.IndexFieldNames added
TCustomMyTable.IndexDefs property added
TMyConnection.Options.NumericType property added
TMyStoredProc component added
MyDataAdapter component added

29-Apr-04 New Features in MySQL Data Access Components 3.00.1:
TCustomMyDataSet.Options.LongStrings property added
TMyLoader.OnPutData event published again
Trial version IDE warning disabled
TCRColumn.TotalValue property added

09-Apr-04 New Features in MySQL Data Access Components 3.00:
Support for Delphi 8 added
Connection pooling support
Performance improved
TMyLoader performance greatly improved
TCRGrid sources in Standard edition
.NET Windows Forms demo project added
ASP.NET demo project added
Global variable MySQLClientLibrary added
New time trial limitation

05-Feb-04 New Features in MySQL Data Access Components 2.00.3:
SELECT " support added
Method TMyConnection.Ping added
Method TMyConnection.GetExecutelnfo added
Mouse wheel support added to CRDBGrid
Embedded MySQL Server Demo added
ConnectDialog Demo added

30-Dec-03 New Features in MySQL Data Access Components 2.00.2:
BDE Migration Wizard algorithm optimized
Limited MySQL server 4.1.1 support added
If libmysqgl.dll not found then raise EOSError (instead of Exception)
Property TCustomMyDataSet.Insertld: int64 added
timestamp support added for CheckRowVersion = True

24-Nov-03 New Features in MySQL Data Access Components 2.00.1:
Property MyConnection.Options.Direct is set to True by default
TCustomMyDataSet.Lock method added
Autolnc fields can be modified now

02-0Oct-03 New Features in MySQL Data Access Components 2.00:
Access to MySQL without client library using DirectMySQLObjects by Cristian Nicola
Prepare support and new parameter binding schema for MySQL 4.1 added
Supports working with MySQL server and Embedded server at the same time
BDE migration wizard
TMyDump component to store a database or its parts as a script
TMyBackup component for backup coping specified tables on the server

15

Data Access Components for MySQL

TMyServerControl component to manage the server and standard service tasks execution
TMyLoader component for fast loading data to the server

New options of TMyConnection such as Compress, Protocol, Direct and Embedded added
New properties ClientVersion, ServerVersion were added to TMyConnection

Method ExecSQL in TMyConnection added

Methods GetTableNames and GetDatabaseNames in TMyConnection added

Property TMyConnection.Charset added

Property TMyConnection.lIsolationLevel added

Methods LockTable and UnlockTable added to TCustomMyDataset

Properties Limit and Offset added to TCustomMyTable

Method TCustomMyTable.EmptyTable added

FetchAll set to True by default

Large SQL (INSERT/UPDATE BLOB's) executing performance greatly improved

06-Jun-03 New Features in MySQL Data Access Components 1.50:
Embedded MySQL Server support added
MySQL Server 4.1 limited support added
Properties Port and Database in ConnectForm added
RefreshRecord performance improved
InfoPower demos added
'Explain query..." added to design-time MyQuery menu
'Show CREATE..." added to design-time MyQuery and MyTable menus
SQL Generator improved - support for complicated statements added
SQL Generator improved - "Quote names" checkbox added
Complex keys support added
Design-time SQL Generator was simplified
TParam -> TDAParam
Embedded MySQL Server support added for Kylix
Check for datadir present added
Changed behavior on calculating affected rows count

04-Apr-03 New Features in MySQL Data Access Components 1.30.2:
Unit MySQLAccess renamed to MyClasses
Property TMyDataSetOptions.LongStrings removed
Parameters parsing improved. Symbol ':' in string literals is ignored
Search algorithm for 'libmysqglclient.so' under Linux improved

24-Feb-03 New Features in MySQL Data Access Components 1.30.1:
Refresh improved - current record is restored after Refresh call
Property MyConnection.Options.KeepDesignConnected added
Property MyConnectDialog.StoreLoglnfo published
Property MyScript.DataSet was published
Property TMyCommand.Insertld: int64 added
TINYTEXT -> TMemokField, TINYBLOB -> TBlobField
Support for TIMESTAMP (10), TIMESTAMP (4), TIMESTAMP (2) added
Support for LIKE expressions in Filter property added (D2706)

30-Jan-03 New Features in MySQL Data Access Components 1.30:
MySQL v4.0 support added
Dataset 'with many fields' update performance improved
Improved performance for opening queries with lot of parameters

26-Dec-02 New Features in MySQL Data Access Components 1.20:
Kylix2 and Kylix3 support
ReportBuilder demos added
DBMonitor client implementation moved to COM server
Fetch performance improved for DataSet.FetchAll = True
‘Connection Lost' error processing improved

08-0Oct-02 New Features in MySQL Data Access Components 1.10:
Delphi 7 support
New memory management model for ftString and ftVarBytes types. Allows significantly decrease
memory usage on large tables fetch. Controlled by FlatBuffers dataset option
Support for blob fields in CachedUpdates mode

Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

17

18

Data Access Components for MySQL

6 Demo Projects

MyDAC includes a number of demo projects that show off the main MyDAC functionality and
development patterns.

The MyDAC demo projects consist of one large project called MyDacDemo with demos for all main
MyDAC components, use cases, and data access technologies, and a number of smaller projects on how
to use MyDAC in different IDEs and how to integrate MyDAC with third-party components.

Most demo projects are built for Delphi, Borland Developer Studio, and Kylix. There are only two MyDAC
demos for C++Builder. However, the C++Builder distribution includes source code for all the other demo

projects as well.

Where are the MyDAC demo projects located?

In most cases all the MyDAC demo projects are located in "%MyDac%\Demos\".

In Delphi 2007 for Win32 under Windows Vista all the MyDAC demo projects are located in "My
Documents\Devart\MyDac for Delphi 2007\Demos", for example "C:\Documents and Settings\All Users
\Documents\Devart\MyDac for Delphi 2007\Demos\".

The structure of the demo project directory depends on the IDE version you are using.

For most new IDEs with .NET support, the structure will be as follows.

Demos
dotNet
MyDacDemo [.NET version of the main MyDAC demo project]
TechnologySpecific

Embedded [.NET version of the Embedded MySQL server using demo]
SecureBridge [.NET version of A component and a demo for integration with the
SecureBridge library]
Miscellaneous
[Some other _NET demo projects]

Win32
MyDacDemo [Win32 version of the main MyDAC demo project]
ThirdParty
[A collection of demo projects on integration with third-party components]
TechnologySpecific

Embedded [Win32 version of the Embedded MySQL server using demo]
SecureBridge [A component and a demo for integration with the SecureBridge
library]
Miscel laneous
[Some other Win32 demo projects on design technologies]
In Delphi 5, 6, 7, C++Builder 5, 6, , and FreePascal .NET is not supported, and the root directories is
omitted. For these IDEs you will see the following structure.
Demos
MyDacDemo [The main MyDAC demo project]
TechnologySpecific
Embedded [Win32 version of the Embedded MySQL server using demo]
SecureBridge [A component and a demo for integration with the SecureBridge
library]
ThirdParty
[A collection of demo projects on integration with third-party components]

Miscellaneous
[Some other demo projects on design technologies]

MyDacDemo is the main demo project that shows off all the MyDAC functionality. The other directories
contain a number of supplementary demo projects that describe special use cases. A list of all the
samples in the MyDAC demo project and a description for the supplementary projects is provided in the
following section.

Note: This documentation describes ALL the MyDAC demo projects. The actual demo projects you will
have installed on your computer depends on your MyDAC version, MyDAC edition, and the IDE version
you are using. The integration demos may require installation of third-party components to compile and
work properly.

Instructions for using the MyDAC demo projects

To explore a MyDAC demo project,
1. Launch your IDE.

Data Access Components for MySQL 19

2. In your IDE, choose File | Open Project from the menu bar.

3. Find the directory you installed MyDAC to and open the Demos folder.

4. Browse through the demo project folders located here and open the project file of the demo you
would like to use.

5. Compile and launch the demo. If it exists, consult the ReadMe.txt file for more details.

The included sample applications are fully functional. To use the demos, you have to first set up a
connection to MySQL. You can do so by clicking on the "Connect" button.

Many demos may also use some database objects. If so, they will have two object manipulation buttons,
"Create" and "Drop". If your demo requires additional objects, click "Create" to create the necessary
database objects. When you are done with a demo, click "Drop" to remove all the objects used for the
demo from your database.

Note: The MyDAC demo directory includes two sample SQL scripts for creating and dropping all the test
schema objects used in the MyDAC demos. You can modify and execute this script manually, if you
would like. This will not change the behavior of the demos.

You can find a complete walkthrough for the main MyDAC demo project in the Getting Started topic. The
other MyDAC demo projects include a ReadMe.txt file with individual building and launching instructions.

Demo project descriptions

MyDacDemo

MyDacDemo is one large project which includes three collections of demos.
Working with components
A collection of samples that show how to work with the basic MyDAC components.
General demos
A collection of samples that show off the MyDAC technology and demonstrate some ways to work
with data.
MySQL-specific demos
A collection of samples that demonstrate how to incorporate MySQL features in database
applications.
MyDacDemo can be opened from %MyDac%\Demos\MyDacDemo\MyDacDemo.dpr (.bdsproj). The
following table describes all demos contained in this project.

Working with Components

Name Description

Command Uses TMyCommand to execute SQL statements. Demonstrates how to execute
commands in a separate thread, and how to break long-duration query
execution.

ConnectDialog Demonstrates how to customize the MyDAC connect dialog. Changes the
standard MyDAC connect dialog to two custom connect dialogs. The first
customized sample dialog is inherited from the TForm class, and the second
one is inherited from the default MyDAC connect dialog class.

CRDBGrid Demonstrates how to work with the TCRDBGrid component. Shows off the
main TCRDBGrid features, like filtering, searching, stretching, using compound
headers, and more.

Loader Uses the TMyLoader component to quickly load data into a server table.
TMyLoader loads data by grouping several data rows into a single INSERT
statement and executing this statement. This way is much faster then execuing
one INSERT statement per row. This demo also compares the two TMyLoader
data loading handlers: GetColumnData and PutData.

Query Demonstrates working with TMyQuery, which is one of the most useful MyDAC
components. Includes many TMyQuery usage scenarios. Demonstrates how to
edit data and export it to XML files.

Note: This is a very good introductory demo. We recommend starting here
when first becoming familiar with MyDAC.

StoredProc Uses TMyStoredProc to access an editable recordset from an MySQL stored
procedure in the client application.
Table Demonstrates how to use TMyTable to work with data from a single table on

the server without writing any SQL queries manually. Performs server-side
data sorting and filtering and retrieves results for browsing and editing.

UpdateSQL Demonstrates using the TMyUpdateSQL component to customize update
commands. Lets you optionally use TMyCommand and TMyQuery objects for
carrying out insert, delete, query, and update commands.

Data Access Components for MySQL

VirtualTable Demonstrates working with the TVirtualTable component. This sample shows
how to fill virtual dataset with data from other datasets, filter data by a given
criteria, locate specified records, perform file operations, and change data and
table structure.

General Demos

Name Description

CachedUpdates Demonstrates how to perform the most important tasks of working with data
in CachedUpdates mode, including highlighting uncommitted changes,
managing transactions, and committing changes in a batch.

FilterAndIndex Demonstrates MyDAC's local storage functionality. This sample shows how to
perform local filtering, sorting and locating by multiple fields, including by
calculated and lookup fields.

MasterDetail Uses MyDAC functionality to work with master/detail relationships. This sample
shows how to use local master/detail functionality. Demonstrates different
kinds of master/detail linking, including linking by SQL, by simple fields, and by
calculated fields.

Pictures Uses MyDAC functionality to work with BLOB fields and graphics. The sample
demonstrates how to retrieve binary data from MySQL database and display it
on visual components. The sample also shows how to load and save pictures to
files and to the database.

Text Uses MyDAC functionality to work with text. The sample demonstrates how to
retrieve text data from MySQL database and display it on visual components.
The sample also shows how to load and save text to files and to the database.

Transactions Demonstrates the recommended approach for managing transactions with the

TMyConnection component. The TMyConnection interface provides a wrapper
for MySQL server commands like START TRANSACTION, COMMIT, ROLLBACK.

MySQL-specific Demos

Name Description

Lock Demonstrates two kinds of row-level locking (immediate locking and delayed
locking) with the InnoDB storage engine. This functionality is based on the
following MySQL commands: SELECT ... FOR UPDATE and SELECT ... LOCK IN
SHARE MODE.

Supplementary Demo Projects

MyDAC also includes a number of additional demo projects that describe some special use cases, show
how to use MyDAC in different IDEs and give examples of how to integrate it with third-party
components. These supplementary MyDAC demo projects are sorted into subfolders in the %MyDac%
\Demos\ directory.

Location Name Description

dotNet/ [folder appears only for IDEs with support for .NET]
Uses MyDataAdapter to create a simple ASP .NET
application. This demo shows how to create an ASP.

AspNet NET application that lets you connect to a database and
execute queries. Application displays query results in a

lI\J/ISisceIIaneo DataGrid and sends user changes back to the database.
Shows how to use MyDAC to create a WinForms
WinForms application. This demo project creates a simple

WinForms application and fills a data grid from an
MyDataAdapter data source.

MyDacDem MyDacDe [.NET version of the main MyDAC demo project - see
o) mo above]

Demonstrates working with Embedded MySQL server
by using the TMyEmbConnection component. This
Technology Embedded demo creates a database structure, if it does not
Specific already exist, opens a table from this database. Also
this demo shows how to process the log messages of
the Embedded server.

[folder appears only for IDEs with support for .NET. For
all other IDEs contents appear in root]

Win32/

Data Access Components for MySQL

ThirdParty

Technology
Specific

FastRepor
t

InfoPowe
r

IntrawWeb

QuickRep
ort

ReportBui
Ider

Embedded

SecureBri
dge

Demonstrates how MyDAC can be used with FastReport
components. This project consists of two parts. The
first part is several packages that integrate MyDAC
components into the FastReport editor. The second part
is a demo application that lets you design and preview
reports with MyDAC technology in the FastReport
editor.

Uses InfoPower components to display recordsets
retrieved with MyDAC. This demo project displays an
InfoPower grid component and fills it with the result of
an MyDAC query. Shows how to link MyDAC data
sources to InfoPower components.

A collection of sample projects that show how to use
MyDAC components as data sources for IntraWeb
applications. Contains IntraWeb samples for setting up
a connection, querying a database and modifying data
and working with CachedUpdates and MasterDetail
relationships.

Lets you launch and view a QuickReport application
based on MyDAC. This demo project lets you modify
the application in design-time.

Uses MyDAC data sources to create a ReportBuilder
report that takes data from MySQL database. Shows
how to set up a ReportBuilder document in design-time
and how to integrate MyDAC components into the
Report Builder editor to perform document design in
run-time.

Demonstrates working with Embedded MySQL server
by using the TMyEmbConnection component. This
demo creates a database structure, if it does not
already exist, opens a table from this database. Also
this demo shows how to process the log messages of
the Embedded server.

The demo project demonstrates how to integrate the
SecureBridge components with MyDAC to ensure
secure connection to MySQL server through an SSH
tunnel and SSL.

This demo consists of three parts. The first part is a
package that contains TMySSHIOHandler and
TMySSLIOHandler component. These components
provide integration with the SecureBridge library. The
second part is two sample projects that demonstrate
how to connect to MySQL server through an SSH
server and through SSL, connect to the SSH server
with SecureBridge by password or by public key,
generate reliable random numbers, enable local port
forwarding.

For more information see the Readme.html file in the
demo directory.

21

http://devart.com/sbridge
http://devart.com/sbridge

Data Access Components for MySQL

A general demo project about how to create MyDAC-
based applications with C++Builder. Lets you execute
SQL scripts and work with result sets in a grid. This is
one of the two MyDAC demos for C++Builder.

Demonstrates creating and loading DLLs for MyDAC-
based projects. This demo project consists of two parts
- an My_DIl project that creates a DLL of a form that
sends a query to the server and displays its results,
and an My_Exe project that can be executed to display
a form for loading and running this DLL. Allows you to
build a dll for one MyDAC-based project and load and
test it from a separate application.

Demonstrates the recommended approach to working
with unstable networks. This sample lets you perform
transactions and updates in several different modes,
simulate a sudden session termination, and view what
happens to your data state when connections to the
server are unexpectedly lost. Shows off
CachedUpdates, LocalMasterDetail, FetchAll, Pooling,
and different Failover modes.

Demonstrates using MIDAS technology with MyDAC.
This project consists of two parts: a MIDAS server that
processes requests to the database and a thin MIDAS

Midas client that displays an interactive grid. This demo
shows how to build thin clients that display interactive
components and delegate all database interaction to a
server application for processing.

Demonstrates working with the TVirtualTable
component. This sample shows how to fill virtual
VirtualTab dataset with data from other datasets, filter data by a
leCB given criteria, locate specified records, perform file
operations, and change data and table structure. This is
one of the two demo projects for C++Builder

MyDacDe MyDacDe [Win32 version of the main MyDAC demo project - see
mo mo above]

CBuilder

DIl

Miscellaneo FailOver
us

©

1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 23

7 Component List

This topic presents a brief description of the components included in the Data Access Components for
MySQL library. Click on the name of each component for more information. These components are added
to the MySQL Access page of the Component palette except for TCRBatchMove and TVirtualTable
components. TCRBatchMove and TVirtualTable components are added to the Data Access page of the
Component palette. Basic MyDAC components are included in all MyDAC editions. MyDAC Professional
and Developer Edition components are not included in MyDAC Standard Edition.

Basic MyDAC components

f
N TMyConnection Lets you set up and control connections to MySQL database server.
4
= Uses SQL statements to retrieve data from MySQL table or tables and
?|| TMyQuer supply it to one or more data-aware components through a
ul TDataSource component. Provides flexible data update functionality.
¥ TMvCommand Executes SQL statements and stored procedures, which do not return
My A OEANg rowsets.
Lets you retrieve and update data in a single table without writing SQL
Muj TMyTable statements.

» TMyStoredProc Executes stored procedures and functions.
El

it 3 TMyUpdateSQL Lets you tune update operations for a DataSet component.
El

Provides an interface between MyDAC dataset components and data-

oy
-y| TMyDataSource
aware controls on a form.

TMyScript Executes sequences of SQL statements.

Interface for monitoring dynamic SQL execution in MyDAC-based

¥ | TMySOLMonitor rfac
My applications.

= TMyConnectDialog Used to build custom prompts for username, password and server
AT name.
Dataset that stores data in memory. This component is placed on the
=_| TVirtualTable Data Access page of the Component palette, not on the MySQL Access
RAM page.
J . .
ihl MvDataAdapter .NET component, uses TDataSet as data source for retrieving and
(i tybatahcapler saving data to System.Data.DataSet.

MyDAC Professional and Developer Edition components

- TMyEncryptor Represents data encryption and decryption in client application.
E. TMylLoader Provides quick loading data to MySQL database.
- Serves to store a database or its parts as a script and also to restore
gt TiyDump database from received script.
e TMyBackup Serves for backup copying specified tables on the server.

f@ TMyServerControl Serves to control the server and execution of standard service tasks.
El

M| TMyEmbConnectio
¥ n

Is used to establish connection to Embedded MySQL server.

24 Data Access Components for MySQL

= TMyBuilder Serves to mange SQL Builder for MySQL Add-in.
|
= . e .
- TMyMetaData Retrieves metadata on specified SQL object.
e

Transfers data between all types of TDataSets descendants. This

—Ta TCRBatchMove component is placed on the Data Access page of the Component
EF palette, not on the MySQL Access page.

See Also
Hierarchy chart

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 25

8 Hierarchy Chart

Many MyDAC classes are inherited from standard VCL/CLX classes. The inheritance hierarchy chart for
MyDAC is shown below. The MyDAC classes are represented by hyperlinks that point to their description
in this documentation. A description of the standard classes can be found in the documentation of your
IDE.

TObject
TPersistent
TComponent
TCustomConnection
TCustomDAConnection
TCustomMyConnection

TMyConnection
TMyEmbConnection

TDataSet
TMemDataSet
TCustomDADataSet
TCustomMyDataSet
TMyQuer:
TCustomMyTable
TMyTable
TCustomMyStoredProc
TMyStoredProc
TMyServerControl
TDAMetaData
TMyMetaData
TVirtualTable
TDataSource
TCRDataSource
TMyDataSource
DADataAdapter

MyDataAdapter
TCRBatchMove

TCustomConnectDialog
TMyConnectDialog
TCustomDASQL
TMyCommand
TCustomDASQLMonitor
TMySQLMonitor
TDADuUmp
TMyDump
TDALoader
TMyLoader
TDAScript
TMyScript
TMyBackup
TMyBui lder

TCREncryptor
TMyEncryptor

© 1997-2012 Devart. All Rights Reserved.

26

Data Access Components for MySQL

9 Requirements

Requirements for using MyDAC in Direct mode

If you use MyDAC to connect to MySQL in Direct mode, you do not need to have MySQL client library on
your machine or deploy it with your MyDAC-based application.

Requirements for using MyDAC in Client mode

If you use MyDAC to connect to MySQL in Client mode, you need to have access to the MySQL client
library. In particular, you will need to make sure that the MySQL client library is installed on the
machines your MyDAC-based application is deployed to. MySQL client library is libmysqgl.dll file for
Windows, or libmysqlclient.so (libmysqlclient.so.X) for Linux. Please refer to descriptions of LoadLibrary()
and dlopen() functions accordingly for detailed information about MySQL client library file location. You
may need to deploy the MySQL client library with your application or require that users have it installed.

Requirements for using Embedded MySQL server

If you are working with Embedded server, you should have access to Embedded MySQL server library
(libmysgld.dll). For more information visit Using Embedded server.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 27

10 Compatibility

MySQL Compatibility

MyDAC supports the following database servers:
MySQL servers: 6.0, 5.5, 5.1, 5.0, 4.1, 4.0, and 3.23
MySQL Embedded servers: 6.0, 5.5, 5.1, 4.1, and 4.0

IDE Compatibility

MyDAC is compatible with the following IDEs:
Embarcadero RAD Studio XE3
Embarcadero Delphi XE3 for Win32
Embarcadero Delphi XE3 for Win64
Embarcadero Delphi XE3 for OSX32
Embarcadero C++Builder XE3 for Win32
Embarcadero C++Builder XE3 for OSX32
Embarcadero RAD Studio XE2 (Requires Update 4 Hotfix 1)
Embarcadero Delphi XE2 for Win32, Win64, and OSX32
Embarcadero Delphi XE2 for Win64
Embarcadero Delphi XE2 for OSX32
Embarcadero C++Builder XE2 for Win32 and OSX32
Embarcadero C++Builder XE2 for OSX32
Embarcadero RAD Studio XE
Embarcadero Delphi XE
Embarcadero C++Builder XE
Embarcadero RAD Studio 2010
Embarcadero Delphi 2010
Embarcadero C++Builder 2010
CodeGear RAD Studio 2009 (Requires Update 3)
CodeGear Delphi 2009
CodeGear C++Builder 2009
CodeGear RAD Studio 2007
CodeGear Delphi 2007 for Win32
CodeGear Delphi 2007 for .NET
CodeGear C++Builder 2007
Borland Developer Studio 2006
Borland Delphi 2006 for Win32
Borland Delphi 2006 for .NET
Borland C++Builder 2006
Turbo Delphi Professional
Turbo Delphi for .NET Professional
Turbo C++ Professional
Borland Delphi 2005
Borland Delphi 7
Borland Delphi 6 (Requires Update Pack 2 — Delphi 6 Build 6.240)
Borland Delphi 5
Borland C++Builder 6 (Requires Update Pack 4 — C++Builder 6 Build 10.166)
Borland C++Builder 5
Lazarus 0.9.30.4 and Free Pascal 2.6.0 for Windows, Linux, Mac OS X, FreeBSD for 32-bit and 64-
bit platforms

Only Architect, Enterprise, and Professional IDE editions are supported. For Delphi XE/XE2/XE3, C+
+Builder XE/XE2/XE3 MyDAC additionally supports Starter Edition.

Lazarus and Free Pascal are supported only in Trial Edition and in Professional and Developer editions
with source code.

Supported Target Platforms
Windows, 32-bit and 64-bit
Mac OS X
iOS (only in Delphi XE2 in Poffesional and Developer edition with source code)

http://edn.embarcadero.com/article/42282
http://www.embarcadero.com/products/delphi/
http://www.embarcadero.com/products/cbuilder-xe2/
http://cc.embarcadero.com/item/26921
http://edn.embarcadero.com/article/29791
http://edn.embarcadero.com/article/29793
http://www.lazarus.freepascal.org/
http://www.freepascal.org/

28 Data Access Components for MySQL

Linux, 32-bit and 64-bit (only in Lazarus and Free Pascal)
FreeBSD (only in Lazarus and Free Pascal)

Note that support for 64-bit Windows was introduced in Delphi XE2, and is not available in C++Builder

and older versions of Delphi. Support for Mac OS X was introduced in Delphi XE2 and C++Builder XE2,
and is not available in older versions of Delphi and C++Builder.

Devart Data Access Components Compatibility

All DAC products are compatible with each other.
But, to install several DAC products to the same IDE, it is necessary to make sure that all DAC products
have the same common engine (BPL files) version. The latest versions of DAC products or versions with

the same release date always have the same version of the common engine and can be installed to the
same IDE.

dbForge Fusion for MySQL Compatibility
The current version of MyDAC is compatible with dbForge Fusion 4.xx for RAD Studio 2007 - XE2

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 29

11 Installation

This topic contains the environment changes made by the MyDAC installer. If you are having problems
with using MyDAC or compiling MyDAC-based products, check this list to make sure your system is
properly configured.

Compiled versions of MyDAC are installed automatically by the MyDAC Installer for all supported IDEs
except for Kylix and Lazarus. Versions of MyDAC with Source Code must be installed manually.
Installation of MyDAC from sources is described in the supplied ReadMeSrc.txt file.

Before installing MyDAC ...

Two versions of MyDAC cannot be installed in parallel for the same IDE, and, since the Devart Data
Access Components products have some shared bpl files, newer versions of MyDAC may be incompatible
with older versions of ODAC, IBDAC, and SDAC.

So before installing a new version of MyDAC, uninstall any previous version of MyDAC you may have,
and check if your new install is compatible with other Devart Data Access Components products you
have installed. For more information please see Using several products in one IDE. If you run into
problems or have any compatibility questions, please email mydac@devart.com

Note: You can avoid performing MyDAC uninstallation manually when upgrading to a new version by
directing the MyDAC installation program to overwrite previous versions. To do this, execute the
installation program from the command line with a /force parameter (Start | Run and type mydacXX.
exe /force, specifying the full path to the appropriate version of the installation program).

Installed packages

The MyDAC package libraries are divided into Win32 project files and .NET project files.
Note: %MyDAC% denotes the path to your MyDAC installation directory.

Delphi/C++Builder Win32 project packages

Name Description Location

dacXX.bpl DAC run-time package Windows\System32
dcldacXX.bpl DAC design-time package Delphi\Bin
dacvclIXX.bpl* DAC VCL support package Delphi\Bin
mydacXX.bpl MyDAC run-time package Windows\System32
dcimydacXX.bpl MyDAC design-time package Delphi\Bin
dclmysqglmonXX.bpl TMySQLMonitor component Delphi\Bin
mydacvclXX.bpl* VCL support package Delphi\Bin
crcontrolsXX.bpl TCRDBGrid component Delphi\Bin

* Not included in Delphi 5 and C++Builder 5. In these IDEs this functionality is distributed among the
other packages.

Delphi for .NET project packages

Name Description Location

Devart.Dac.dll DAC run-time package Global Assembly Cache
Devart.Dac.Design.dll DAC design-time package %MyDAC9%\Bin
Devart.Dac.AdoNet.dll Data provider core package Delphi\Bin

MyDAC Delphi for .NET run-
time package

Devart.MyDac.Design.dll MyDAC design-time package %MyDAC%\Bin
Devart.Vcl.dll TCRDBGrid component Global Assembly Cache

Devart.MyDac.AdoNet. Data provider for MySQL
dil package

Devart.MyDac.dll Global Assembly Cache

Global Assembly Cache

Additional packages for using MyDAC managers and wizards

Name Description Location

mailto:mydac@devart.com

30

Data Access Components for MySQL

datasetmanagerXX.bpl DataSet Manager package Delphi\Bin
mymigwizardXX.dll MyDAC BDE Migration wizard %MyDAC%\Bin

Additional .NET packages for using MyDAC managers and wizards

Name Description Location
(Ej)lflevart.Dac.DsManager. DataSet Manager Assembly Global Assembly Cache
Devart.MyDac. MyDAC BDE Migration wizard Global Assembly Cache
MigWizard.dll* Assembly

* Included in Borland Delphi 8 only

Environment Changes

To compile MyDAC-based applications, your environment must be configured to have access to the
MyDAC libraries. Environment changes are IDE-dependent.
For all instructions, replace %MyDAC% with the path to your MyDAC installation directory

Delphi
%MyDAC%\Lib should be included in the Library Path accessible from Tools | Enviroment options |

Library.

The MyDAC Installer performs Delphi environment changes automatically for compiled versions of
MyDAC.

Delphi for .NET
Devart.Dac and Devart.MyDac should be included in the Namespace prefixes.

%MyDAC%\Lib should be included in the Library Path accessible from Tools | Options | Library - NET.
%MyDAC%\Bin should be included in the Library Path accessible from Tools | Options | Library - NET.
%MyDAC%\Bin should be included in the Component | Installed .NET components | Assembly Search
Path.

The MyDAC Installer performs Delphi for .NET environment changes automatically for compiled versions
of MyDAC.

C++Builder

C++Builder 5, 6:
$(BCB)\MyDAC\Lib should be included in the Library Path of the Default Project Options accessible
from Project | Options | Directories/Conditionals.
$(BCB)\MyDAC\Include should be included in the Include Path of the Default Project Options
accessible from Project | Options | Directories/Conditionals.

C++Builder 2006, 2007:
$(BCB)\MyDAC\Lib should be included in the Library search path of the Default Project Options
accessible from Project | Default Options | C++Builder | Linker | Paths and Defines.
$(BCB)\MyDAC\Include should be included in the Include search path of the Default Project Options
accessible from Project | Default Options | C++Builder | C++ Compiler | Paths and Defines.

The MyDAC Installer performs C++Builder environment changes automatically for compiled versions of
MyDAC.

Kylix

Kylix the only IDE which you will have to configure manually to use both compiled MyDAC libraries and
versions of MyDAC with Source Code. Complete the following steps to configure your Kylix environment.
Replace %0MyDAC% with the path to your MyDAC installation directory.

1. Make MyDAC packages reachable for Kylix. Add the directory where MyDAC packages are installed

to LD_LIBRARY_PATH

LD_LIBRARY_PATH=$LD_L IBRARY_PATH :%MyDAC%
Alternatively, you can copy all the MyDAC packages (*.so) to any directory reachable by Kylix,
such as kylix/bin.

2. Install MyDAC in Kylix. Select Component | Install Packages from the Kylix menu. Press Add button
and select bpldclmydacX.so.X.XX package. On pressing OK, the MyDAC components will be
available in the MySQL Access group.

3. Add %MyDAC%/lib directory to the Search Path of your project.

Lazarus

The MyDAC installation program only copies MyDAC files. You need to install MyDAC packages to Lazarus

Data Access Components for MySQL 31

IDE manually. Open %MyDAC%\Source\Lazarus1\dclmydac.lpk file in Lazarus and press the Install
button. After that Lazarus IDE will be rebuilded with MyDAC packages.

Do not press the the Compile button for the package. Compiling will fail because there are no MyDAC
sources.

To check that your environment has been properly configured, try to compile one of the demo projects
included with MyDAC. The MyDAC demo projects are located in %MyDAC%/Demos.

Installation of Additional Components and Add-ins
dbForge Fusion for MySOL

dbForge Fusion for MySQL is a powerful database development and administration tool for MySQL.
dbForge Fusion for MySQL is available as an add-in for Delphi and C++Builder 2009, CodeGear RAD
Studio 2007, or as a standalone application. For more information, visit the dbForge Fusion for MySQL

page online.

MyBuilder

MyBuilder is an easy to use and versatile MyDAC design-time extension to manipulate data and database
objects of MySQL. With MyBuilder Add-in you can build, execute, verify and optimize your SQL
statements. For more information, visit the MyBuilder page online.

DBMonitor

DBMonitor is a an easy-to-use tool to provide visual monitoring of your database applications. It is

provided as an alternative to Borland SQL Monitor which is also supported by MyDAC. DBMonitor is
intended to hamper application being monitored as little as possible. For more information, visit the
DBMonitor page online.

© 1997-2012 Devart. All Rights Reserved.

http://www.devart.com/dbforge/mysql/fusion/overview.html
http://www.devart.com/dbforge/mysql/fusion/overview.html
http://www.devart.com/mybuilder/
http://devart.com/dbmonitor/

32

Data Access Components for MySQL

12 Deployment

MyDAC applications can be built and deployed with or without run-time libraries. Using run-time libraries
is managed with the "Build with runtime packages" check box in the Project Options dialog box.

Deploying Win32 applications built without run-time packages

You do not need to deploy any files with MyDAC-based applications built without run-time packages,
provided you are using a registered version of MyDAC.

You can check if your application does not require run-time packages by making sure the "Build with
runtime packages" check box is not selected in the Project Options dialog box.

Trial Limitation Warning

If you are evaluating deploying Win32 applications with MyDAC Trial Edition, you will need to deploy the
following BPL files and their dependencies (required IDE BPL files) with your application, even if it is built
without run-time packages:

dacXX.bpl always
mydacXX.bpl always

Deploying Win32 applications built with run-time packages

You can set your application to be built with run-time packages by selecting the "Build with runtime
packages" check box in the Project Options dialog box before compiling your application.
In this case, you will also need to deploy the following BPL files with your Win32 application:

dacXX.bpl always

mydacXX.bpl always

dacvcIXX.bpl if your application uses the MyDacVcl unit
mydacvclXX.bpl if your application uses the MyDacVcl unit
crcontrolsXX.bpl if your application uses the CRDBGrid component

Deploying .NET applications
By default you should deploy the following assemblies with your MyDAC .NET application:

Devart.Dac.dll always

Devart.MyDac.dll always

Devart.Dac. L

AdoNet.dll If your application uses MyDataAdapter component
Devart.MyDac. L

AdoNet.dll If your application uses MyDataAdapter component

If you remove the names of these assemblies from the References list of your project, these files will not
be required on the target computer.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 33

13 Licensing and Subscriptions

Data Access Components for MySQL are licensed, not sold. Please read the end-user license agreement
(EULA) carefully before using the product. You can find the EULA in the License.rtf file in the MyDAC
installation folder.

Licensing

There are three types of full licenses for MyDAC: Single Licenses, Team Licenses, and Site Licenses.
Single Licenses must be purchased for each developer working on a project that uses MyDAC.
Purchasing a Team License automatically gives four developers a Single License.

Purchasing a Site License automatically gives all developers in a company a Single License.

For evaluation purposes only, you may also use MyDAC Trial Edition under a temporary Evaluation
License, which allows you to test MyDAC Trial Edition for a period of 60 days, after which you must
either remove all files associated with MyDAC or purchase a full license.

Licenses can be purchased for the following editions of MyDAC: MyDAC Standard Edition, MyDAC
Professional Edition, and MyDAC Professional Edition with Source Code, MyDAC Developer Edition, and
MyDAC Developer Edition with Source Code. An edition comparison chart can be found here.

To purchase a license for MyDAC, please visit www.devart.com/mydac/ordering.html.

If you have any questions regarding licensing, please contact sales@devart.com.

Editions

Full licenses can be purchased for the following editions of MyDAC: MyDAC Standard Edition, MyDAC
Professional Edition, and MyDAC Professional Edition with Source Code, MyDAC Developer Edition, and
MyDAC Developer Edition with Source Code.

Users can evaluate MyDAC with MyDAC Trial Edition under Evaluation License.

A comparison chart can be found here.

Subscriptions

The MyDAC Subscription program is an annual maintenance and support service for MyDAC users.
Users with a valid MyDAC Subscription get the following benefits:

Product support through the MyDAC Priority Support program

Access to new versions of MyDAC when they are released

Access to all MyDAC updates and bug fixes

Notification of new product versions

If you have any questions regarding licensing or subscriptions not covered with Help, please contact
sales@devart.com.

Trial Limitations

MyDAC Evaluation License lets you try MyDAC Trial Edition for a period of 60 days.
There are no functionality limitations in MyDAC Trial Edition during the trial period for most supported
IDEs, except the following:
MyDAC Trial Edition for Kylix has an additional nag screen trial limitation.
.NET applications and applications written in C++Builder require the corresponding IDE to be
launched on the client workstation if they use MyDAC Trial Edition
If you are deploying a project built with MyDAC Trial Edition, you will need to include the MyDAC

library files in your application deployment package. For more information, consult the Deployment
topic.

© 1997-2012 Devart. All Rights Reserved.

mailto:sales@devart.com
mailto:sales@devart.com

34

Data Access Components for MySQL

14 Getting Support

This page lists several ways you can find help with using MyDAC and describes the MyDAC Priority
Support program.

Support Options

There are a number of resources for finding help on installing and using MyDAC.
You can find out more about MyDAC installation or licensing by consulting the Licensing and FAQ
sections.
You can get community assistance and technical support on the MyDAC Community Forum.
You can get advanced technical assistance by MyDAC developers through the MyDAC Priority

Support program.

If you have a question about ordering MyDAC or any other Devart product, please contact sales@devart.
com.

MyDAC Priority Support

MyDAC Priority Support is an advanced product support service for getting expedited individual
assistance with MyDAC-related questions from the MyDAC developers themselves. Priority Support is
carried out over email and has two business days response policy. Priority Support is available for users
with an active MyDAC Subscription.
To get help through the MyDAC Priority Support program, please send an email to mydac@devart.com
describing the problem you are having. Make sure to include the following information in your message:
The version of Delphi, C++Builder or Kylixyou are using.
Your MyDAC Registration number.
Full MyDAC edition name and version number. You can find both of these in the About sheet of
TMyConnection Editor or from the MySQL | About menu.
Versions of the MySQL server and client you are using.
A detailed problem description.
If possible, a small test project that reproduces the problem. Please include definitions for all
database objects and avoid using third-party components.

© 1997-2012 Devart. All Rights Reserved.

http://www.devart.com/forums/
mailto:sales@devart.com
mailto:sales@devart.com
mailto:mydac@devart.com

Data Access Components for MySQL 35

15 Frequently Asked Questions

This page contains a list of Frequently Asked Questions for Data Access Components for MySQL.
If you have encounter a question with using MyDAC, please browse through this list first. If this page
does not answer your question, refer to the Getting Support topic in MyDAC help.

Installation and Deployment
1.1 am having a problem installing MyDAC or compiling MyDAC-based projects...
You may be having a compatibility issue that shows up in one or more of the following forms:
o Get a "Setup has detected already installed DAC packages which are incompatible with current
version" message during MyDAC installation.

o Get a "Procedure entry point ... not found in ... " message when starting IDE.
o Get a "Unit ... was compiled with a different version of ..." message on compilation.

You can have such problems if you installed incompatible MyDAC, SDAC, ODAC or IBDAC versions.

All these products use common base packages. The easiest way to avoid the problem is to uninstall

all installed DAC products and then download from our site and install the last builds.

2.What software should be installed on a client computer for MyDAC-based applications to

work?

Usually, you do not need any additional files. The only exceptions to this rule are listed below:

o If you are using MySQL Embedded server (if you are using TMyConnection with TMyConnection.
Options.Embedded = True or TMyEmbConnection), you need the server itself (libomysqgld.dll) and
the service files for it, for example errmsg.sys.

o If you are connecting in Client mode, (TMyConnection.Options.Direct = False), you need
libmysql.dil.

o If you are using SSL (TMyConnection.Options.Protocol = mpSSL), you need the OpenSSL library
files - ssleay32.dll and libeay32.dll.

3.When 1 try to install MyDAC packages under Kylix, I get an "Invalid package" error.
Probably you are using Kylix Open Edition. MyDAC does not support this version of Kylix.
4.When 1 try to connect to the server, 1 get an error "MySQL client library couldn't be
loaded.™
You are using TMyConnection.Options.Direct := False mode and the client library is not available
for your application.
Windows: You should copy client file libmysql.dll to a folder available to the executable unit of your
program. For example, to the folder containing the executable or to the Windows system folder.
For more details, see the description of LoadLibrary and the PATH environment variable.
Linux: You should copy the client file libmysqlclient.so.X to the folder available to the executable
unit of your program. For more details, see the description of the dlopen function and the
LD_LIBRARY_PATH environment variable.

5.Core Lab renaming issue that conserns Delphi for .Net users

o Please remove all CoreLab assamblies references from your project and add corresponding
Devart ones

o Please change all unit references in uses clauses from CorelLab to Devart (you can use standard
renaming tool)

Licensing and Subscriptions

1.Am I entitled to distribute applications written with MyDAC?
If you have purchased a full version of MyDAC, you are entitled to distribute pre-compiled
programs created with its use. You are not entitled to propagate any components inherited from
MyDAC or using MyDAC source code. For more information see the License.rtf file in your MyDAC
installation directory.

2.Can I create components using MyDAC?
You can create your own components that are inherited from MyDAC or that use the MyDAC source
code. You are entitled to sell and distribute compiled application executables that use such
components, but not their source code and not the components themselves.

3.What licensing changes can | expect with MyDAC 5.007?
The basic MyDAC license agreement will remain the same. With MyDAC 5.00, the MyDAC Edition

http://www.crlab.com/mydac/#editionmatrix

Data Access Components for MySQL

Matrix will be reorganized and a new MyDAC Subscription Program will be introduced.

4.What do the MyDAC 5.00 Edition Levels correspond to?
MyDAC 5.00 will come in six editions: Trial, Standard, Professional, Professional with Sources,
Developer, and Developer with Sources.
When you upgrade to the new version, your edition level will be automatically updated using the
following Edition Correspondence Table.

Edition Correspondence Table for Upgrading to MyDAC 5.00

Old Edition Level New Edition Level
- No Correspondence - MyDAC Standard

Edition
MyDAC Standard MyDAC Professional
Edition Edition
MyDAC Professional MyDAC Professional
Edition Edition with Sources
- No Correspondence - MyDAC Developer
Edition

- No Correspondence - MyDAC Developer
Edition with Sources

MyDAC Trial Edition MyDAC Trial Edition

The feature list for each edition can be found in the MyDAC documentation and on the MyDAC
website.

5.1 have a registered version of MyDAC. Will I need to pay to upgrade to future versions?
After MyDAC 5.00, all upgrades to future versions are free to users with an active MyDAC
Subscription.

Users that have a registration for versions of MyDAC prior to MyDAC 5.00 will have to first upgrade
to MyDAC 5.00 to jump in on the Subscription program.

6.What are the benefits of the MyDAC Subscription Program?
The MyDAC Subscription Program is an annual maintenance and support service for MyDAC
users.
Users with a valid MyDAC Subscription get the following benefits:
0 Access to new versions of MyDAC when they are released

o Access to all MyDAC updates and bug fixes
o Product support through the MyDAC Priority Support program
o Notification of new product versions

Priority Support is an advanced product support program which offers you expedited individual
assistance with MyDAC-related questions from the MyDAC developers themselves. Priority Support
is carried out over email and has a two business day response policy.

The MyDAC Subscription Program is available for registered users of MyDAC 5.00 and higher.

7.Can I use my version of MyDAC after my Subscription expires?
Yes, you can. MyDAC version licenses are perpetual.

8.1 want a MyDAC Subscription! How can I get one?
An annual MyDAC Subscription is included when ordering or upgrading to any registered (non-
Trial) edition of MyDAC 5.00 or higher.
You can renew your MyDAC Subscription on the MyDAC Ordering Page. For more information,
please contact sales@crlab.com.

9.Does this mean that if | upgrade to MyDAC 5 from MyDAC 4, I'll get an annual MyDAC
Subscription for free?
Yes.

10.How do | upgrade to MyDAC 5.00?
To upgrade to MyDAC 5.00, you can get a Version Update from the MyDAC Ordering Page. For
more information, please contact sales@crlab.com.

Performance

1.How productive is MyDAC?
MyDAC uses a low-level protocol to access the database server. This allows MyDAC to achieve high
performance. From time to time we compare MyDAC with other products, and MyDAC always takes
first place.

2.Why does the Locate function work so slowly the first time | use it?
Locate is performed on the client. So if you had set FetchAll to False when opening your dataset,

http://www.crlab.com/mydac/#editionmatrix
http://www.crlab.com/mydac/#editionmatrix
http://www.crlab.com/mydac/#editionmatrix
http://www.crlab.com/mydac/ordering.html
mailto:sales@crlab.com
http://www.crlab.com/mydac/ordering.html
mailto:sales@crlab.com

Data Access Components for MySQL 37

cached only some of the rows on the client, and then invoked Locate, MyDAC will have to fetch all
the remaining rows from the server before performing the operation. On subsequent calls, Locate
should work much faster.
If the Locate method keeps working slowly on subsequent calls or you are working with
FetchAll=True, try the following. Perform local sorting by a field that is used in the Locate method.
Just assign corresponding field name to the IndexFieldNames property.

How To

1.How can | enable syntax highlighting in MyDAC component editors at design time?

Download and install MySQL Developer Tools. In addition to syntax highlighting, MySQL Developer
Tools provides a lot of additional features.
Alternatively, you can download and install the freeware SynEdit component set.

2.How can | quickly convert a project from BDE to MyDAC?
To quickly migrate your project from BDE you can use the BDE Migration Wizard. To start it, open
your project and choose BDE Migration Wizard from the MySQL menu of your IDE.
3.How can | determine which version of MyDAC |1 am using?
You can determine your MyDAC version humber in several ways:
o During installation of MyDAC, consult the MyDAC Installer screen.

o After installation, see the history.html file in your MyDAC installation directiory.
o At design-time, select MySQL | About MyDAC from the main menu of your IDE.

o At run-time, check the value of the MydacVersion and DACVersion constants.

4.How can | stop the cursor from changing to an hour glass during query execution?
Just set the DBAccess.ChangeCursor variable to False anywhere in your program. The cursor will
stop changing after this command is executed.

5.How can | execute a query saved in the SQLInsert, SQLUpdate, SQLDelete, or
SQLRefresh properties of a MyDAC dataset?
The values of these properties are templates for query statements, and they cannot be manually
executed. Usually there is no need to fill these properties because the text of the query is
generated automatically.
In special cases, you can set these properties to perform more complicated processing during a
query. These properties are automatically processed by MyDAC during the execution of the Post,
Delete, or RefreshRecord methods, and are used to construct the query to the server. Their values
can contain parameters with names of fields in the underlying data source, which will be later
replaced by appropriate data values.
For example, you can use the SQLInsert template to insert a row into a query instance as follows.
o Fill the SQLInsert property with the parameterized query template you want to use.

o Call Insert.
o Initialize field values of the row to insert.
o Call Post.

The value of the SQLInsert property will then be used by MyDAC to perform the last step.
Setting these properties is optional and allows you to automatically execute additional SQL
statements, add calls to stored procedures and functions, check input parameters, and/or store
comments during query execution. If these properties are not set, the MyDAC dataset object will
generate the query itself using the appropriate insert, update, delete, or refresh record syntax.
6.How can | get a list of the databases on the server?
Use the TMyConnection.GetDatabaseNames method.
7.How can I get a list of the tables list in a database?
Use the TMyConnection.GetTableNames method.

8.Some questions about the visual part of MyDAC
The following situations usually arise from the same problem:
o | set the Debug property to True but nothing happens!

o While executing a query, the screen cursor does not change to an hour-glass.
o Even if | have LoginPromp set to True, the connect dialog does not appear.

To fix this, you should add the MyDacVcl (for Windows) or MyDacClIx (for Linux) unit to the uses
clause of your project.

General Questions
1.1 would like to develop an application that works with MySQL Server. Should | use
MyDAC or DbxMda?
DbxMda is our dbExpress driver for MySQL. dbExpress technology serves for providing a more or

http://crlab.com/mysqldevtools/
http://crlab.com/mysqldevtools/features.html
http://synedit.sourceforge.net/
http://www.crlab.com/dbx/

38

Data Access Components for MySQL

less uniform way to access different servers (SQL Server, MySQL, Oracle and so on). It is based on
drivers that include server-specific features. Like any universal tool, in many specialized cases
dbExpress providers lose some functionality. For example, the dbExpress design-time is quite poor
and cannot be expanded.

MyDAC is a specialized set of components for MySQL, which has advanced server-specific design-
time and a component interface similar to that of BDE.

We tried to include maximal support of MySQL-specific features in both DbxMda and MyDAC.
However, the nature of dbExpress technology has some insurmountable restrictions. For example,
Unicode fields cannot be passed from a driver to dbExpress.

MyDAC and DbxMda use the same kernel and thus have similar performance. In some cases
dbExpress is slower because data undergoes additional conversion to correspond to dbExpress
standards.

To summarise, if it is important for you to be able to quickly adapt your application to a database
server other than MySQL, it is probably better to use DbxMda. In other cases, especially when
migrating from BDE or ADO, you should use MyDAC.

.Are the MyDAC connection components thread-safe?

Yes, MyDAC is thread-safe but there is a restriction. The same TMyConnection object cannot be
used in several threads. So if you have a multithreaded application, you should have a
TMyConnection object for each thread that uses MyDAC.

.Behaviour of my application has changed when | upgraded MyDAC. How can | restore

the old behaviour with the new version?

We always try to keep MyDAC compatible with previous versions, but sometimes we have to
change behaviour of MyDAC in order to enhance its functionality, or avoid bugs. If either of
changes is undesirable for your application, and you want to save the old behaviour, please refer
to the "Compatibility with previous versions" topic in MyDAC help. This topic describes such
changes, and how to revert to the old MyDAC behaviour.

.When editing a DataSet, | get an exception with the message 'Update failed. Found %od

records.’ or 'Refresh failed. Found %6d records.’

This error occurs when the database server is unable to determine which record to modify or
delete. In other words, there are either more than one record or no records that suit the UPDATE
criteria. Such situation can happen when you omit the unique field in a SELECT statement
(TCustombDADataSet.SQL) or when another user modifies the table simultaneously. This exception
can be suppressed. Refer to TCustomMyDataSet.Options.StrictUpdate topic in MyDAC help for
more information.

. I have problems using BIGINT and INT UNSIGNED fields as key fields in master/detail

relationships, and accessing values of such fields through the Field.Value property.
Fields of this type are represented in Delphi by TLargelntField objects. In some versions of Delphi,
you cannot access these fields through the Value property (for more information see the
SetVarValue protected method of TLargeintField in the DB unit). To avoid this problem, you can
change the field type to INT, which is usually sufficient for key fields. Alternatively, you can avoid
using Value.

For master/detail relationships the problem can be avoided only by changing type of the key field
to INT, as Delphi's master/detail mechanism works through Field.Value.

.On accessing server | get a "MySQL server has gone away' or ‘Lost connection to MySQL

server during query' error.

First of all, you should find out what causes the problem. The list of most frequent reasons for this

error to occur is below.

o Client side: The value of TMyConnection.ConnectionTimeout or TCustomMyDataSet.
CommandTimeout is too small. To check this hypothesis, try setting TCustomMyDataSet.
CommandTimeout to O (infinitive) and TMyConnection.ConnectionTimeout to 300.

o Server side: MySQL server has closed the connection. You can read a detailed description of all
possible reasons for this to happen in the MySQL Reference Manual. Almost always it is because
the value of wait_timeout variable is too small. Try increasing it. If this solution is not possible
(for example, because you don't have enough rights), you should invoke MyConnection.Ping with
an interval less than wait_timeout. Use TTimer in TMyConnection thread to accomplish this task.

0 Unstable connection (GPRS etc). In case of unstable connection you can adapt MyDAC to work in
such conditions by changing some of its settings. For more information please see the "Working
in Unstable Networks" article in the MyDAC help documentation.

If the connection is lost, MyDAC tries to reconnect to server. However, your last command will
probably not be executed, and you should repeat it again. MyDAC does not try to reconnect if a
transaction has started or if at least one of statements is prepared.

.Some problems using TCustomDADataSet.FetchAll=False mode

The following problems may appear when using FetchAll=False mode:

http://dev.mysql.com/doc/mysql/en/gone-away.html

Data Access Components for MySQL 39

o | have problems working with temporary tables.
o | have problems working with transactions.
o Sometimes my application hangs on applying changes to the database.

Usage of FetchAll=False mode has many advantages; however, it also has some restrictions since
it requires an additional connection to server for data fetching to be created. The additional
connection is created to prevent the main connection from blocking.

These problems can be avoided by setting the FetchAll property. Please see description of the
FetchAll propery and the CreateConnection option in MyDAC help for more information.

Another alternative that prevents the application from hanging is to switch to the InnoDB storage
engine from MyISAM (FetchAll stays False). An application may hang because MyISAM tables can
get locked in a read/write collision. If you try to update a table that is not fetched out, MySQL
blocks the thread and waits untill the table is completely fetched. For details please refer to the
MySQL Reference Manual, the Locking Issues section.

8.

I get an error when opening a Stored Procedure that returns a result set.

Probably this is a bug of the MySQL Server protocol with prepared stored procedures that return

record sets. It occurs in the following cases:

o After a call to the Prepare method of MyStoredProc, if the latter had already prepared and
opened. The following piece of code demonstrates the problem:

MyStoredProc.Prepare;
MyStoredProc.Open;
MyStoredProc.UnPrepare;
MyStoredProc.Prepare;

o After a call to the MyStoredProc.Execute method, if the stored procedure returns more than one
record set.

© 1997-2012 Devart. All Rights Reserved.

http://dev.mysql.com/doc/mysql/en/locking-issues.html

40

Data Access Components for MySQL

16 Using MyDAC

16.1 Updating Data with MyDAC Dataset Components

MyDAC components that are descendants from TCustomDADataSet provide different means for
reflecting local changes to the server.

The first approach is to use automatic generation of update SQL statements. Using this approach you
should provide a SELECT statement, everything else will be made by MyDAC automatically. In case when
a SELECT statement uses multiple tables, you can use UpdatingTable property to specify which table will
be updated. If UpdatingTable is blank, the table, that corresponds to the first field in the dataset, is
used. This approach is the most preferable and is used in most cases.

Another approach is to set update SQL statements using SQLInsert, SQLUpdate and SQLDelete
properties. Set them with SQL statements which will perform corresponding data modifications on behalf
of the original statement whenever insert, update or delete operation is called. This is useful when there
is no possibility to generate correct statement or you need to execute some specific statements. For
example, update operations should be made with stored procedure calls.

You may also assign P:Devart.MyDac.TCustomMyDataSet.UpdateObject property with the
TMyUpdateSQL class instance which holds all updating SQL statements in one place. You can generate all
these SQL statements using MyDAC design time editors. For more careful customization of data update
operations you can use InsertObject, ModifyObject and DeleteObject properties of TMyUpdateSQL
component.

See Also

TMyQuer:
TMyStoredProc
TMyTable
TMyUpdateSQL

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 41

16.2 Master/Detail Relationships

Master/detail (MD) relationship between two tables is a very widespread one. So it is very important to
provide an easy way for database application developer to work with it. Lets examine how MyDAC
implements this feature.

Suppose we have classic MD relationship between "Department” and "Employee" tables.

"Department” table has field Dept_No. Dept_No is a primary key.

"Employee" table has a primary key EmpNo and foregin key Dept_No that binds "Employee" to
"Department”.

It is necessary to display and edit these tables.

MyDAC provides two ways to bind tables. First code example shows how to bind two TCustomMyDataSet
components (TMyQuery or TMyTable) into MD relationship via parameters.

procedure TForml.FormlCreate(Sender: TObject);
var
Master, Detail: TMyQuery;
MasterSource: TDataSource;
begin
// create master dataset
Master := TMyQuery.Create(Self);
Master.SQL.Text := "SELECT * FROM Department”;
// create detail dataset
Detail := TMyQuery.Create(SelT);
Detail .SQL.Text := "SELECT * FROM Employee WHERE Dept_No = :Dept_No*";
// connect detail dataset with master via TDataSource component

MasterSource := TDataSource.Create(Self);
MasterSource.DataSet := Master;
Detail .MasterSource := MasterSource;

// open master dataset and only then detail dataset
Master .Open;
Detail .Open;

end;

Pay attention to one thing: parameter name in detail dataset SQL must be equal to the field name in the
master dataset that is used as foreign key for detail table. After opening detail dataset always holds
records with Dept_No field value equal to the one in the current master dataset record.

There is an additional feature: when inserting new records to detail dataset it automatically fills foreign
key fields with values taken from master dataset.

Now suppose that detail table "Department” foregin key field is named DepLink but not Dept_No. In
such case detail dataset described in above code example will not autofill DepLink field with current
"Department”.Dept_No value on insert. This issue is solved in second code example.

procedure TForml.FormlCreate(Sender: TObject);
var
Master, Detail: TMyQuery;
MasterSource: TDataSource;
begin
// create master dataset
Master := TMyQuery.Create(Self);
Master.SQL.Text :-= "SELECT * FROM Department”;
// create detail dataset
Detail := TMyQuery.Create(SelT);
Detail .SQL.Text := "SELECT * FROM Employee~®;
// setup MD
Detail _.MasterFields := "Dept_No"; // primary key in Department
Detail .DetailFields := "DepLink®; // foreign key in Employee
// connect detail dataset with master via TDataSource component

MasterSource := TDataSource.Create(Self);
MasterSource.DataSet := Master;
Detail .MasterSource := MasterSource;

// open master dataset and only then detail dataset
Master .Open;
Detail .Open;

end;

Data Access Components for MySQL

In this code example MD relationship is set up using MasterFields and DetailFields properties. Also note
that there are no WHERE clause in detail dataset SQL.

To defer refreshing of detail dataset while master dataset navigation you can use DetailDelay option.
Such MD relationship can be local and remote, depending on the TCustomDADataSet.Options.
LocalMasterDetail option. If this option is set to True, dataset uses local filtering for establishing master-
detail relationship and does not refer to the server. Otherwise detail dataset performs query each time
when record is selected in master dataset. Using local MD relationship can reduce server calls number
and save server resources. It can be useful for slow connection. CachedUpdates mode can be used for
detail dataset only for local MD relationship. Using local MD relationship is not recommended when detail
table contains too many rows, because in remote MD relationship only records that correspond to the
current record in master dataset are fetched. So, this can decrease network traffic in some cases.

See Also
TCustomDADataSet.Options
TMemDataSet.CachedUpdates

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 43

16.3 Miqgration from BDE

In MyDAC the interests of BDE application developers were taken into consideration. So starting to use
MyDAC after working with BDE would be easy even for developing complex projects. Moreover, MyDAC
does not have problems like ones with LiveQuery and compatibility of applications developed using
different versions in BDE.
Abandoning BDE gives one more important advantage - positive effect on performance. Instead of
complex BDE-ODBC drivers system it uses the fastest access - directly to MySQL server. Also access to
MySQL Embedded server is supported.
MyDAC provides special Wizard to simplify the conversion of already existing projects. This Wizard
replaces BDE-components in the specified project (dfm-and pas-files) to MyDAC. BDE-components that
will be replaced:

TDatabase -> TMyConnection

TQuery -> TMyQuery

TTable -> TMyTable

TUpdateSQL -> TMyUpdateSQL

To run the Wizard, select BDE Migration Wizard item in MySQL menu and follow the instructions. BDE
Migration Wizard does not support C++Builder and Kylix IDEs.

Note: The Wizard serves only to simplify routine operations and after the conversion project might be
uncompiled.

Below is the list of properties and methods which cannot be converted automatically. Here you can find
hints for users to simplify manual replacement.

TDatabase
AliasName - specific BDE property. Not supported by MyDAC
DatabaseName - has a different meaning in BDE and MyDAC. At MyDAC it means MySQL Server
database. See TMyConnection.Database for details
Locale - see TMyConnection.Options.CharSet
KeepConnection - not supported by MyDAC
Params - see TMyConnection properties
Session, SessionAlias, SessionName - MyDAC does not need global management of a group of
database connections in an application. So these properties are not supported
Temporary - has no sense in MyDAC. Additional connections are created but not available for the
user. See TCustomMyDataSet.FetchAll = False for details
TraceFlags - see TCustomDASQLMonitor.TraceFlags
Translsolation - see IsolationLevel
Execute - use ExecSQL instead of this method
FlushSchemaCache - not supported by MyDAC
GetFieldNames - not supported by MyDAC
IsSQLBased - not supported by MyDAC. For MySQL must be always True
ApplyUpdates - parameters are not supported. To update only specified DataSets use TMemDataset.
ApplyUpdates. Update is performed within a transaction.

TBDEDataSet
BlockReadSize - see TCustomDADataSet.FetchRows
CacheBlobs - MySQL Server does not provide service of suspended BLOB loading
KeySize - specific BDE property. Not supported by MyDAC.

TDBDataSet
AutoRefresh - supported through TCustomDADataSet.RefreshOptions
DBFlags, DBHandle, DBLocate, DBSession, Handle - BDE-specific property. Not supported by MyDAC
SessionName - not supported by MyDAC
UpdateMode - not supported by MyDAC. By default, the behaviour corresponds upWhereKeyOnly.
To change this behaviour see TCustomDADataSet.SQLUpdate, TCustomDADataSet.SQLDelete,
TCustomDADataSet.SQLRefresh, and TCustomMyDataSet.Options.CheckRowVersion.

TQuery
Constrained - specific BDE property. Not supported by MyDAC
DataSource - see TCustomDADataSet.MasterSource
Local - specific BDE property. Not supported by MyDAC
RequestLive - almost all query result sets are updatable. See TMyQuery.UpdatingTable,
TCustomDADataSet.ReadOnly, CanModify, TCustomDADataSet.SQLInsert, TCustomDADataSet.

Data Access Components for MySQL

SOQLUpdate, TCustomDADataSet.SQLDelete.
Text - specific BDE property. Not supported by MyDAC.

TTable
Defaultindex - not used in MyDAC. If you need to sort a table by any field see P:Devart.MyDac.
TCustomMyTable.OrderFields, TMemDataSet.IndexFieldNames
Exists, CreateTable, AddIndex, Deletelndex, StoreDefs, Deletetable, TableType - MyDAC does not
allow to create tables by using TTable. If you need to create a table execute 'CREATE TABLE ..."
query or use any special third-party tools.
IndexDefs - not used in MyDAC, but fills on first call
IndexFieldNames - a list of fields for local sorting. See TMemDataSet.IndexFieldNames
IndexFieldCount, IndexFields, IndexFiles, IndexName, GetlndexNames, GetlndexInfo - Not
supported by MyDAC
KeyExclusive - not supported by MyDAC. Use SELECT ... FROM .. WHERE ... to get requested result
KeyFieldCount - not supported by MyDAC, as key fields are not used for searching on the client side
TableLevel - specific BDE property. Not supported by MyDAC
ApplyRange, CancelRange, EditRangeStart, EditRangeEnd, SetRange - MyDAC does not support
Range
BatchMove - has no meaning in MySQL. Use INSERT ... INTO ... SELECT syntax to copy records onto
server side
FindKey, FindNearest, GotoCurrent, GotoKey, GotoNearest, Editkey, SetKey - use TMemDataSet.
Locate and TMemDataSet.LocateEx
GetDetailLinkFields - use TCustomDADataSet.DetailFields, TCustomDADataSet.MasterFields
RenameTable - use 'RENAME TABLE ..." script
ConstraintCallBack, ConstraintsDisabled, DisableConstraints, EnableConstraints - has no meaning in
MySQL
FlushBuffers - see TMyServerControl.Flush
Translate - use AnsiToNative and similar functions.

TSession

MyDAC does not need global management of a group of database connections in an application.

TUpdateSQL
A complete analogue to TMyUpdateSOL.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 45

16.4 Secure Connections

Session security depends on several factors, including whether the connection to the host is a trusted
connection. If it is not, confidential information can not be transmitted through this connection.

MyDAC supports two different ways to increase connection security. They are SSH and SSL. Both SSH
and SSL can be implemented with SecureBridge components.

Devart SecureBridge is a non visual component library that provides functionality for SSH tunneling and
SSL connections. Usage of SecureBridge is the handiest and fastest way to ensure protected connection
to MySQL server. You can read more about SecureBridge at the SecureBridge home page. The detailed
step-by-step instructions on setting up SecureBridge you will find in the SecureBridge documentation.

1. SSH using SecureBridge

SecureBridge allows you to embed functionality of an SSH client into your application. The following
sequence of steps describes how to protect your connection to MySQL server through an SSH tunnel
with SecureBridge:
configure your SSH server like described in the server documentation, or use SecureBridge to make
your own SSH server. SecureBridge includes a demo project that implements functionality of an
SSH server;
place the TScSSHCIlient component of SecureBridge onto your form;
setup TScSSHCIlient (assign host name, SSH server port, user name, password) to connect to the
SSH server and check the connection;
place the TMySSHIOHandler component onto your form. This component is included into MyDAC as
a demo project;
place the TMyConnection component onto your form, and link to its IOHandler property the instance
of TMySSHIOHandler added on the previous step;
setup TMyConnection to connect to MySQL server and check the connection.

Now you have an encrypted connection between MySQL server and your application.

2. SSH using OpenSSH or other third-party SSH tunnel

SSH works by "Port forwarding" principle and serves to encrypt transferred data.
The following is the step-by-step sequence of actions for the easiest case of using OpenSSH for
Windows. The detailed description of each command you can see in the documentation for OpenSSH.
1. Download OpenSSH for Windows from http://www.sourceforge.net/projects/sshwindows/
2. Install SSH server
Choose a machine that will be used as SSH server. It does not have to be the same machine
that is a MySQL server, but communication channel between SSH server and MySQL server must
be protected
Using Windows Control Panel create a user and set a password for him. For example, SSHUser
with password SSHPass
Install Open SSH. It is enough to install only Server components
Open OpenSSH/bin folder
Add SSHUSser to the list of allowed users:
mkpasswd - -u SSHUser >> ..\etc\passwd
Use mkgroup to create a group permissions file
mkgroup -1 >> ..\etc\group
Run OpenSSH service
net start opensshd
3. Install SSH client
Choose a machine that will be used as SSH client. It does not have to be the same machine
where client application (MySQL client) is running, but communication channel between SSH
client and MySQL client must be protected
Install Open SSH to SSH client. You may not install server components
Run SSH client

ssh.exe -L <SSH port>:<MySQL server=>:<MySQL server port> <SSHUser>@<SSH
server=>

<SSH port> - port number of SSH client that will be redirected to the corresponding
port of MySQL server

<MySQL server> - name or IP address of the machine where MySQL server is installed
<MySQL server port> - number of MySQL server port. As usual, 3306.

<SSHUser> - user name created in p. 2

<SSH server> - name or IP address of the machine where SSH server is installed in p.

http://www.devart.com/sbridge
http://www.sourceforge.net/projects/sshwindows/

46

Data Access Components for MySQL

2
For example,
ssh.exe -L 3307:server:3306 SSHUser@192.168.0.116
At the first start you will be suggested to confirm a connection with the specified SSH
server. Enter "yes" for confirmation.
On each start of SSH you must enter a password set in p. 2
4. Configure TMyConnection

MyConnectionl.Server := <SSH client>;

MyConnectionl.Port := <SSH port>;

If SSH client was installed at the same machine as MySQL client, you can assign ‘localhost’' to
MyConnectionl.Server.

Pay attention that in the specified sequence above check of SSHUser authentication is performed by
Windows. About the methods of higher protection (key authentication etc) see documentation for
OpenSSH.

To get more detailed information on using encrypted connections refer to MySQOL Reference Manual.

3. SSL using SecureBridge

SecureBridge also allows you to embed functionality of an SSL client into your application. The following
sequence of steps describes how to protect your connection to MySQL server with SSL using
SecureBridge:

Place the TMySSLIOHandler component onto the form.

Select a storage object in the Storage property. More information about storage setup you will find

in the SSL client setup topic of SecureBridge help.

Specify the server certificate in the CACertName property.

Specify the client certificate in the CertName property.

Place the TMyConnection component onto the form and setup it to connect to the MySQL server.

Assign the TMySSLIOHandler object to the IOHandler property of TMyConnection.

Connect to MySQL server by setting TMyConnection.Connected to True.

4. SSL

SSL is based on algorithms of asymmetric encryption and digital signature. Consult MySQL Reference
Manual for information on how to enable SSL support for MySOL server and generate certificates.
Note that usage of SSL is more preferable for MySQL connections than SSH because of less required
settings and higher performance.

See Also
SecureBridge home page
I0Handler

SSLOptions

© 1997-2012 Devart. All Rights Reserved.

http://dev.mysql.com/doc/mysql/en/windows-and-ssh.html
http://dev.mysql.com/doc/mysql/en/secure-using-ssl.html
http://dev.mysql.com/doc/mysql/en/connector-j-reference-using-ssl.html
http://www.devart.com/sbridge

Data Access Components for MySQL 47

16.5 Network Tunneling

Usually when a client needs to connect to server it is assumed that direct connection can be established.
Nowadays though, due to security reasons or network topology, it is often necessary to use a proxy or
bypass a firewall. This article describes different ways to connect to MySQL server with MyDAC.

Direct connection

Connection through HTTP tunnel

o Connection through proxy and HTTP tunnel

Additional information

Direct connection

Direct connection to server means that server host is accessible from client without extra routing and
forwarding. This is the simplest case. The only network setting you need is the host name and port
number. This is also the fastest and most reliable way of communicating with server. Use it whenever

possible.

The following code illustrates the simplicity:
MyConnection := TMyConnection.Create(self);
MyConnection.Server := "localhost”;
MyConnection.Port := 3306;
MyConnection.Username := "root”;
MyConnection.Password := "root";

MyConnection.Connect;

Connection through HTTP tunnel

Sometimes client machines are shielded by a firewall that does not allow you to connect to server
directly at the specified port. If the firewall allows HTTP connections, you can use MyDAC together with
HTTP tunneling software to connect to MySQL server.

MyDAC supports HTTP tunneling based on the PHP script.

An example of the web script tunneling usage can be the following: you have a remote website, and
access to its database through the port of the database server is forbidden. Only access through HTTP
port 80 is allowed, and you need to access the database from a remote computer, like when using usual
direct connection.

You need to deploy the tunnel.php script, which is included into the provider package on the web server.
It allows access to the database server to use HTTP tunneling. The script must be available through the
HTTP protocol. You can verify if it is accessible with a web browser. The script can be found in the HTTP
subfolder of the installed provider folder, e. g. %Program Files%\Devart\MyDac for Delphi X\HTTP
\tunnel.php. The only requirement to the server is PHP 5 support.

To connect to the database, you should set TMyConnection parameters for usual direct connection, which
will be established from the web server side, the Options.Protocol property to mpHttp, and set the
following parameters, specific for the HTTP tunneling:

Property ?/;/andato Meaning

Url of the tunneling PHP script. For example, if the script is in the

HttpOptions. Url ves server root, the url can be the following: http://localhost/tunnel.php.
HttpOptions. Set this properties if the access to the website folder with the script is
Username, . . ; .

HttpOptions No available only for registered users authenticated with user name and
Password . password.

Connection through proxy and HTTP tunnel

Consider the previous case with one more complication.

HTTP tunneling server is not directly accessible from client machine. For example, client address is
10.0.0.2, server address is 192.168.0.10, and the MySQL server listens on port 3307. The client and
server reside in different networks, so the client can reach it only through proxy at address 10.0.0.1,
which listens on port 808. In this case in addition to the TMyConnection.HttpOptions options you have to
setup a HttpOptions.ProxyOptions object as follows:

MyConnection := TMyConnection.Create(self);
MyConnection.Server := "192.168.0.10";
MyConnection.Port := 3307;
MyConnection.Username := "root";

Data Access Components for MySQL

MyConnection.Password := "root";

MyConnection.Options.Protocol := mpHttp;
MyConnection.HttpOptions._.Url := "http://server/tunnel _php”;
MyConnection_HttpOptions.ProxyOptions.Hostname := "10.0.0.1%;
MyConnection.HttpOptions.ProxyOptions.Port := 808;
MyConnection.HttpOptions.ProxyOptions.Username := "ProxyUser”;
MyConnection.HttpOptions.ProxyOptions.Password :-= "ProxyPassword”;

MyConnection.Connect;

Note that setting parameters of MyConnection.HttpOptions.ProxyOptions automatically enables proxy
server usage.

Additional information

Technically speaking, there is one more way to tunnel network traffic. The Secure Shell forwarding, or
SSH, can be used for forwarding data. However, main purpose of SSH is traffic encryption rather than
avoiding firewalls or network configuration problems. The Secure Connections article describes how to
use SSH protocol in MyDAC.

Keep in mind that traffic tunneling or encryption always increase CPU usage and network load. It is
recommended that you use direct connection whenever possible.

©

1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 49

16.6 Embedded Server

Since version 4.0 MySQL server supports Embedded server. Embedded server is an easy to install server
used by applications that do not require multi-user work with MySQL server. For example, Embedded
server can be used for money access machines, automatic cash desks, different electronic facilities and
so on. Please refer to MySQL Reference Manual for more details on features and using of Embedded
server. Also you can find some information about licensing Embedded server in MySQL Reference Manual
. Please refer to Embedded Demo for a sample.

Which version of Embedded server to use

MySQL Embedded Server 4.0 should be recompiled to be used in your application.

MySQL Embedded Sever 5.0 is not included into the binary installation pack. Below is a quotation from
the MySOL Reference Manual:

"The Embedded MySQL server library is NOT part of MySQL 5.0. It is part of previous editions and will be
included in future versions, starting with MySQL 5.1."

That is why we have not tested MyDAC with the MySQL Embedded Sever 5.0.

So, we recommend using MySQL Embedded Server 4.1. As MySQL Embedded Server has some
problems working with the InnoDB storage, we recommend disabling this storage engine. You can do
this by checking the "Disable InnoDB storage engine" option in the TMyEmbConnection editor on the
Params tab. Another way is to add the --skip-innodb parameter to the TMyEmbConnection component
manually.

Installation
Windows

Copy libmysqgld.dll file to the folder available for executable file of the application. Please see a
detailed description of accessible paths at LoadLibrary description

A typical structure of folders for an application using Embedded Server:

Project.exe - executable file of your application

libmysqgld.dll - MySQL Embedded server library

share/english/errmsg.sys - file with MySQL Embedded server messages

data/ - data directory (DataDir). See a structure of this folder in MySQL Reference Manual
data/mysql/ - directory with service data of MySQL (user access rights, and so on) data/DataBase/ -
directory with user data. See TCustomMyConnection.DataBase

Linux

o Copy libmysqld.so0.14.0.0 file to /usr/lib folder

o At /usr/lib folder execute the following commands to create links:

In libmysqld.so0.14.0.0 libmysqld.so
In libmysqld.s0.14.0.0 libmysqgld.so.14
Copy files needed for working of Embedded Server. As a rule, it is errormessage file, for example
share/english/errmsg.sys.
Create a folder for data
If it is necessary, copy files with data to the data folder

Settings

On the start (first opening a connection), MySQL Embedded Server searches for the setting values in the
next order:
TMyEmbConnection.Params
[<Application exe-file name (with extension)>] section of configuration file (my.ini or my.cnf) -
settings specific to particular application.
[Embedded] section of configuration file - settings specific to Embedded server
[Server] section of configuration file - common settings for MySQL server and Embedded server.

Usually to set-up Embedded Server it is enough to set basedir and datadir.But sometimes some
additional settings are required, for example to disable usinglnnoDB engine (--skip-innodb). The detailed
list of settings you can find at MySQL Reference Manual.

Pay attention that all paths must be set through "/" but not "\".

Note, parameters names are case-sensitive.

If datadir is located in the read-only storage, then you need to set OnLog andOnLogError event handlers
to prevent server from attempts to create log-files in datadir.

Limitations

http://dev.mysql.com/doc/refman/4.1/en/libmysqld.html
http://dev.mysql.com/doc/mysql/en/libmysqld_licensing.html
http://dev.mysql.com/doc/mysql/en/libmysqld.html

50 Data Access Components for MySQL

Simultaneous access to the same data from several instances of MySQL server (for example, to MySQL
server and Embedded server) can be a reason of data loss.

See Also
Embedded Demo
TMyEmbConnection
TMyEmbConnection.Params
TMyConnection.Options.Embedded

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 51

16.7 National Characters

On transferring data between client and server sides, server must know the encoding format used at the
client. You can set the coding using server means by assigning corresponding parameters at the server
settings (see MySQL Reference Manual for details), or by client methods setting TCustomMyConnection.
Options.Charset or TCustomMyConnection.Options.UseUnicode properties. The first way is less suitable
as it requires meddling in server settings that is not always possible. The second way is more convenient
but it can cause insignificant delay while establishing a connection.

Let us see the specific of using Charset and UseUnicode options. These options are mutually exclusive,
thus on setting UseUnicode property to True a value of Charset will be ignored.

By default, Charset = ", and UseUnicode = False. And the server makes conversions according to its
settings.

If Charset property is enabled, then on establishing a connection "SET NAMES <Charset>" query is
automatically passed to the server to explicitly notify the server about the character set of the client. To
get a list of available charsets, you can execute "SHOW CHARSET" query. Pay attention that on setting
Charset = 'utf8' values of all string fields will be converted to this encoding format that in most cases
can make impossible to use DataAware components.

Setting UseUnicode property to True allows to retrieve string data at the client side in Unicode encoding
format that let you work simultaneously almost with all languages. All TStringField values will be
converted to TWideStringField. This behaviour is suitable, for example, when creating a database of
books in the library, when next to the name of a book you should also store its name in the original
language. Please note that setting this option has some imperfections. Firstly, all string data at the client
side will be converted, and it can cause a delay in working. Secondly, standard Borland Data-aware
controls do not support Unicode (Wide-strings) and you have to use third-party components.

See Also
TCustomMyConnection.Options

© 1997-2012 Devart. All Rights Reserved.

52 Data Access Components for MySQL

16.8 Working in an Unstable Network

The following settings are recommended for working in an unstable network:
TCustomDAConnection._Options.LocalFailover = True
TCustomDAConnection._Options.DisconnectedMode = True
TDataSet.CachedUpdates = True

TCustomDADataSet.FetchAll = True
TCustomDADataSet._Options.LocalMasterDetail = True

These settings minimize the number of requests to the server. Using TCustomDAConnection.Options.
DisconnectedMode allows DataSet to work without an active connection. It minimizes server resource
usage and reduces connection break probability. I. e. in this mode connection automatically closes if it is
not required any more. But every explicit operation must be finished explicitly. That means each explicit
connect must be followed by explicit disconnect. Read Working with Disconnected Mode topic for more
information.
Setting the FetchAll property to True allows to fetch all data after cursor opening and to close
connection. If you are using master/detail relationship, we recommend to set the LocalMasterDetail
option to True.
It is not recommended to prepare queries explicitly. Use the CachedUpdates mode for DataSet data
editing. Use the TCustomDADataSet.Options.UpdateBatchSize property to reduce the number of
requests to the server.
If a connection breaks, a fatal error occurs, and the OnConnectionLost event will be raised if the
following conditions are fulfilled:

There are no active transactions;

There are no opened and not fetched datasets;

There are no explicitly prepared datasets or SQLs.

If the user does not refuse suggested RetryMode parameter value (or does not use the
OnConnectionLost event handler), MyDAC can implicitly perform the following operations:
Connect;
DataSet._ApplyUpdates;
DataSet.Open;

I.e. when the connection breaks, implicit reconnect is performed and the corresponding operation is
reexecuted. We recommend to wrap other operations in transactions and fulfill their reexecuting
yourself.

The using of Pooling in Disconnected Mode allows to speed up most of the operations because of
connecting duration reducing.

See Also

FailOver demo

Working with Disconnected Mode
TCustomDAConnection.Options
TCustomDAConnection.Pooling

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 53

16.9 Disconnected Mode

In disconnected mode a connection opens only when it is required. After performing all server calls
connection closes automatically until next server call is required. Datasets remain opened when
connection closes. Disconnected Mode may be useful for saving server resources and operating in an
unstable or expensive network. Drawback of using disconnected mode is that each connection
establishing requires some time for authorization. If connection is often closed and opened it can slow
down application work. We recommend to use pooling to solve this problem. For additional information
see TCustomDAConnection.Pooling.

To enable disconnected mode set TCustomDAConnection.Options.DisconnectedMode to True.

In disconnected mode a connection is opened for executing requests to the server (if it was not opened
already) and is closed automatically if it is not required any more. If the connection was explicitly
opened (the Connect method was called or the Connected property was explicitly set to True), it does
not close until the Disonnect method is called or the Connected property is set to False explicitly.

The following settings are recommended to use for working in disconnected mode:
TDataSet.CachedUpdates = True

TCustomDADataSet.FetchAll = True

TCustomDADataSet.Options.LocalMasterDetail = True

These settings minimize the number of requests to the server.

Disconnected mode features

If you perform a query with the FetchAll option set to True, connection closes when all data is fetched if
it is not used by someone else. If the FetchAll option is set to false, connection does not close until all
data blocks are fetched.

If explicit transaction was started, connection does not close until the transaction is committed or rolled
back.

If the query was prepared explicitly, connection does not close until the query is unprepared or its SQL
text is changed.

See Also

TCustomDAConnection.Options
FetchAll
Devart.MyDac.TMyQuery.LockMode
TCustomDAConnection.Pooling
TCustomDAConnection.Connect
TCustomDAConnection.Disonnect
Working in unstable network

© 1997-2012 Devart. All Rights Reserved.

54 Data Access Components for MySQL

16.10 Data Type Mapping

Overview

Data Type Mapping is a flexible and easily customizable gear, which allows mapping between DB types
and Delphi field types.

In this article there are several examples, which can be used when working with all supported DBs. In
order to clearly display the universality of the Data Type Mapping gear, a separate DB will be used for
each example.

Data Type Mapping Rules

In versions where Data Type Mapping was not supported, MyDAC automatically set correspondence
between the DB data types and Delphi field types. In versions with Data Type Mapping support the
correspondence between the DB data types and Delphi field types can be set manually.
Here is the example with the numeric type in the following table of a MySQL database:

CREATE TABLE DECIMAL_TYPES
(
ID INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,
VALUE1 DECIMAL(4, 0),
VALUE2 DECIMAL(10, 0),
VALUE3 DECIMAL(15, 0),
VALUE4 DECIMAL(5, 2),
VALUE5 DECIMAL(10, 4),
VALUE6 DECIMAL(15, 6)

)

And Data Type Mapping should be used so that:

the numeric fields with Scale=0 in Delphi would be mapped to one of the field types: TSmallintField,
TIntegerField or TlargeintField, depending on Precision

to save precision, the numeric fields with Precision>=10 and Scale<= 4 would be mapped to TBCDField
and the numeric fields with Scale>== 5 would be mapped to TFMTBCDField.

The above in the form of a table:

MySQL data type Default Delphi field type Destination Delphi field type
DECIMAL(4,0) ftFloat ftSmallint
DECIMAL(10,0) ftFloat ftinteger
DECIMAL(15,0) ftFloat ftLargeint
DECIMAL(5,2) ftFloat ftFloat
DECIMAL(10,4) ftFloat ftBCD
DECIMAL(15,6) ftFloat ftFMTBCD

To specify that numeric fields with Precision <= 4 and Scale = 0 must be mapped to ftSmallint, such a
rule should be set:

var
DBType: Word;
MinPrecision: Integer;
MaxPrecision: Integer;
MinScale: Integer;
MaxScale: Integer;
FieldType: TFieldType;

begin
DBType := myDecimal;
MinPrecision := 0;
MaxPrecision := 4;
MinScale = 0;
MaxScale = 0;
FieldType = ftSmallint;

MyConnection.DataTypeMap.AddDBTypeRule(DBType, MinPrecision, MaxPrecision, MinScale, Max¢
end;

This is an example of the detailed rule setting, and it is made for maximum visualization.Usually, rules

Data Access Components for MySQL 55

are set much shorter, e.g. as follows:

// clear existing rules
MyConnection.DataTypeMap.Clear;
// rule for DECIMAL(4,0)

MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, O, 4, 0, 0, ftSmallint);
// rule for DECIMAL(10,0)

MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 5, 10, O, 0, ftinteger);
// rule for DECIMAL(15,0)

MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 11, rlAny, O, 0, ftLargeint);
// rule for DECIMAL(5,2)

MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, O, 9, 1, rlAny, ftFloat);

// rule for DECIMAL(10,4)

MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 10, rlAny, 1, 4, ftBCD);

// rule for DECIMAL(15,6)
MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 10, rlAny, 5, rlAny, ftFMTBcd);

Rules order

When setting rules, there can occur a situation when two or more rules that contradict to each other are
set for one type in the database. In this case, only one rule will be applied — the one, which was set
first.

For example, there is a table in an MySQL database:

CREATE TABLE DECIMAL_TYPES
(
ID INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,
VALUE1 DECIMAL(5, 2),
VALUE2 DECIMAL(10, 4),
VALUE3 DECIMAL(15, 6)

)

TBCDField should be used for NUMBER(10,4), and TFMTBCDField - for NUMBER(15,6) instead of default
fields:

MySQL data type Default Delphi field type Destination field type
DECIMAL(5,2) ftFloat ftFloat
DECIMAL(10,4) ftFloat ftBCD
DECIMAL(15,6) ftFloat ftFMTBCD

If rules are set in the following way:
MyConnection.DataTypeMap.Clear;

MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, O, 9, rlAny, rlAny, ftFloat);
MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 0, rlAny, o, 4, ftBCD);
MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 0, rlAny, 0, rlAny, ftFMTBCD);
it will lead to the following result:
MySQL data type Delphi field type

DECIMAL(5,2) ftFloat

DECIMAL(10,4) ftBCD

DECIMAL(15,6) ftFMTBCD

But if rules are set in the following way:
MyConnection.DataTypeMap.Clear;

MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 0, rlAny, 0, rlAny, ftFMTBCD);
MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 0O, rlAny, o, 4, ftBCD);
MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, O, 9, rlAny, rlAny, ftFloat);
it will lead to the following result:
MySQL data type Delphi field type

DECIMAL(5,2) ftFMTBCD

DECIMAL(10,4) ftFMTBCD

DECIMAL(15,6) ftFMTBCD

This happens because the rule

56

Data Access Components for MySQL

MyConnection.DataTypeMap.AddDBTypeRule(myDecimal, 0, rlAny, 0, rlAny, ftFMTBCD);

will be applied for the NUMBER fields, whose Precision is from O to infinity, and Scale is from O to infinity
too. This condition is met by all NUMBER fields with any Precision and Scale.

When using Data Type Mapping, first matching rule is searched for each type, and it is used for
mapping. In the second example, the first set rule appears to be the first matching rule for all three
types, and therefore the ftFMTBCD type will be used for all fields in Delphi.

If to go back to the first example, the first matching rule for the NUMBER(5,2) type is the first rule, for
NUMBER(10,4) - the second rule, and for NUMBER(15,6) - the third rule. So in the first example, the
expected result was obtained.

So it should be remembered that if rules for Data Type Mapping are set so that two or more rules that
contradict to each other are set for one type in the database, the rules will be applied in the specifed
order.

Defining rules for Connection and Dataset

Data Type Mapping allows setting rules for the whole connection as well as for each DataSet in the
application.

For example, such table is created in SQL Server:

CREATE TABLE PERSON
(
ID INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,
FIRSTNAME VARCHAR(20),
LASTNAME VARCHAR(30),
GENDER_CODE VARCHAR(1),
BIRTH_DTTM DATETIME

)

It is exactly known that the birth_dttm field contains birth day, and this field should be ftDate in Delphi,
and not ftDateTime. If such rule is set:

MyConnection.DataTypeMap.Clear;
MyConnection.DataTypeMap .-AddDBTypeRule(myDateTime, ftDate);

all DATETIME fields in Delphi will have the ftDate type, that is incorrect. The ftDate type was expected to
be used for the DATETIME type only when working with the person table. In this case, Data Type
Mapping should be set not for the whole connection, but for a particular DataSet:

MyQuery.DataTypeMap.Clear;
MyQuery.DataTypeMap.AddDBTypeRule(myDateTime, ftDate);

Or the opposite case. For example, DATETIME is used in the application only for date storage, and only
one table stores both date and time. In this case, the following rules setting will be correct:

MyConnection.DataTypeMap.Clear;

MyConnection.DataTypeMap -AddDBTypeRule(myDateTime, ftDate);
MyQuery.DataTypeMap.Clear;

MyQuery.DataTypeMap .AddDBTypeRule(myDateTime, ftDateTime);

In this case, in all DataSets for the DATETIME type fields with the ftDate type will be created, and for
MyQuery - with the ftDateTime type.

The point is that the priority of the rules set for the DataSet is higher than the priority of the rules set
for the whole connection. This allows both flexible and convenient setting of Data Type Mapping for the
whole application. There is no need to set the same rules for each DataSet, all the general rules can be
set once for the whole connection. And if a DataSet with an individual Data Type Mapping is necessary,
individual rules can be set for it.

Rules for a particular field
Sometimes there is a need to set a rule not for the whole connection, and not for the whole dataset, but

only for a particular field.

e.g. there is such table in a MySQL database:
CREATE TABLE ITEM
(

Data Access Components for MySQL 57

ID INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,
NAME CHAR(50),
GUID CHAR(38)

)

The guid field contains a unique identifier. For convenient work, this identifier is expected to be mapped
to the TGuidField type in Delphi. But there is one problem, if to set the rule like this:

MyQuery.DataTypeMap.Clear;
MyQuery.DataTypeMap.AddDBTypeRule(myChar, ftGuid);

then both name and guid fields will have the ftGuid type in Delphi, that does not correspond to what
was planned. In this case, the only way is to use Data Type Mapping for a particular field:

MyQuery.DataTypeMap .AddFieldNameRule("GUID*®, ftGuid);

In addition, it is important to remember that setting rules for particular fields has the highest priority. If
to set some rule for a particular field, all other rules in the Connection or DataSet will be ignored for this
field.

Ignoring conversion errors

Data Type Mapping allows mapping various types, and sometimes there can occur the problem with that
the data stored in a DB cannot be converted to the correct data of the Delphi field type specified in rules
of Data Type Mapping or vice-versa. In this case, an error will occur, which will inform that the data
cannot be mapped to the specified type.

For example:

Database value Destination field type Error
‘text value' ftinteger String cannot be converted to
Integer
1000000 ftSmallint Value is out of range
15,1 ftinteger Cannot convert float to integer

But when setting rules for Data Type Mapping, there is a possibility to ignore data conversion errors:
MyConnection.DataTypeMap.AddDBTypeRule(myVarchar, ftinteger, True);
In this case, the correct conversion is impossible. But because of ignoring data conversion errors, Data

Type Mapping tries to return values that can be set to the Delphi fields or DB fields depending on the
direction of conversion.

Database value Destination field type Result Result description
0 will be returned if the
'text value' ftinteger 0 text cannot be converted
to number
32767 is the max value
1000000 ftSmallint 32767 that can be assigned to

the Smallint data type

15,1 was truncated to an

15,1 ftinteger 15 .
integer value

Therefore ignoring of conversion errors should be used only if the conversion results are expected.

© 1997-2012 Devart. All Rights Reserved.

58 Data Access Components for MySQL

16.11 Data Encryption

MyDAC has built-in algorithms for data encryption and decryption. To enable encryption, you should
attach the TCREncryptor component to the dataset, and specify the encrypted fields. When inserting or
updating data in the table, information will be encrypted on the client side in accordance with the
specified method. Also when reading data from the server, the components decrypt the data in these
fields "on the fly".

For encryption, you should specify the data encryption algorithm (the EncryptionAlgorithm property) and
password (the Password property). On the basis of the specified password, the key is generated, which
encrypts the data. There is also a possibility to set the key directly using the SetKkey method.

When storing the encrypted data, in addition to the initial data, you can also store additional
information: the GUID and the hash. (The method is specified in the TCREncryptor.DataHeader
property).

If data is stored without additional information, it is impossible to determine whether the data is
encrypted or not. In this case, only the encrypted data should be stored in the column, otherwise, there
will be confusion because of the inability to distinguish the nature of the data. Also in this way, the
similar source data will be equivalent in the encrypted form, that is not good from the point of view of
the information protection. The advantage of this method is the size of the initial data equal to the size
of the encrypted data.

To avoid these problems, it is recommended to store, along with the data, the appropriate GUID, which
is necessary for specifying that the value in the record is encrypted and it must be decrypted when
reading data. This allows you to avoid confusion and keep in the same column both the encrypted and
decrypted data, which is particularly important when using an existing table. Also, when doing in this
way, a random initializing vector is generated before the data encryption, which is used for encryption.
This allows you to receive different results for the same initial data, which significantly increases
security.

The most preferable way is to store the hash data along with the GUID and encrypted information to
determine the validity of the data and verify its integrity. In this way, if there was an attempt to falsify
the data at any stage of the transmission or data storage, when decrypting the data, there will be a
corresponding error generated. For calculating the hash the SHA1 or MD5 algorithms can be used (the
HashAlgorithm property).

The disadvantage of the latter two methods - additional memory is required for storage of the auxiliary
information.

As the encryption algorithms work with a certain size of the buffer, and when storing the additional
information it is necessary to use additional memory, TCREncryptor supports encryption of string or
binary fields only (ftString, ftWideString, ftBytes, ftVarBytes, ftBlob, ftMemo, ftWideMemo). If encryption
of string fields is used, firstly, the data is encrypted, and then the obtained binary data is converted into
hexadecimal format. In this case, data storage requires two times more space (one byte = 2 characters
in hexadecimal).

Therefore, to have the possibility to encrypt other data types (such as date, number, etc.), itis
necessary to create a field of the binary or BLOB type in the table, and then convert it into the desired
type on the client side with the help of data mapping.

It should be noted that the search and sorting by encrypted fields become impossible on the server side.
Data search for these fields can be performed only on the client after decryption of data using the Locate
and LocateEx methods. Sorting is performed by setting the TMemDataSet.IndexFieldNames property.

Example.

Let's say there is an employee list of an enterprise stored in the table with the following data: full name,
date of employment, salary, and photo. We want all these data to be stored in the encrypted form. Write
a script for creating the table:

CREATE TABLE EMP (
EMPNO INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,
ENAME VARBINARY(2000) DEFAULT NULL,
HIREDATE VARBINARY(200) DEFAULT NULL,
SAL VARBINARY(200) DEFAULT NULL,
FOTO BLOB DEFAULT NULL

)

As we can see, the fields for storage of the textual information, date, and floating-point number are
created with the VARBINARY type. This is for the ability to store encrypted information, and in the case
of the text field - to improve performance. Write the code to process this information on the client.

MyQuery.SQL.Text :-= “"SELECT * FROM EMP*;

Data Access Components for MySQL

MyQuery._Encryption_Encryptor := MyEncryptor;
MyQuery._Encryption_.Fields := "ENAME, HIREDATE, SAL, FOTO";
MyEncryptor._Password := "11111°%;
MyQuery._DataTypeMap.AddFieldNameRule ("ENAME®, ftString);
MyQuery.DataTypeMap.AddFieldNameRule ("HIREDATE", ftDateTime);
MyQuery.DataTypeMap.AddFieldNameRule ("SAL®, ftFloat);
MyQuery.Open;

59

© 1997-2012 Devart. All Rights Reserved.

60

Data Access Components for MySQL

16.12 Increasing Performance

This topic considers basic stages of working with DataSet and ways to increase performance on each of
these stages.

Connect

If your application performs Connect/Disconnect operations frequently, additional performance can be
gained using pooling mode (TCustomDAConnection.Pooling = True). It reduces connection reopening
time greatly (hundreds times). Such situation usually occurs in web applications.

Execute

If your application executes the same query several times, you can use the TCustomDADataSet.Prepare
method or set the TDADataSetOptions.AutoPrepare property to increase performance. For example, it
can be enabled for Detail dataset in Master/Detail relationship or for update objects in TDAUpdateSQL.
The performance gain achieved this way can be anywhere from several percent to several times,
depending on the situation.

To execute SQL statements a T:Devart.MyDac.TMySQL component is more preferable than TMyQuery. It
can give several additional percents performance gain.

If the TCustomDADataSet.Options.StrictUpdate option is set to False, the RowsAffected property is not
calculated and becomes equal zero. This can improve performance of query executing, so if you need to
execute many data updating statements at once and you don't mind affected rows count, set this option
to False.

Fetch

In some situations you can increase performance a bit by using P:Devart.Dac.TDADataSetOptions.
CompressBlobMode. You can also use TMyConnection.Options.Compress. Setting TMyTable.Options.
UseHandler can give an additional performance under high server load.

You can also tweak your application performance by using the following properties of
TCustomDADataSet descendants:

FetchRows

Options.FlatBuffers

Options.LongStrings

UniDirectional

See the descriptions of these properties for more details and recommendations.

Navigate

The Locate function works faster when dataset is locally sorted on KeyFields fields. Local dataset sorting
can be set with the IndexFieldNames property. Performance gain can be large if the dataset contains a
large number of rows.

Lookup fields work faster when lookup dataset is locally sorted on lookup Keys.

Setting the TDADataSetOptions.CacheCalcFields property can improve performance when locally sorting
and locating on calculated and lookup fields. It can be also useful when calculated field expressions
contain complicated calculations.

Setting the TDADataSetOptions.LocalMasterDetail option can improve performance greatly by avoiding
server requests on detail refreshes. Setting the TDADataSetOptions.DetailDelay option can be useful for
avoiding detail refreshes when switching master DataSet records frequently.

Update

If your application updates datasets in the CachedUpdates mode, then setting the TCustomDADataSet.
Options.UpdateBatchSize option to more than 1 can improve performance several hundred times more
by reducing the number of requests to the server.

You can also increase the data sending performance a bit (several percents) by using Dataset.
UpdateObject.ModifyObject, Dataset.UpdateObject, etc. Little additional performance improvement can
be reached by setting the AutoPrepare property for these objects.

Insert
If you are about to insert a large number of records into a table, you should use the TDevart.MyDac.

Data Access Components for MySQL 61

TMylLoader component instead of Insert/Post methods, or execution of the INSERT commands multiple
times in a cycle. Sometimes usage of TDevart.MyDac.TMyLoader improves performance several times.

© 1997-2012 Devart. All Rights Reserved.

62

Data Access Components for MySQL

16.13 Connection Pooling

Connection pooling enables an application to use a connection from a pool of connections that do not
need to be reestablished for each use. Once a connection has been created and placed in a pool, an
application can reuse that connection without performing the complete connection process.

Using a pooled connection can result in significant performance gains, because applications can save the
overhead involved in making a connection. This can be particularly significant for middle-tier applications
that connect over a network or for applications that connect and disconnect repeatedly, such as Internet
applications.

To use connection pooling set the Pooling property of the TCustomDAConnection component to True.
Also you should set the PoolingOptions of the TCustomDAConnection. These options include MinPoolSize,
MaxPoolSize, Validate, ConnectionLifeTime. Connections belong to the same pool if they have identical
values for the following parameters: MinPoolSize, MaxPoolSize, Validate, ConnectionLifeTime, Server,
Username, Password , Server, T:Devart.Odac.TOraSession, Password, Database, IsolationLevel, Port,
I0Handler, ConnectionTimeout, Compress, Direct, Embedded, Protocol, Charset, UseUnicode,
NumericType . When a connection component disconnects from the database the connection actually
remains active and is placed into the pool. When this or another connection component connects to the
database it takes a connection from the pool. Only when there are no connections in the pool, new
connection is established.

Connections in the pool are validated to make sure that a broken connection will not be returned for the
TCustomDAConnection component when it connects to the database. The pool validates connection when
it is placed to the pool (e. g. when the TCustomDAConnection component disconnects). If connection is
broken it is not placed to the pool. Instead the pool frees this connection. Connections that are held in
the pool are validated every 30 seconds. All broken connections are freed. If you set the PoolingOptions.
Validate to True, a connection also will be validated when the TCustomDAConnection component
connects and takes a connection from the pool. When some network problem occurs all connections to
the database can be broken. Therefore the pool validates all connections before any of them will be used
by a TCustomDAConnection component if a fatal error is detected on one connection.

The pool frees connections that are held in the pool during a long time. If no new connections are placed
to the pool it becomes empty after approximately 4 minutes. This pool behaviour is intended to save
resources when the count of connections in the pool exceeds the count that is needed by application. If
you set the PoolingOptions.MinPoolSize property to a non-zero value, this prevents the pool from freeing
all pooled connections. When connection count in the pool decreases to MinPoolSize value, remaining
connection will not be freed except if they are broken.

The PoolingOptions.MaxPoolSize property limits the count of connections that can be active at the same
time. If maximum count of connections is active and some TCustomDAConnection component tries to
connect, it will have to wait until any of TCustomDAConnection components disconnect. Maximum wait
time is 30 seconds. If active connections' count does not decrease during 30 seconds, the
TCustomDAConnection component will not connect and an exception will be raised.

You can limit the time of connection's existence by setting the PoolingOptions.ConnectionLifeTime
property. When the TCustomDAConnection component disconnects, its internal connection will be freed
instead of placing to the pool if this connection is active during the time longer than the value of the
PoolingOptions.ConnectionLifeTime property. This property is designed to make load balancing work with
the connection pool.

To force freeing of a connection when the TCustomDAConnection component disconnects, the
RemoveFromPool method of TCustomDAConnection can be used. You can also free all connection in the
pool by using the class procedures Clear or AsyncClear of TMyConnectionPoolManager. These procedures
can be useful when you know that all connections will be broken for some reason.

It is recommended to use connection pooling with the DisconnectMode option of the
TCustomDAConnection component set to True. In this case internal connections can be shared between
TCustomDAConnection components. When some operation is performed on the TCustomDAConnection
component (for example, an execution of SQL statement) this component will connect using pooled
connection and after performing operation it will disconnect. When an operation is performed on
another TCustomDAConnection component it can use the same connection from the pool.

See Also

TCustomDAConnection.Pooling
TCustomDAConnection.PoolingOptions
Working with Disconnected Mode

Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

63

64

Data Access Components for MySQL

16.14 Macros

Macros help you to change SQL statements dynamically. They allow partial replacement of the query
statement by user-defined text. Macros are identified by their names which are then referred from SQL
statement to replace their occurrences for associated values.

First step is to assign macros with their names and values to a dataset object.

Then modify SQL statement to include macro names into desired insertion points. Prefix each name with
& ("at") sign to let MyDAC discriminate them at parse time. Resolved SQL statement will hold macro
values instead of their names but at the right places of their occurrences. For example, having the
following statement with the TableName macro name:

SELECT * FROM &TableName

You may later assign any actual table name to the macro value property leaving your SQL statement
intact.

Queryl_SQL.Text := "SELECT * FROM &TableName®;
Queryl_MacroByName("TableName®")_Value := "Dept-;
Queryl.0pen;

MyDAC replaces all macro names with their values and sends SQL statement to the server when SQL
execution is requested.

Note that there is a difference between using TMacro AsString and Value properties. If you set macro
with the AsString property, it will be quoted. For example, the following statements will result in the
same result Queryl1.SQL property value.

Queryl._MacroByName("StringMacro®).Value = """A string™""";
Queryl._MacroByName("StringMacro®) .AsString := "A string";

Macros can be especially useful in scripts that perform similar operations on different objects. You can
use macros that will be replaced with an object name. It allows you to have the same script text and to
change only macro values. For example, the following is a script that creates a new user account and
grants required privileges.

Scriptl._SQL.Add("CREATE USER &Username IDENTIFIED BY &Password;®);
Scriptl_SQL.Add("GRANT &Privileges TO &Username;");

To execute the script for another user you do not have to change the script SQL property, you can just
set required macro values.

You may also consider using macros to construct adaptable conditions in WHERE clauses of your
statements.

See Also

TMacro
TCustomDADataSet.MacroByName
TCustomDADataSet.Macros

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 65

16.15 Using Several DAC Products in One IDE

UniDAC, ODAC, SDAC, MyDAC, IBDAC, PgDAC, and LiteDAC components use common base packages
(for Win32) and assemblies (for .NET) listed below:
Packages:

dacXX.bpl

dacvcIXX.bpl

dcldacXX.bpl

Assemblies:
Devart.Dac.dll
Devart.Vcl.dll
Devart.Dac.Design.dll
Devart.Dac.AdoNet.dll

Note that product compatibility is provided for the current build only. In other words, if you upgrade one
of the installed products, it may conflict with older builds of other products. In order to continue using
the products simultaneously, you should upgrade all of them at the same time.

© 1997-2012 Devart. All Rights Reserved.

66 Data Access Components for MySQL

16.16 DataSet Manager

DataSet Manager window

The DataSet Manager window displays the datasets in your project. You can use the DataSet Manager
window to create a user interface (consisting of data-bound controls) by dragging items from the
window onto forms in your project. Each item has a drop-down control list where you can select the type
of control to create prior to dragging it onto a form. You can customize the control list with additional
controls, including the controls you have created.

|
FAE - &
Elj Project1_bdzproj
= 38 Forml.Query3
El@,ﬁ Farm1.Querpd
=~ Fields

...... % 0-LOC {QuendlLOC)

...... % 1 - DMAME {QuendDMNAME}
2 - DEPTMO {QuerydDEPTHO}

TDBEdit

Ch| TDBTesxt

85 TDBEComboBox
ﬁ'f TOECheckBox
218 TDBRadiaGroup
S MNone

Cuskomize

Drag'n'Drop contral; TDBEdiE -

Using the DataSet Manager window, you can:
Create forms that display data by dragging items from the DataSet Manager window onto forms.

Customize the list of controls available for each data type in the DataSet Manager window.

Choose which control should be created when dragging an item onto a form in your Windows
application.

Create and delete TField objects in the DataSets of your project.

Opening the DataSet Manager window

You can display the DataSet Manager window by clicking DataSet Manager on the Tools menu. You can
also use IDE desktop saving/loading to save DataSet Manager window position and restore it during the
next IDE loads.

Observing project DataSets in the DataSet Manager Window

By default DataSet Manager shows DataSets of currently open forms. It can also extract DataSets from
all forms in the project. To use this, click Extract DataSets from all forms in project button. This settings
is remembered. Note, that using this mode can slow down opening of the large projects with plenty of
forms and DataSets. Opening of such projects can be very slow in Borland Delphi 2005 and Borland
Developer Studio 2006 and can take up to several tens of minutes.

DataSets can be grouped by form or connection. To change DataSet grouping click the Grouping mode
button or click a down. You can also change grouping mode by selecting required mode from the

Data Access Components for MySQL 67

DataSet Manager window popup menu.

A
B [=[I==

El;ﬂ Project].bdsproj
=y Form

8 Queny3
-8 Quenpd
=0y Form?
----- Q_E Clueryl
- Q_E StaredProc
=-C0y Frame3

----- Q_E Clueryd

i

Drag'n'Drop control: TDEGrid o

Creating Data-bound Controls

You can drag an item from the DataSet Manager window onto a form to create a new data-bound
control. Each node in the DataSet Manager window allows you to choose the type of control that will be
created when you drag it onto a form. You must choose between a Grid layout, where all columns or
properties are displayed in a TDataGrid component, or a Details layout, where all columns or properties
are displayed in individual controls.

To use grid layout drag the dataset node on the form. By default TDataSource and TDBGrid components
are created. You can choose the control to be created prior to dragging by selecting an item in the
DataSet Manager window and choosing the control from the item's drop-down control list.

i =Tk
E@|&}'|§| S R IR o :
=-iz Project_bdsproj B I L [pEpThG |EMPNO | =1 :4|:
L—‘_IQH Form1.Queryz I = 20 7369 cancel |
=3 Fields B [D an 7499 [oad]
37 0- COMM {uery2C0MM} 5 500 a0 7521 200 Hep |;

3 1-DEPTMO {Query2DEFTHO} N
37 2-EMPNO {Query2EMPHO}

I saL
..... 31 Form?.Query3
-G8 Fom?.Quenyd

|Drag'n'Dro|:- conkral: TOBGrd v
To use Details layout choose Details from the DataSet node drop-down control list in the DataSet
Manager window. Then select required controls in the drop-down control list for each DataSet field.
DataSet fields must be created. After setting required options you can drag the DataSet to the form
from the DataSet wizard. DataSet Manager will create TDataSource component, and a component and a
label for each field.

68

Data Access Components for MySQL

HE| - | E

Eliﬁ Project].bdsproj
=-F=] Foml. Queny2

= Fields

----- i 0- COMM {Query2COkM}
----- % 1-DEPTHO {Quer2DEPTNO}
----- I 2- EMPNO {QueyZEMPNO}
- {Fg] ENAME

- IPE HIREDATE

-AF5] JOB

-U5] MGR

5 SaL

Q_E Farmnl . Query3

Q_E Forml. Querpd

Drag'n'Drop control: =Details =

& Frames

CUCOMM -
"r_Ej*
L R
CUDERTIOE . e
ZZI a0
CEMPNG L
;l

i FAE@

Adding custom controls to the DataSet Manager window

To add custom control to the list click the Options button on the DataSet Manager toolbar. A DataSet
Manager - Customize controls dialog will appear. Using this dialog you can set controls for the DataSets
and for the DataSet fields of different types. To do it, click DataSets node or the node of field of required
type in DB objects groups box and use Add and Remove buttons to set required control list. You can also
set default control by selecting it in the list of assigned DB controls and pressing Default button.

Data Access Components for MySQL 69

Bl DataSet Manager - Customize controls o [m] 4|

Custamize controls | Dptionsl

| VCL gned DB Cont
& D'E""E‘E;Et:z’ Controls
= F'e'dUTipES & TDBGrid <Default
ar | TCRDBGid
ring = .
Smallint =ﬂ LDBEtrIGrld
) None
Lr;taeiler Dretails
Boolean
Float
Currency b 2= pdd <" Remove ¥ Set Default
BCD
[ate
Tirne Controls Packages
DiateTirme ' TDBGrid deldbeo
Bytes [TDEMavigatar deldben
WarBtes =y TDBCHIGH deldbED
Autalne | TCRDEGId crcontrokED
Blob
Memo
Graphic
Frathdemo
Paradox0le LI
Ok Cancel Fezet Help

The default configuration can easily be restored by pressing Reset button in the DataSet Manager -
Options dialog.

Working with TField objects

DataSet Manager allows you to create and remove TField objects. DataSet must be active to work with
its fields in the DataSet Manager. You can add fields, based on the database table columns, create new
fields, remove fields, use drag-n-drop to change fields order.

To create a field based on the database table column right-click the Fields node and select Create Field
from the popup menu or press <Insert>. Note that after you add at least one field manually, DataSet
fields corresponding to data fields will not be generated automatically when you drag the DataSet on the
form, and you can not drag such fields on the form. To add all available fields right-click the Fields node
and select Add all fields from the popup menu.

To create new field right-click the Fields node and select New Field from the popup menu or press <Ctrl
+Insert>. The New Field dialog box will appear. Enter required values and press OK button.

To delete fields select these fields in the DataSet Manager window and press <Delete>.

DataSet Manager allows you to change view of the fields displayed in the main window. Open the
Customize controls dialog, and jump to the Options page.

70

Data Access Components for MySQL

_njx]

Customize controls~ Jphions I

| = Dizplay Options
o [erieral Fields

v Field type
v Object name

Sample:

DEPTMO[Integer{0uen1 DEPTHO}

[rata Fieldz

v Field type

Sample:

DEPTHO[Inteqger]

Ok Cancel Fezet Help

You can chose what information will be added to names of the Field and Data Field objects in the main
window of DataSet Manager. Below you can see the example.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 71

16.17 DBMonitor

To extend monitoring capabilities of MyDAC applications there is an additional tool called DBMonitor. It is
provided as an alternative to Borland SQL Monitor which is also supported by MyDAC.
DBMonitor is an easy-to-use tool to provide visual monitoring of your database applications.
DBMonitor has the following features:
multiple client processes tracing;
SQL event filtering (by sender objects);
SQL parameter and error tracing.

DBMonitor is intended to hamper an application being monitored as little as possible.
To trace your application with DB Monitor you should follow these steps:

drop TMySQLMonitor component onto the form;

turn moDBMonitor option on;

set to True the Debug property for components you want to trace;

start DBMonitor before running your program.

© 1997-2012 Devart. All Rights Reserved.

72 Data Access Components for MySQL

16.18 Migration Wizard

NOTE:

Migration Wizard is available only for Delphi IDE and is not available for C++Builder.

BDE Migration Wizard allows you to convert your BDE projects to MyDAC. This wizard replaces BDE

components at the specified project (dfm-and pas-files) to MyDAC.

To convert a project, perform the following steps.
Select BDE Migration Wizard from MySQL menu
Select Replace BDE components to replace corresponding components with MyDAC and press the
Next button.
Select the location of the files to search - current open project or disc folder.
If you have selected Disc folder on the previous step, specify the required folder and specify
whether to process subfolders. Press the Next button.
Select whether to make backup (it is highly recommended to make a backup), backup location, and
log parameters, and press the Next button. Default backup location is RBackup folder in your
project folder.
Check your settings and press the Finish button to start the conversion operation.
The project should be saved before conversion. You will be asked before saving it. Click Yes to
continue project conversion.

After the project conversion it will be reopened.
The Wizard just replaces all standard BDE components. Probably you will need to make some changes
manually to compile your application successfully.
If some problems occur while making changes, you can restore your project from backup file. To do this
perform the following steps.
Select BDE Migration Wizard from MySQL menu
Select Restore original files from backup and press the Next button.
Select the backup file. By default it is RExpert.reu file in RBackup folder of your converted project.
Press the Next button.
Check your settings and press the Finish button to start the conversion operation.
Press Yes in the dialog that appeared.

Your project will be restored to its previous state.

See Also

Migration from BDE

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 73

16.19 Writing GUI Applications with MyDAC

MyDAC GUI part is standalone. This means that to make GUI elements such as SQL cursors, connect
form, connect dialog etc. available, you should explicitly include MyDacVcl (MyDacCIx under Linux) unit
in your application. This feature is needed for writing console applications.

Delphi and C++Builder

By default MyDAC does not require Forms, Controls and other GUI related units. Only TMyConnectDialog
component require the Forms unit.

Kylix

By default MyDAC does not require QT library. Only T[SPCaps]ConnectDialog component includes QT-
dependent code.

© 1997-2012 Devart. All Rights Reserved.

74

Data Access Components for MySQL

16.20 Compatibility with Previous Versions

We always try to keep MyDAC compatible with previous versions, but sometimes we have to change the
behaviour of MyDAC in order to enhance its functionality, or avoid bugs. This topic describes such
changes, and how to revert the old MyDAC behaviour. We strongly recommend not to turn on the old
behaviour of MyDAC. Use options described below only if changes applied to MyDAC crashed your
existent application.

Values of the options described below should be assigned in the initialization section of one of the units
in your project.

DBAccess.BaseSQLOIdBehavior:

The BaseSQL property is similar to the SQL property, but it does not store changes made by AddWhere,
DeleteWhere, and SetOrderBy methods. After assigning an SQL text and modifying it by one of these
methods, all subsequent changes of the SQL property will not be reflected in the BaseSQL property. This
behavior was changed in MyDAC 4.00.2.8. To restore old behavior, set the BaseSQLOIdBehavior variable
to True.

DBAccess.SQLGeneratorCompatibility:

If the manually assigned RefreshSQL property contains only "WHERE" clause, MyDAC uses the value of
the BaseSQL property to complete the refresh SQL statement. In this situation all modifications applied
to the SELECT query by functions AddWhere, DeleteWhere are not taken into account. This behavior was
changed in MyDAC 5.00.0.4. To restore the old behavior, set the BaseSQLOIdBehavior variable to True.

MemDS.SendDataSetChangeEventAfterOpen:

Starting with MyDAC 5.20.0.11, the DataSetChange event is sent after the dataset gets open. It was
necessary to fix a problem with disappeared vertical scrollbar in some types of DB-aware grids. This
problem appears only under Windows XP when visual styles are enabled.
To disable sending this event, change the value of this variable to False.

MemDS.DoNotRaiseExcetionOnUaFail:

Starting with MyDAC 5.20.0.12, if the OnUpdateRecord event handler sets the UpdateAction parameter
to uaFail, an exception is raised. The default value of UpdateAction is uaFail. So, the exception will be
raised when the value of this parameter is left unchanged.

To restore the old behaviour, set DoNotRaiseExcetionOnUaFail to True.

MyClasses. _Strings65535ToMemo:

Control flow functions of MySQL (like IF, CASE) change data type of LONGMEMO and LONGBLOB fields.
It causes wrong description of these fields by MyDAC and truncating their data. To avoid these
problems, MyDAC tries to restore the correct data type. This behaviour was introduced in MyDAC
5.10.0.9. To disable this behaviour, set the __Strings65535ToMemo variable to False.

DBAccess.ParamStringAsAnsiString:

This variable has sense for Delphi 2009 and higher.
Set its value to True to use the AsAnsiString property when setting the parameter value through
TDAParam.AsString. Otherwise the AsWideString property is used. The default value is False.

DBAccess.RefreshParamsOnlnsert:

Starting with MyDAC 5.50.0.36, when master/detail relationship is used on inserting a new record into
master table parameters in detail table are not updated. To restore the old behavior, set the
RefreshParamsOnlnsert variable to True.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 75

16.21 dbForge Fusion for MySOL

This article provides basic information about dbForge Fusion for MySQL (formerly known as MyDeveloper
Tools). The article explains what is dbForge Fusion for MySQL, where to download it, how to install and
start using it. For thorough information on dbForge Fusion for MySQL please refer to its own
documentation.
Introduction
dbForge Fusion for MySQL is a powerful IDE add-in designed to automate and simplify the MySQL
database development process. It integrates into Visual Studio and Delphi, making all database
development and administration tasks available from your favorite IDE. Using dbForge Fusion for
MySQL, you can:

Create, modify and delete database connections and easily navigate server-specific database

information in tree view

Create, modify, and drop various database objects

View and edit table data with an intelligent grid-based editor

Edit SQL code in a comfortable scripting environment with context-sensitive code completion,

syntax highlighting, outlining, code navigation and code templates

Debug SQL scripts and stored procedures

Open and save SQL documents

Create and execute SQL statements

Examine the SQL query execution plan

Visually design queries using Query Builder

Create and deploy MySQL database projects

Administrate users, and privileges

Easily export data, database objects and databases

Create new components by dragging items from Database Explorer

Take advantage of the extended integration functionality in MyDAC component designers

76

Data Access Components for MySQL

%z Project1 - CodeGear Delphi for Microsoft Windows - Queryl. qry

File Edit Search Wiew Fefactor Project Run Component Tools MySOL Window Help a §|DBFaL|It Layout vl =
— P T —— o : :
NESN T R-B 958 @& b~ POk - &
R BRNSHEE % 3
ﬁWelcome Page @Unitl MQueryl.qrv o | BX |';& Database Explarer - demobase.... & 3
A % |2 | o
_ S| & '-li' dernobase. localhost A
i =2 Tables
i A [*al Columns) LElj = dept
1 *(all Colunins) [] EmpMNo
=1 Calurmns
[Deptho [[] EMame j
= Jeptio
DMarne = [Job é F' Z
loc = [MGR - ame
] SALSUM [HireDate =] lac
Sal = =] saLsUM
[[] Commission =3 Constraints
[] DeptMo 7 PRIMARY
[Indexes
{1 Triggers
w = emp
< | > [Miews
- - = [Procedures
Selection | Joins | WWhere | Group By | Having | Order By £ Functions
[unique records [Triggers
[Ewents
T Caolunin Alias Table Function St £3 UDFs 7
DMame dept - —
A P i
' EENET -~ (e Rrof... [Bobic
e Location | dept 9(5; Chject Inspectar 3
Properties
5 Design | & Text ~
Messages b4
"demobase localhost” connected, 0
Connection "demobase . localhost " removed. * |Mame Deptho ~
MName
%Build Core Lab - General 1 ohject selected

Versions and Compatibility

dbForge Fusion for MySOL is available in two editions.
dbForge Fusion for Visual Studio, that includes support for Visual Studio .NET 2005 and Visual
Studio 2008
dbForge Fusion for Delphi, that includes support for Delphi and C++Builder 2009, and CodeGear
RAD Studio 2007

MyDAC 5.55 is compatible with dbForge Fusion for MySQL 3.00. If you are using MyDAC starting with
version 5.00 up to 5.55, you can install MyDeveloper Tools for Delphi 2.00 and higher.

Related Products

Devart also offers a number of other database products, including dbForge Studio, the standalone
version of this MySQL development tool, and OraDeveloper Tools and OraDeveloper Studio, a parallel
product line for Oracle.

You can find a full description of all the Devart database tools on the Devart web site.

Downloading and Installing

dbForge Fusion for MySQL comes in separate installation packages for each supported IDE. If you have
purchased MyDAC Developer Edition, you are entitled to receive one free license for the full version of

dbForge Fusion for MySQL. Please consult your order confirmation email for the instructions on how to

download the installation package for the IDE you are using. Otherwise, you can purchase dbForge

http://www.devart.com/dbforge/mysql/fusion/overview.html
http://www.devart.com/dbforge/mysql/fusion/overview.html
http://www.devart.com/dbforge/mysql/fusion/overview.html
http://devart.com/products-dbtools.html

Data Access Components for MySQL 77

Fusion for MySQL on the Devart website or download a free trial copy of the version you need from the
MyDeveloperTools download page.

Before installing dbForge Fusion for MySQL, make sure that no older versions of the software are
installed on the target IDE. Close all IDE instances, launch the downloaded installer, and follow the
instructions of the wizard to install the product. Now upon launching the IDE, the dbForge Fusion for
MySQL logo should appear on the splash screen and a new dbForge Fusion for MySQL toolbar should be
added to the IDE interface.

Basic Usage Instructions

Working with database connections

To start using dbForge Fusion for MySQL, you will need to establish a connection to the database you
want to work with first. After a connection is established, you can open it to retrieve and manipulate the
data provided.
In dbForge Fusion for MySQL database connections are managed in a separate Database Explorer
window. The Database Explorer window displays all available database connections at the top level of its
tree hierarchy.
To add a database connection in the Database Explorer, complete the following steps.
1. On the Database Explorer window toolbar, press the New Connection button or select the
appropriate item from the popup menu.
2.0n the "Data Source" tab of the Database Connection Properties dialog box, choose a database
server from the list.
3. 0n the "Connection" tab of the Database Connection Properties dialog box, provide the main logon
information required to connect to the server.
4.0n the "Parameter" tab of the Database Connection Properties dialog box, provide all specific
connection properties you need.
5. Test the connection you've created by clicking the "Test Connection" button.
6. Click OK to establish the database connection.

The Database Connection Properties dialog box will close, and a newly created database connection will
appear at the top level of the tree, allowing you to access your MySQL database.

You can modify an existing database connection by right-clicking on its node in Database Explorer, and
choosing "Modify Connection” from the node popup menu. In the Database Connection Properties dialog
box that will appear make any necessary changes to the connection properties. After you apply these
changes by pressing OK, the database connection will close and reopen with the new parameters.

You can rename database connection using the in-place item editor of the Database Explorer tree view.
You can drop a database connection by choosing "Delete"” from its node popup menu.

Displaying server-specific database information in tree view

After a database connection is created and opened, you can explore its database objects by navigating
its hierarchy tree. Database Explorer allows you to view, edit, create and drop database objects for all
connections. To modify or add an item to the database schema, right click on its node to display a popup
menu with the available actions for this node.

If other users are modifying this database simultaneously, you can update the list of database objects
displayed in the Database Explorer and their properties to reflect the latest changes by pressing the
"Refresh" button.

Working with database objects

You can create database objects by using the Database Explorer popup menu or by pressing the "Create
New Database Object” button on the dbForge Fusion for MySQL toolbar.

To modify an object displayed in the Database Explorer tree, double click on its node to invoke its object
editor. In dbForge Fusion for MySQL, objects are represented as tabbed documents that appear in the
main IDE editor space. Object editor documents have several interrelated views, and let you apply or
cancel the changes you make manually.

Object's properties can be also quickly viewed in a separate Properties window by navigating to that
object in the Database Explorer.

To drop a database object, select it and choose "Delete" from popup menu.

Working with database projects

You can use database projects to manage SQL scripts, query files, and database objects easily. Database
projects let you organize related scripts and queries and provide fast access to the selected database
objects. They can be created, compiled, and deployed. Some of the advanced benefits of using database
projects include the possibility of automatic compilation of a collection of source objects, creation of a
whole database from several scripts, and specification of the project deployment order. Projects are an
added feature of dbForge Fusion for MySQL, and project folder and file structure, connection and
database object links, deployment order are stored locally in a file with the .mysqldev extension.

http://www.devart.com/dbforge/mysql/fusion/ordering.html
http://www.devart.com/dbforge/mysql/fusion/download.html

78

Data Access Components for MySQL

To create a new project select Tools | Devart Developer Tools | MySQL | New Blank Project.
To open an existing project, select Tools | Devart Developer Tools | Open Project ...
Each project can be associated with one connection. Project deployment is performed through this
connection. To associate a connection with the project, right click on the connection in Database Explorer
and select "Assign to project” from the popup menu.
To deploy a project perform the following steps.
1. Select Tools | Devart Developer Tools | Project | Deployment Order.
2. Specify the files which are to be executed by setting the proper check box. Use the "Select All" and
"Deselect All" buttons, if necessary.
3. Define the order of the files in the list using the "Move Up" and "Move Down" buttons or dragging
the required files. The scripts will be executed in this order.
4. Press "Okay" to apply changes and exit or "Cancel" to exit without applying the changes you have
made.
5.5.
Select Tools | Devart Developer Tools | Project | Deploy.

Creating and executing SQL statements and scripts with SQL editor

To execute an SQL statement or script, first open a new SQL document by clicking on the "Create New
SQL Editor" button on the toolbar. Type your query or script in it, and click the "Execute SQL" button.
Query results and any error messages will be redirected to the common Output window. You can view
the datasets returned from SELECT queries in the Data tab (select Data from the View menu if this tab is
not yet visible). Note that dbForge Fusion for MySQL allows obtaining multiple result sets from SQL
scripts.

Visually designing gueries with the Query Builder

In an SQL document, you can switch to Design view to construct a query using Query Builder. In this
mode you can create SELECT statements visually without using SQL. The Query Builder view is
synchronized with the text view, and if you had a correct SELECT statement in the SQL editor, it is
automatically inserted into the Query Builder. In the Query Builder you can drag and drop tables from
the Database Explorer, use a special tabbed editor to setup JOIN statements as well as WHERE, GROUP
BY, HAVING and ORDER BY clauses.

Opening and saving SQL documents

You can save your SQL document at any time for future use. SQL editor documents are saved with
extension "sql". Query Builder documents have extension "gry". When opened, Query Builder table
controls restore their original position on the data diagram.

Examining the SQL query execution plan

One of the most important factors to worry about when developing SQL queries is query performance.
With dbForge Fusion for MySQL, you can easily evaluate and optimize the performance of a critical query
by inspecting it visually in Plan view. Just paste your query into an SQL document and switch to Plan
view to see even the most complicated statements parsed by MySQL and presented in a tree with
explanations of what every step in the plan does.

Viewing and editing data using grid based editor

The data of a table and view objects can be edited in a grid-based data editor. This data editor is
accessible from object's popup menu or from the Data view. When you open the editor, it is
automatically filled with the data contained in the object. Here you can edit data directly in a grid format.
To insert a new row, press the Ins key. To delete a row, select it and press Del. Changes are stored until
you commit them; to apply the changes made, press Enter, and to cancel all pending changes press
Escape. To refresh data in a table choose "Refresh" from the popup menu.

Creating new components by dragging items from Database Explorer

You automatically create new components that reference existing resources by selecting a connection,
table, view, stored procedure or package object in the Database Explorer and dragging it onto a form
designer. Then the IDE will automatically create a new component that references the selected resource.
Note: Drag-n-drop support is not available for Delphi 2005.

Extended Integration Features with MyDAC Component Editors

dbForge Fusion for MySQL integrates with MyDAC to give you a number of extended design-time
benefits.
Drag-n-drop support for creating new components from some database objects
Easy selection of existing connections in TMyConnection component
Added "Find", "Debug", "Edit SQL", "Query Builder", and "Retrieve Data" verbs to component popup
menus
Standard SQL editor in all MyDAC components with SQL field properties is replaced with the full-

Data Access Components for MySQL 79

featured dbForge Fusion for MySQL SQL editor, complete with code completion, syntax highlighting,
outlining, and other functionality.

Complete Documentation

dbForge Fusion for MySQL comes with comprehensive documentation that describes all aspects of using
the software and contains a number of walkthroughs and reference topics.
There are several ways to open this documentation:

Use the appropriate shortcut in Start menu, for instance, Start | Programs | Devart dbForge Fusion

| Documentation.

Use command from the IDE menu: Tools | Devart dbForge Fusion | Help.

Focus on any dbForge Fusion for MySQL window (for example, on the Database Explorer), and press

F1.

© 1997-2012 Devart. All Rights Reserved.

80

Data Access Components for MySQL

16.22 MyBuilder Add-In

To extend MyDAC design-time capabilities, MyBuilder Add-in is provided. It is an easy to use and
versatile MyDAC design-time extension to manipulate data and database objects of MySQL. With
MyBuilder Add-in you can build, execute, verify and optimize your SQL statements.

MyBuilder Add-in is embedded in IDE and can be called from it's main menu, component editors and
component popup menus.

Sometimes when you install or upgrade MyBuilder Add-in or upgrade MyDAC there is an error message
during MyDAC design-time packages initialization. It says: 'Current version of MyBuilder Add-in is
incompatible with MyDAC X.XX'. To solve this problem go to MyBuilder Add-in directory and view
Requirements section in ReadMe.txt. There you will find the lowest MyDAC version compatible with the
current add-in version. Now if your current MyDAC version number is lower than required by add-in, you
should upgrade MyDAC and if current version is higher, then upgrade MyBuilder Add-in. In more rare
cases you may need to upgrade both products.

See Also

TMyBuilder

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 81

16.23 64-bit Development with Embarcadero RAD
Studio XE2

RAD Studio XE2 Overview

RAD Studio XE2 is the major breakthrough in the line of all Delphi versions of this product. It allows
deploying your applications both on Windows and Mac OS platforms. Additionally, it is now possible to
create 64-bit Windows applications to fully benefit from the power of new hardware. Moreover, you can
create visually spectacular applications with the help of the FireMonkey GPU application platform.
Its main features are the following:

Windows 64-bit platform support;

Mac OS support;

FireMonkey application development platform;

Live data bindings with visual components;

VCL styles for Windows applications.

For more information about RAD Studio XE2, please refer to World Tour.

Changes in 64-bit Application Development

64-bit platform support implies several important changes that each developer must keep in mind prior
to the development of a new application or the modernization of an old one.

General

RAD Studio XE2 IDE is a 32-bit application. It means that it cannot load 64-bit packages at design-time.
So, all design-time packages in RAD Studio XE2 IDE are 32-bit.

Therefore, if you develop your own components, you should remember that for the purpose of
developing components with the 64-bit platform support, you have to compile run-time packages both
for the 32- and 64-bit platforms, while design-time packages need to be compiled only for the 32-bit
platform. This might be a source of difficulties if your package is simultaneously both a run-time and a
design-time package, as it is more than likely that this package won't be compiled for the 64-bit
platform. In this case, you will have to separate your package into two packages, one of which will be
used as run-time only, and the other as design-time only.

For the same reason, if your design-time packages require that certain DLLs be loaded, you should
remember that design-time packages can be only 32-bit and that is why they can load only 32-bit
versions of these DLLs, while at run-time 64-bit versions of the DLLs will be loaded. Correspondingly, if
there are only 64-bit versions of the DLL on your computer, you won't be able to use all functions at
design-time and, vice versa, if you have only 32-bit versions of the DLLs, your application won't be able
to work at run-time.

Extended type

For this type in a 64-bit applications compiler generates SSE2 instructions instead of FPU, and that
greatly improves performance in applications that use this type a lot (where data accuracy is needed).
For this purpose, the size and precision of Extended type is reduced:

TYPE 32-bit 64-bit
Extended 10 bytes 8 bytes

The following two additional types are introduced to ensure compatibility in the process of developing
32- and 64-bit applications:

Extended80 — whose size in 32-bit application is 10 bytes; however, this type provides the same
precision as its 8-byte equivalent in 64-bit applications.

Extended80Rec — can be used to perform low-level operations on an extended precision floating-point
value. For example, the sign, the exponent, and the mantissa can be changed separately. It enables you
to perform memory-related operations with 10-bit floating-point variables, but not extended-precision
arithmetic operations.

Pointer and Integers

The major difference between 32- and 64-bit platforms is the volume of the used memory and,
correspondingly, the size of the pointer that is used to address large memory volumes.

TYPE 32-bit 64-bit
Pointer 4 bytes 8 bytes

At the same time, the size of the Integer type remains the same for both platforms:
TYPE 32-bit 64-bit

http://www.embarcadero.com/world-tour

82

Data Access Components for MySQL

Integer 4 bytes 4 bytes
That is why, the following code will work incorrectly on the 64-bit platform:
Ptr := Pointer(Integer(Ptr) + Offset);

While this code will correctly on the 64-bit platform and incorrectly on the 32-bit platform:
Ptr := Pointer(Int64(Ptr) + Offset);

For this purpose, the following platform-dependent integer type is introduced:

TYPE 32-bit 64-bit

Nativelnt 4 bytes 8 bytes

NativeUInt 4 bytes 8 bytes

This type helps ensure that pointers work correctly both for the 32- and 64-bit platforms:

Ptr := Pointer(Nativelnt(Ptr) + Offset);

However, you need to be extra-careful when developing applications for several versions of Delphi, in

which case you should remember that in the previous versions of Delphi the Nativelnt type had different
sizes:

TYPE D2 e Size
Version
Nativelnt D5 N/A
Nativelnt D6 N/A
Nativelnt D7 8 bytes
Nativelnt D2005 8 bytes
Nativelnt D2006 8 bytes
Nativelnt D2007 8 bytes
Nativelnt D2009 4 bytes
Nativelnt D2010 4 bytes
Nativelnt Delphi XE 4 bytes
Nativelnt Delphi XE2 4 or 8 bytes

Out parameters

Some WinAPIs have OUT parameters of the SIZE_T type, which is equivalent to Nativelnt in Delphi XE2.
The problem is that if you are developing only a 32-bit application, you won't be able to pass Integer to
OUT, while in a 64-bit application, you will not be able to pass Int64; in both cases you will have to pass
Nativelnt.

For example:

procedure MyProc(out Value: Nativelnt);
begin
Value := 12345;
end;
var
Valuel: Nativelnt;
{$IFDEF WIN32}
Value2: Integer;
{SENDIF}
{SIFDEF WIN64}
Value2: Int64;
{SENDIF}
begin
MyProc(Valuel); // will be compiled;
MyProc(Value2); // will not be compiled !!!
end;

Win API

If you pass pointers to SendMessage/PostMessage/TControl.Perform, the wParam and IParam
parameters should be type-casted to the WPARAM/LPARAM type and not to Integer/Longint.
Correct:

SendMessage(hWnd, WM_SETTEXT, O, LPARAM(@MyCharArray));

Wrong:

Data Access Components for MySQL 83

SendMessage(hWnd, WM_SETTEXT, O, Integer(@VyCharArray));

Replace SetWindowLong/GetWindowLog with SetWindowLongPtr/GetWindowLongPtr for
GWLP_HINSTANCE, GWLP_ID, GWLP_USERDATA, GWLP_HWNDPARENT and GWLP_WNDPROC as they
return pointers and handles. Pointers that are passed to SetWindowLongPtr should be type-casted to
LONG_PTR and not to Integer/Longint.

Correct:

SetWindowLongPtr(hWnd, GWLP_WNDPROC, LONG_PTR(@MyWindowProc));

Wrong:
SetWindowLong(hWnd, GWL_WNDPROC, Longint(@MyWindowProc));

Pointers that are assigned to the TMessage.Result field should use a type-cast to LRESULT instead of
Integer/Longint.
Correct:

Message.Result := LRESULT(Self);

Wrong:
Message.Result := Integer(Self);

All TWM...-records for the windows message handlers must use the correct Windows types for the fields:
Msg: UINT; wParam: WPARAM; IParam: LPARAM; Result: LRESULT)

Assembler

In order to make your application (that uses assembly code) work, you will have to make several
changes to it:

rewrite your code that mixes Pascal code and assembly code. Mixing them is not supported in 64-bit
applications;

rewrite assembly code that doesn't consider architecture and processor specifics.

You can use conditional defines to make your application work with different architectures.

You can learn more about Assembly code here: http://docwiki.embarcadero.com/RADStudio/en/

Using Inline Assembly Code You can also look at the following article that will help you to make your
application support the 64-bit platform: http://docwiki.embarcadero.com/RADStudio/en/Converting 32-
bit Delphi Applications to 64-bit Windows

Exception handling

The biggest difference in exception handling between Delphi 32 and 64-bit is that in Delphi XE2 64-bit
you will gain more performance because of different internal exception mechanism. For 32-bit
applications, the Delphi compiler (dcc32.exe) generates additional code that is executed any way and
that causes performance loss. The 64-bit compiler (dcc64.exe) doesn't generate such code, it generates
metadata and stores it in the PDATA section of an executable file instead.

But in Delphi XE2 64-bit it's impossible to have more than 16 levels of nested exceptions. Having more
than 16 levels of nested exceptions will cause a Run Time error.

Debugging

Debugging of 64-bit applications in RAD Studio XE2 is remote. It is caused by the same reason: RAD
Studio XE2 IDE is a 32 application, but your application is 64-bit. If you are trying to debug your
application and you cannot do it, you should check that the Include remote debug symbols project
option is enabled.

To enable it, perform the following steps:

1. Open Project Options (in the main menu Project->Options).

2. In the Target combobox, select Debug configuration - 64-bit Windows platform. If there is no
such option in the combobox, right click "Target Platforms" in Project Manager and select Add
platform. After adding the 64-bit Windows platform, the Debug configuration - 64-bit
Windows platform option will be available in the Target combobox.

3. Select Linking in the left part of the Project Options form.

4. enable the Include remote debug symbols option.

After that, you can run and debug your 64-bit application.
To enable remote debugging, perform the following steps:

1. Install Platform Assistant Server (PAServer) on a remote computer. You can find PAServer in the
%RAD_Studio_XE2_ Install_Directory%\PAServer directory. The setup_paserver.exe file is an
installation file for Windows, and the setup_paserver.zip file is an istallation file for MacOS.

2. Run the PAServer.exe file on a remote computer and set the password that will be used to connect
to this computer.

3. 0n a local computer with RAD Studio XE2 installed, right-click the target platform that you want to
debug in Project Manager and select Assign Remote Profile. Click the Add button in the
displayed window, input your profile name, click the Next button, input the name of a remote

http://docwiki.embarcadero.com/RADStudio/en/Using_Inline_Assembly_Code
http://docwiki.embarcadero.com/RADStudio/en/Using_Inline_Assembly_Code
http://docwiki.embarcadero.com/RADStudio/en/Converting_32-bit_Delphi_Applications_to_64-bit_Windows
http://docwiki.embarcadero.com/RADStudio/en/Converting_32-bit_Delphi_Applications_to_64-bit_Windows

84

Data Access Components for MySQL

computer and the password to it (that you assigned when you started PAServer on a remote
computer).

After that, you can test the connection by clicking the Test Connection button. If your connection
failed, check that your firewalls on both remote and local computers do not block your connection, and
try to establish a connection once more. If your connection succeeded, click the Next button and then
the Finish button. Select your newly created profile and click OK.

After performing these steps you will be able to debug your application on a remote computer. You
application will be executed on a remote computer, but you will be able to debug it on your local
computer with RAD Studio XE2.

For more information about working with Platform Assistant Server, please refer to http://docwiki.
embarcadero.com/RADStudio/en/

Installing and Running the Platform Assistant on the Target Platform

© 1997-2012 Devart. All Rights Reserved.

http://docwiki.embarcadero.com/RADStudio/en/Installing_and_Running_the_Platform_Assistant_on_the_Target_Platform
http://docwiki.embarcadero.com/RADStudio/en/Installing_and_Running_the_Platform_Assistant_on_the_Target_Platform
http://docwiki.embarcadero.com/RADStudio/en/Installing_and_Running_the_Platform_Assistant_on_the_Target_Platform

Data Access Components for MySQL 85

16.24 Database Specific Aspects of 64-bit Development

MySQL Connectivity Aspects

Client mode:

If you are developing a 64-bit application, you have to be aware of specifics of working with client
libraries at design-time and run-time. To connect to a MySQL database at design-time, you must have its
32-bit client library. You have to place it to the C:\Windows\SysWOW&64 directory. This requirement
flows out from the fact that RAD Studio XE2 is a 32-bit application and it cannot load 64-bit libraries at
design-time. To work with a MySQL database in run-time (64-bit application), you must have the 64-bit
client library placed to the C:\Windows\System32 directory.

DIRECT mode:

Since there is no need to install client library for the DIRECT mode, the specifics of developing
applications that use MyDAC as data access components, depends exclusively on peculiarities of each
target platform.

© 1997-2012 Devart. All Rights Reserved.

86

Data Access Components for MySQL

17 Reference

This page shortly describes units that exist in MyDAC.

Units

Unit Name
CRAccess

CRBatchMove
CRDataTypeMap
CREncryption
CRVio

DADump
DALoader
DAScript

DASQLMonitor

DBAccess

Devart.Dac.DataAdapter

Devart.MyDac.DataAdapter

MemData
MemDS

MemUtils

MyAccess
MyBackup
MyBuilderClient

MyClasses

MyConnectionPool

MyDacVcl

MyDump

MyEmbConnection

Description

This unit contains base classes for
accessing databases.

This unit contains implementation of
the TCRBatchMove component.
This unit contains base classes for
Data Type Mapping

This unit contains base classes for
data encryption.

This unit contains classes, used for
establishing HTTP connections.

This unit contains the base class for
the TMyDump component.

This unit contains the base class for
the TMyLoader component.

This unit contains the base class for
the TMyScript component.

This unit contains the base class for
the TMySQLMonitor component.

This unit contains base classes for
most of the components.

This unit contains implementation of
the DADataAdapter class.

This unit contains implementation of
the MyDataAdapter class.

This unit contains classes for storing
data in memory.

This unit contains implementation of
the TMemDataSet class.

This unit contains auxiliary

procedures and functions used in
the DAC code.

This unit contains implementation of
most public classes of MyDAC.

This unit contains implementation of
the TMyBackup component.

This unit contains implementation of
the TMyBuilder class.

This unit contains implementation of
the EMyError class.

This unit contains the
TMyConnectionPoolManager class
for managing connection pool.

This unit contains the visual
constituent of MyDAC.

This unit contains implementation of
the TMyDump component.

This unit contains implementation of
the TMyEmbConnection component.

Data Access Components for MySQL 87

MyLoader
MyScript
MyServerControl
MySdalApi
MySQLMonitor
MySqglVio

VirtualTable

This unit contains implementation of
the TMyLoader component.

This unit contains implementation of
the TMyScript component.

This unit contains implementation of
the TMyServerControl component.
This unit contains implementation of
the class.

This unit contains implementation of
the TMySQLMonitor component.
This unit contains implementation of
the TCRIOHandler class.

This unit contains implementation of
the TVirtualTable component.

© 1997-2012 Devart. All Rights Reserved.

88 Data Access Components for MySQL

17.1 CRAccess

This unit contains base classes for accessing databases.

Classes

Name
TCRCursor

Types

Name
TBeforeFetchProc

Enumerations

Name
TCRIsolationLevel

TCRTransactionAction

Description

A base class for classes that work
with database cursors.

Description

This type is used for the
TCustomDADataSet.BeforeFetch
event.

Description

Specifies how to handle
transactions containing database
modifications.

Specifies the transaction behaviour
when it is destroyed while being
active, or when one of its
connections is closed with the active
transaction.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 89

17.1.1 Classes

Classes in the CRAccess unit.

Classes
Name Description
TCRCursor A base class for classes that work

with database cursors.

© 1997-2012 Devart. All Rights Reserved.

17.1.1.1 CRAccess.TCRCursor Class
A base class for classes that work with database cursors.
For a list of all members of this type, see TCRCursor members.

Unit
CRAccess
Syntax
TCRCursor = class(TSharedObject);

Remarks
TCRCursor is a base class for classes that work with database cursors.
Inheritance Hierarchy

TObject

TSharedObiject
TCRCursor

© 1997-2012 Devart. All Rights Reserved.

TCRCursor class overview.

Properties
Name Description
RefCount (inherited from TSharedObject) Used to return the count of
reference to a TSharedObject
object.
Methods
Name Description
AddRef (inherited from TSharedObject) Increments the reference count for
the number of references
dependent on the TSharedObject
object.
Release (inherited from TSharedObject) Decrements the reference count.

© 1997-2012 Devart. All Rights Reserved.

90 Data Access Components for MySQL

17.1.2 Types
Types in the CRAccess unit.
Types
Name Description
TBeforeFetchProc This type is used for the
TCustomDADataSet.BeforeFetch

event.

© 1997-2012 Devart. All Rights Reserved.

17.1.2.1 CRAccess.TBeforeFetchProc Procedure Reference
This type is used for the TCustomDADataSet.BeforeFetch event.

Unit
CRAccess

Syntax
TBeforeFetchProc = procedure (var Cancel: boolean) of object;

Parameters

Cancel
True, if the current fetch operation should be aborted.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 91

17.1.3 Enumerations

Enumerations in the CRAccess unit.

Enumerations

Name Description

TCRIsolationLevel Specifies how to handle
transactions containing database
modifications.
TCRTransactionAction Specifies the transaction behaviour
when it is destroyed while being
active, or when one of its
connections is closed with the active
transaction.

© 1997-2012 Devart. All Rights Reserved.

17.1.3.1 CRAccess.TCRIsolationLevel Enumeration
Specifies how to handle transactions containing database modifications.

Unit
CRAccess
Syntax
TCRIsolationLevel = (ilReadCommitted);
Values

Value Meaning

ilIReadCommitted The default transaction behavior. If the transaction contains DML that
requires row locks held by another transaction, then the DML statement
waits until the row locks are released.

© 1997-2012 Devart. All Rights Reserved.

17.1.3.2 CRAccess.TCRTransactionAction Enumeration
Specifies the transaction behaviour when it is destroyed while being active, or when one of its

connections is closed with the active transaction.

uUnit
CRAccess
Syntax
TCRTransactionAction = (taCommit, taRollback);
Values
Value Meaning
taCommit Transaction is committed.
taRollback Transaction is rolled back.

© 1997-2012 Devart. All Rights Reserved.

92 Data Access Components for MySQL

17.2 CRBatchMove

This unit contains implementation of the TCRBatchMove component.

Classes

Name
TCRBatchMove

Types

Name
TCRBatchMoveProgressEvent

Enumerations

Name
TCRBatchMode

TCRFieldMappingMode

Description
Transfers records between datasets.

Description
This type is used for the

TCRBatchMove.

OnBatchMoveProgress event.

Description

Used to set the type of the batch
operation that will be executed after
calling the TCRBatchMove.Execute
method.

Used to specify the way fields of the
destination and source datasets will
be mapped to each other if the
TCRBatchMove.Mappings list is

empty.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 93

17.2.1 Classes

Classes in the CRBatchMove unit.

Classes
Name Description
TCRBatchMove Transfers records between datasets.

© 1997-2012 Devart. All Rights Reserved.

17.2.1.1 CRBatchMove.TCRBatchMove Class
Transfers records between datasets.
For a list of all members of this type, see TCRBatchMove members.

Unit
CRBatchMove
Syntax
TCRBatchMove = class(TComponent);

Remarks

The TCRBatchMove component transfers records between datasets. Use it to copy dataset records to
another dataset or to delete datasets records that match records in another dataset. The TCRBatchMove.
Mode property determines the desired operation type, the TCRBatchMove.Source and TCRBatchMove.
Destination properties indicate corresponding datasets.

Note: A TCRBatchMove component is added to the Data Access page of the component palette, not to
the MySQL Access page.

Inheritance Hierarchy

TObject
TCRBatchMove

© 1997-2012 Devart. All Rights Reserved.

TCRBatchMove class overview.

Properties

Name Description

AbortOnKeyViol Used to specify whether the batch
operation should be terminated
immediately after key or integrity
violation.

AbortOnProblem Used to specify whether the batch
operation should be terminated
immediately when it is necessary to
truncate data to make it fit the
specified Destination.

ChangedCount Used to get the number of records
changed in the destination dataset.

CommitCount Used to set the number of records
to be batch moved before commit
occurs.

Destination Used to specify the destination
dataset for the batch operation.

FieldMappingMode Used to specify the way fields of

destination and source datasets will
be mapped to each other if the
TCRBatchMove.Mappings list is
empty.

94

Data Access Components for MySQL

KeyViolCount

MovedCount

ProblemCount

RecordCount

Source

Methods

Name
Execute

Events

Name
OnBatchMoveProgress

© 1997-2012 Devart. All Rights Reserved.

Properties of the TCRBatchMove class.

Used to get the number of records
that could not be moved to or from
the destination dataset because of
integrity or key violations.

Used to set field matching between
source and destination datasets for
the batch operation.

Used to set the type of the batch
operation that will be executed after
calling the TCRBatchMove.Execute
method.

Used to get the number of records
that were read from the source
dataset during the batch operation.

Used to get the number of records
that could not be added to the
destination dataset because of the
field type mismatch.

Used to indicate the maximum
number of records in the source
dataset that will be applied to the
destination dataset.

Used to specify the source dataset
for the batch operation.

Description
Performs the batch operation.

Description

Occurs when providing feedback to
the user about the batch operation
in progress is needed.

For a complete list of the TCRBatchMove class members, see the TCRBatchMove Members topic.

Public

Name
ChangedCount

KeyViolCount

MovedCount

ProblemCount

Published

Name

Description

Used to get the number of records
changed in the destination dataset.

Used to get the number of records
that could not be moved to or from
the destination dataset because of
integrity or key violations.

Used to get the number of records
that were read from the source
dataset during the batch operation.
Used to get the number of records
that could not be added to the
destination dataset because of the
field type mismatch.

Description

Data Access Components for MySQL 95

AbortOnKeyViol Used to specify whether the batch
operation should be terminated
immediately after key or integrity
violation.

AbortOnProblem Used to specify whether the batch
operation should be terminated
immediately when it is necessary to
truncate data to make it fit the
specified Destination.

CommitCount Used to set the number of records
to be batch moved before commit
occurs.

Destination Used to specify the destination
dataset for the batch operation.

FieldMappingMode Used to specify the way fields of

destination and source datasets will
be mapped to each other if the
TCRBatchMove.Mappings list is
empty.

Mappings Used to set field matching between
source and destination datasets for
the batch operation.

Mode Used to set the type of the batch
operation that will be executed after
calling the TCRBatchMove.Execute
method.

RecordCount Used to indicate the maximum
number of records in the source
dataset that will be applied to the
destination dataset.

Source Used to specify the source dataset
for the batch operation.

See Also
TCRBatchMove Class
TCRBatchMove Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify whether the batch operation should be terminated immediately after key or integrity
violation.

Class
TCRBatchMove
Syntax
property AbortOnKeyViol: boolean default True;
Remarks

Use the AbortOnKeyViol property to specify whether the batch operation is terminated immediately after
key or integrity violation.

© 1997-2012 Devart. All Rights Reserved.

Used to specify whether the batch operation should be terminated immediately when it is necessary to
truncate data to make it fit the specified Destination.

Class
TCRBatchMove

Syntax

96

Data Access Components for MySQL

property AbortOnProblem: boolean default True;

Remarks

Use the AbortOnProblem property to specify whether the batch operation is terminated immediately
when it is necessary to truncate data to make it fit the specified Destination.

© 1997-2012 Devart. All Rights Reserved.
Used to get the number of records changed in the destination dataset.
Class
TCRBatchMove
Syntax
property ChangedCount: Longint;

Remarks

Use the ChangedCount property to get the number of records changed in the destination dataset. It
shows the number of records that were updated in the bmUpdate or bmAppendUpdate mode or were
deleted in the bmDelete mode.

© 1997-2012 Devart. All Rights Reserved.

Used to set the number of records to be batch moved before commit occurs.
Class

TCRBatchMove
Syntax
property CommitCount: integer default O;

Remarks

Use the CommitCount property to set the number of records to be batch moved before the commit
occurs. If it is set to 0, the operation will be chunked to the number of records to fit 32 Kb.

© 1997-2012 Devart. All Rights Reserved.

Used to specify the destination dataset for the batch operation.
Class

TCRBatchMove
Syntax
property Destination: TDataSet;

Remarks

Specifies the destination dataset for the batch operation.

© 1997-2012 Devart. All Rights Reserved.

Used to specify the way fields of destination and source datasets will be mapped to each other if the
Mappings list is empty.

Class
TCRBatchMove

Syntax

property FieldMappingMode: TCRFieldMappingMode default
mmFieldIndex;

Data Access Components for MySQL 97

Remarks

Specifies in what way fields of destination and source datasets will be mapped to each other if the
Mappings list is empty.

© 1997-2012 Devart. All Rights Reserved.

Used to get the number of records that could not be moved to or from the destination dataset because
of integrity or key violations.

Class
TCRBatchMove
Syntax
property KeyViolCount: Longint;

Remarks

Use the KeyViolCount property to get the number of records that could not be replaced, added, deleted
from the destination dataset because of integrity or key violations.

If AbortOnKeyViol is True, then KeyViolCount will never exceed one, because the operation aborts when
the integrity or key violation occurs.

See Also

AbortOnKeyViol

© 1997-2012 Devart. All Rights Reserved.

Used to set field matching between source and destination datasets for the batch operation.
Class

TCRBatchMove
Syntax
property Mappings: _TStrings;

Remarks

Use the Mappings property to set field matching between the source and destination datasets for the
batch operation. By default fields matching is based on their position in the datasets. To map the column
ColName in the source dataset to the column with the same name in the destination dataset, use:
ColName

Example

To map a column named SourceColName in the source dataset to the column named DestColName in
the destination dataset, use:
DestColName=SourceColName

© 1997-2012 Devart. All Rights Reserved.

Used to set the type of the batch operation that will be executed after calling the Execute method.
Class

TCRBatchMove
Syntax
property Mode: TCRBatchMode default bmAppend;

98

Data Access Components for MySQL

Remarks

Use the Mode property to set the type of the batch operation that will be executed after calling the
Execute method.

© 1997-2012 Devart. All Rights Reserved.

Used to get the number of records that were read from the source dataset during the batch operation.
Class

TCRBatchMove
Syntax
property MovedCount: Longint;

Remarks

Use the MovedCount property to get the number of records that were read from the source dataset
during the batch operation. This number includes records that caused key or integrity violations or were
trimmed.

© 1997-2012 Devart. All Rights Reserved.

Used to get the number of records that could not be added to the destination dataset because of the
field type mismatch.

Class
TCRBatchMove
Syntax
property ProblemCount: Longint;

Remarks

Use the ProblemCount property to get the number of records that could not be added to the destination
dataset because of the field type mismatch.

If AbortOnProblem is True, then ProblemCount will never exceed one, because the operation aborts
when the problem occurs.

See Also

AbortOnProblem

© 1997-2012 Devart. All Rights Reserved.

Used to indicate the maximum number of records in the source dataset that will be applied to the
destination dataset.

Class
TCRBatchMove
Syntax
property RecordCount: Longint default O;

Remarks

Determines the maximum number of records in the source dataset, that will be applied to the destination
dataset. If it is set to O, all records in the source dataset will be applied to the destination dataset,
starting from the first record. If RecordCount is greater than O, up to the RecordCount records are
applied to the destination dataset, starting from the current record in the source dataset. If RecordCount
exceeds the number of records left in the source dataset, batch operation terminates after reaching last
record.

Data Access Components for MySQL

99

© 1997-2012 Devart. All Rights Reserved.

Used to specify the source dataset for the batch operation.
Class

TCRBatchMove
Syntax
property Source: TDataSet;

Remarks

Specifies the source dataset for the batch operation.

© 1997-2012 Devart. All Rights Reserved.

Methods of the TCRBatchMove class.
For a complete list of the TCRBatchMove class members, see the TCRBatchMove Members topic.

Public

Name Description
Execute Performs the batch operation.
See Also

TCRBatchMove Class
TCRBatchMove Class Members

© 1997-2012 Devart. All Rights Reserved.

Performs the batch operation.
Class

TCRBatchMove
Syntax
procedure Execute;

Remarks

Call the Execute method to perform the batch operation.

© 1997-2012 Devart. All Rights Reserved.

Events of the TCRBatchMove class.
For a complete list of the TCRBatchMove class members, see the TCRBatchMove Members topic.

Published

Name Description

OnBatchMoveProgress Occurs when providing feedback to
the user about the batch operation
in progress is needed.

See Also
TCRBatchMove Class
TCRBatchMove Class Members

© 1997-2012 Devart. All Rights Reserved.

Occurs when providing feedback to the user about the batch operation in progress is needed.
Class
TCRBatchMove

100 Data Access Components for MySQL

Syntax
property OnBatchMoveProgress: TCRBatchMoveProgressEvent;

Remarks
Write the OnBatchMoveProgress event handler to provide feedback to the user about the batch operation

progress.

© 1997-2012 Devart. All Rights Reserved.

101

Data Access Components for MySQL

17.2.2 Types
Types in the CRBatchMove unit.
Types
Name Description
TCRBatchMoveProgressEvent This type is used for the
TCRBatchMove.

OnBatchMoveProgress event.

© 1997-2012 Devart. All Rights Reserved.

17.2.2.1 CRBatchMove.TCRBatchMoveProgressEvent Procedure Reference
This type is used for the TCRBatchMove.OnBatchMoveProgress event.

Unit
CRBatchMove

Syntax
TCRBatchMoveProgressEvent = procedure (Sender: TObject; Percent:

integer) of object;

Parameters

Sender
An object that raised the event.

Percent
Percentage of the batch operation progress.

© 1997-2012 Devart. All Rights Reserved.

102 Data Access Components for MySQL

17.2.3 Enumerations

Enumerations in the CRBatchMove unit.
Enumerations

Name Description

TCRBatchMode Used to set the type of the batch
operation that will be executed after
calling the TCRBatchMove.Execute
method.

TCRFieldMappingMode Used to specify the way fields of the
destination and source datasets will
be mapped to each other if the
TCRBatchMove.Mappings list is
empty.

© 1997-2012 Devart. All Rights Reserved.

17.2.3.1 CRBatchMove.TCRBatchMode Enumeration
Used to set the type of the batch operation that will be executed after calling the TCRBatchMove.Execute

method.
Unit
CRBatchMove
Syntax
TCRBatchMode = (bmAppend, bmUpdate, bmAppendUpdate, bmDelete);
Values
Value Meaning
bmAppend Appends the records from the source dataset to the destination dataset.
The default mode.
bmAppendUpdate Replaces records in the destination dataset with the matching records
from the source dataset. If there is no matching record in the destination
dataset, the record will be appended to it.
bmbDelete Deletes records from the destination dataset if there are matching records
in the source dataset.
bmUpdate Replaces records in the destination dataset with the matching records

from the source dataset.

© 1997-2012 Devart. All Rights Reserved.

17.2.3.2 CRBatchMove.TCRFieldMappingMode Enumeration
Used to specify the way fields of the destination and source datasets will be mapped to each other if the
TCRBatchMove.Mappings list is empty.

Unit
CRBatchMove
Syntax
TCRFieldMappingMode = (mmFieldIndex, mmFieldName);
Values
Value Meaning
mmpFieldlndex Specifies that the fields of the destination dataset will be mapped to the
fields of the source dataset by field index.
mmFieldName Mapping is performed by field names.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 103

17.3 CRDataTypeMap

This unit contains base classes for Data Type Mapping

Classes

Name

EDataMappingError

EDataTypeMappingError

ElnvalidDBTypeMapping

ElnvalidFieldTypeMapping

EUnsupportedDataTypeMapping

TMapRule

Description

Occurs when unable to map data to
a specified type.

Base class for errors occuring at
data mapping

Occurs when DB field type is set
incorrectly or when attempting to
set Length or Scale for a type that
doesn't have such properties.
Occurs when Delphi field type is set
incorrectly or when attempting to
set Length or Scale for a type that
doesn't have such properties.
Occurs when attempting to register
or perform unsupported data type
mapping.

Setting rule for data type mapping

© 1997-2012 Devart. All Rights Reserved.

104 Data Access Components for MySQL

17.3.1 Classes

Classes in the CRDataTypeMap unit.

Classes
Name Description
EDataMappingError Occurs when unable to map data to
a specified type.
EDataTypeMappingError Base class for errors occuring at
data mapping
ElnvalidDBTypeMapping Occurs when DB field type is set

incorrectly or when attempting to
set Length or Scale for a type that
doesn't have such properties.

ElnvalidFieldTypeMapping Occurs when Delphi field type is set
incorrectly or when attempting to
set Length or Scale for a type that
doesn't have such properties.

EUnsupportedDataTypeMapping Occurs when attempting to register
or perform unsupported data type
mapping.

TMapRule Setting rule for data type mapping

© 1997-2012 Devart. All Rights Reserved.

17.3.1.1 CRDataTypeMap.EDataMappingError Class
Occurs when unable to map data to a specified type.
For a list of all members of this type, see EDataMappingError members.

Unit
CRDataTypeMap

Syntax
EDataMappingError = class(EDataTypeMappingError);

Remarks

EDataMappingError occurs when unable to map data to a specified type. Use EDataMappingError in an
exception handling block.

Inheritance Hierarchy

TObject
EDataTypeMappingError
EDataMappingError

© 1997-2012 Devart. All Rights Reserved.

EDataMappingError class overview.

© 1997-2012 Devart. All Rights Reserved.

17.3.1.2 CRDataTypeMap.EDataTypeMappingError Class
Base class for errors occuring at data mapping
For a list of all members of this type, see EDataTypeMappingError members.

Unit
CRDataTypeMap

Syntax
EDataTypeMappingError = class(Exception);

Data Access Components for MySQL 105

Remarks
Base class for errors occuring at data mapping
Inheritance Hierarchy

TObject
EDataTypeMappingError

© 1997-2012 Devart. All Rights Reserved.

EDataTypeMappingError class overview.

© 1997-2012 Devart. All Rights Reserved.

17.3.1.3 CRDataTypeMap.EInvalidDBTypeMapping Class
Occurs when DB field type is set incorrectly or when attempting to set Length or Scale for a type that
doesn't have such properties.
For a list of all members of this type, see ElnvalidDBTypeMapping members.
Unit

CRDataTypeMap

Syntax
Elnval idDBTypeMapping = class(EDataTypeMappingError);

Remarks

ElnvalidDBTypeMapping occurs when DB field type is set incorrectly or when attempting to set Length or
Scale for a type that doesn't have such properties. Use ElnvalidDBTypeMapping in an exception handling
block.

Inheritance Hierarchy

TObject
EDataTypeMappingError
ElnvalidDBTypeMapping

© 1997-2012 Devart. All Rights Reserved.

ElnvalidDBTypeMapping class overview.

© 1997-2012 Devart. All Rights Reserved.

17.3.1.4 CRDataTypeMap.ElnvalidFieldTypeMapping Class
Occurs when Delphi field type is set incorrectly or when attempting to set Length or Scale for a type that
doesn't have such properties.
For a list of all members of this type, see ElnvalidFieldTypeMapping members.

Unit
CRDataTypeMap
Syntax
ElnvalidFieldTypeMapping = class(EDataTypeMappingError);

Remarks

ElnvalidFieldTypeMapping occurs when Delphi field type is set incorrectly or when attempting to set
Length or Scale for a type that doesn't have such properties. Use ElnvalidFieldTypeMapping in an
exception handling block.

Inheritance Hierarchy

TObject
EDataTypeMappingError
ElnvalidFieldTypeMapping

106 Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

ElnvalidFieldTypeMapping class overview.

© 1997-2012 Devart. All Rights Reserved.

17.3.1.5 CRDataTypeMap.EUnsupportedDataTypeMapping Class
Occurs when attempting to register or perform unsupported data type mapping.
For a list of all members of this type, see EUnsupportedDataTypeMapping members.

Unit
CRDataTypeMap

Syntax
EUnsupportedDataTypeMapping = class(EDataTypeMappingError);

Remarks

EUnsupportedDataTypeMapping occurs when attempting to register or perform unsupported data type
mapping. Use EUnsupportedDataTypeMapping in an exception handling block.

Inheritance Hierarchy

TObject
EDataTypeMappingError
EUnsupportedDataTypeMapping

© 1997-2012 Devart. All Rights Reserved.

EUnsupportedDataTypeMapping class overview.

© 1997-2012 Devart. All Rights Reserved.

17.3.1.6 CRDataTypeMap.TMapRule Class
Setting rule for data type mapping
For a list of all members of this type, see TMapRule members.

Unit
CRDataTypeMap

Syntax
TMapRule = class(TCollectionltem);

Inheritance Hierarchy

TObject
TMapRule

© 1997-2012 Devart. All Rights Reserved.

TMapRule class overview.

Properties
Name Description
DBLengthMax Maximum DB field size
DBLengthMin Minimum DB field size
DBScaleMax Maximum DB field scale
DBScaleMin Minimal DB field scale
DBType DB type
FieldLength Delphi field length

FieldName field name in DataSet

Data Access Components for MySQL 107

FieldScale
lgnoreErrors

Delphi field scale

Ignore data conversion errors.
Default value is False.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TMapRule class.
For a complete list of the TMapRule class members, see the TMapRule Members topic.

Public

Name

DBLengthMax

DBLengthMin
DBScaleMax

DBScaleMin

DBType

FieldLength
FieldName

FieldScale
lgnoreErrors

See Also

TMapRule Class
TMapRule Class Members

Description
Maximum DB field size
Minimum DB field size
Maximum DB field scale
Minimal DB field scale
DB type

Delphi field length

field name in DataSet
Delphi field scale

Ignore data conversion errors.
Default value is False.

© 1997-2012 Devart. All Rights Reserved.

Maximum DB field size
Class
TMapRule
Syntax
property DBLengthMax:

Integer;

© 1997-2012 Devart. All Rights Reserved.

Minimum DB field size
Class
TMapRule
Syntax
property DBLengthMin:

Integer

© 1997-2012 Devart. All Rights Reserved.

Maximum DB field scale
Class

TMapRule
Syntax
property DBScaleMax:

Integer;

© 1997-2012 Devart. All Rights Reserved.

108 Data Access Components for MySQL

Minimal DB field scale
Class
TMapRule
Syntax
property DBScaleMin: Integer;

© 1997-2012 Devart. All Rights Reserved.
DB type

Class
TMapRule

Syntax

property DBType: Word;

© 1997-2012 Devart. All Rights Reserved.
Delphi field length

Class
TMapRule

Syntax

property FieldLength: Integer;

© 1997-2012 Devart. All Rights Reserved.
field name in DataSet

Class
TMapRule

Syntax

property FieldName: string;

© 1997-2012 Devart. All Rights Reserved.
Delphi field scale

Class
TMapRule

Syntax

property FieldScale: Integer;

© 1997-2012 Devart. All Rights Reserved.
Ignore data conversion errors. Default value is False.
Class
TMapRule
Syntax
property IgnoreErrors: Boolean;

Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

109

110 Data Access Components for MySQL

17.4 CREncryption

This unit contains base classes for data encryption.
Classes

Name
TCREnNcryptor

Enumerations

Name
TCREncDataHeader

TCREnNcryptionAlgorithm

TCRHashAlgorithm

TCRInvalidHashAction

Description

The class that performs data
encryption and decryption in a
client application using various
encryption algorithms.

Description

Specifies whether the additional
information is stored with the
encrypted data.

Specifies the algorithm of data
encryption.

Specifies the algorithm of
generating hash data.

Specifies the action to perform on

data fetching when hash data is
invalid.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 111

17.4.1 Classes

Classes in the CREncryption unit.
Classes

Name
TCRENcryptor

Description

The class that performs data
encryption and decryption in a
client application using various
encryption algorithms.

© 1997-2012 Devart. All Rights Reserved.

17.4.1.1 CREncryption. TCREncryptor Class

The class that performs data encryption and decryption in a client application using various encryption

algorithms.

For a list of all members of this type, see TCREncryptor members.
Unit

CREncryption
Syntax

TCREncryptor = class(TComponent);

Inheritance Hierarchy

TObject
TCRENcryptor

© 1997-2012 Devart. All Rights Reserved.

TCREnNcryptor class overview.
Properties

Name
DataHeader

EncryptionAlgorithm

HashAlgorithm

InvalidHashAction

Password

Methods

Name
SetKey

Description

Specifies whether the additional
information is stored with the
encrypted data.

Specifies the algorithm of data
encryption.

Specifies the algorithm of
generating hash data.

Specifies the action to perform on
data fetching when hash data is
invalid.

Used to set a password that is used
to generate a key for encryption.

Description

Sets a key, using which data is
encrypted.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TCRENcryptor class.

For a complete list of the TCREncryptor class members, see the TCREncryptor Members topic.

Published

Name

Description

112

Data Access Components for MySQL

DataHeader Specifies whether the additional
information is stored with the
encrypted data.

EncryptionAlgorithm Specifies the algorithm of data
encryption.

HashAlgorithm Specifies the algorithm of
generating hash data.

InvalidHashAction Specifies the action to perform on
data fetching when hash data is
invalid.

Password Used to set a password that is used

to generate a key for encryption.

See Also
TCREnNcryptor Class
TCREnNcryptor Class Members

© 1997-2012 Devart. All Rights Reserved.

Specifies whether the additional information is stored with the encrypted data.
Class

TCREncryptor

Syntax
property DataHeader: TCREncDataHeader default ehTagAndHash;

Remarks

Use DataHeader to specify whether the additional information is stored with the encrypted data. Default
value is ehTagAndHash.

© 1997-2012 Devart. All Rights Reserved.

Specifies the algorithm of data encryption.
Class
TCREncryptor

Syntax

property EncryptionAlgorithm: TCREncryptionAlgorithm default
eaBlowfish;

Remarks

Use EncryptionAlgorithm to specify the algorithm of data encryption. Default value is eaBlowfish.

© 1997-2012 Devart. All Rights Reserved.

Specifies the algorithm of generating hash data.
Class
TCREncryptor

Syntax
property HashAlgorithm: TCRHashAlgorithm default haSHA1;

Remarks

Use HashAlgorithm to specify the algorithm of generating hash data. This property is used only if hash is
stored with the encrypted data (the DataHeader property is set to ehTagAndHash). Default value is
haSHA1.

Data Access Components for MySQL 113

© 1997-2012 Devart. All Rights Reserved.

Specifies the action to perform on data fetching when hash data is invalid.
Class
TCREncryptor

Syntax
property InvalidHashAction: TCRInvalidHashAction default ihFail;

Remarks

Use InvalidHashAction to specify the action to perform on data fetching when hash data is invalid. This
property is used only if hash is stored with the encrypted data (the DataHeader property is set to
ehTagAndHash). Default value is ihFail.

If the DataHeader property is set to ehTagAndHash, then on data fetching from a server the hash check
is performed for each record. After data decryption its hash is calculated and compared with the hash
stored in the field. If these values don't coincide, it means that the stored data is incorrect, and
depending on the value of the InvalidHashAction property one of the following actions is performed:
ihFail - the ElnvalidHash exception is raised and further data reading from the server is interrupted.
ihSkipData - the value of the field for this record is set to Null. No exception is raised.

ihlgnoreError - in spite of the fact that the data is not valid, the value is set in the field. No exception is
raised.

© 1997-2012 Devart. All Rights Reserved.

Used to set a password that is used to generate a key for encryption.
Class
TCREncryptor

Syntax
property Password: string;

Remarks

Use Password to set a password that is used to generate a key for encryption.
Note: Calling of the SetKey method clears the Password property.

© 1997-2012 Devart. All Rights Reserved.

Methods of the TCRENcryptor class.
For a complete list of the TCREncryptor class members, see the TCREncryptor Members topic.

Public

Name Description
SetKey Sets a key, using which data is
encrypted.
See Also

TCREnNcryptor Class
TCREnNcryptor Class Members

© 1997-2012 Devart. All Rights Reserved.

Sets a key, using which data is encrypted.
Class
TCREncryptor

Syntax
procedure SetKey(const Key; Count: Integer); overload;procedure

114 Data Access Components for MySQL

SetKey(const Key: TBytes; Offset: Integer; Count:
overload;
Parameters

Key
Holds bytes that represent a key.

Offset
Offset in bytes to the position, where the key begins.

Count
Number of bytes to use from Key.

Remarks

Use SetKey to set a key, using which data is encrypted.
Note: Calling of the SetKey method clears the Password property.

© 1997-2012 Devart. All Rights Reserved.

Integer);

Data Access Components for MySQL

115

17.4.2 Enumerations

Enumerations in the CREncryption unit.
Enumerations

Name Description

TCREncDataHeader Specifies whether the additional
information is stored with the
encrypted data.

TCREnNcryptionAlgorithm Specifies the algorithm of data
encryption.

TCRHashAlgorithm Specifies the algorithm of
generating hash data.

TCRInvalidHashAction Specifies the action to perform on
data fetching when hash data is
invalid.

© 1997-2012 Devart. All Rights Reserved.

17.4.2.1 CREncryption.TCREncDataHeader Enumeration
Specifies whether the additional information is stored with the encrypted data.

Unit
CREncryption
Syntax
TCREncDataHeader = (ehTagAndHash, ehTag, ehNone);
Values
Value Meaning
ehNone No additional information is stored.
ehTag GUID and the random initialization vector are stored with the encrypted
data.
ehTagAndHash Hash, GUID, and the random initialization vector are stored with the

encrypted data.

© 1997-2012 Devart. All Rights Reserved.

17.4.2.2 CREncryption.TCRENcryptionAlgorithm Enumeration
Specifies the algorithm of data encryption.

Unit
CREncryption

Syntax

TCREncryptionAlgorithm = (eaTripleDES, eaBlowfish, eaAES128,
€aAES192, eaAES256, eaCastl28, eaRC4);

Values
Value Meaning
eaAES128 The AES encryption algorithm with key size of 128 bits is used.
eaAES192 The AES encryption algorithm with key size of 192 bits is used.
eaAES256 The AES encryption algorithm with key size of 256 bits is used.
eaBlowfish The Blowfish encryption algorithm is used.
eaCastl28 The CAST-128 encryption algorithm with key size of 128 bits is used.
eaRC4 The RC4 encryption algorithm is used.

eaTripleDES The Triple DES encryption algorithm is used.

116 Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

17.4.2.3 CREncryption.TCRHashAlgorithm Enumeration
Specifies the algorithm of generating hash data.

Unit
CREncryption
Syntax
TCRHashAlgorithm = (haSHAl1, haMD5);
Values
Value Meaning
haMD5 The MD5 hash algorithm is used.
haSHA1 The SHA-1 hash algorithm is used.

© 1997-2012 Devart. All Rights Reserved.

17.4.2.4 CREncryption.TCRInvalidHashAction Enumeration
Specifies the action to perform on data fetching when hash data is invalid.

Unit
CREncryption
Syntax
TCRInvalidHashAction = (ihFail, thSkipData, ihlgnoreError);
Values
Value Meaning
ihFail The ElnvalidHash exception is raised and further data reading from the
server is interrupted.
ihlgnoreError In spite of the fact that the data is not valid, the value is set in the field.
No exception is raised.
ihSkipData The value of the field for this record is set to Null. No exception is raised.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 117

17.5 CRVio

This unit contains classes, used for establishing HTTP connections.

Classes

Name
THttpOptions

TProxyOptions

Description

The class contains settings for HTTP
connection.

This class is used when connecting
through proxy server to establish
an HTTP connection.

© 1997-2012 Devart. All Rights Reserved.

118 Data Access Components for MySQL

17.5.1 Classes

Classes in the CRVio unit.

Classes
Name Description
THttpOptions The class contains settings for HTTP
connection.
TProxyOptions This class is used when connecting

through proxy server to establish
an HTTP connection.

© 1997-2012 Devart. All Rights Reserved.

17.5.1.1 CRVio.THttpOptions Class
The class contains settings for HTTP connection.
For a list of all members of this type, see THttpOptions members.

Unit
CRVioO
Syntax
THttpOptions = class(TPersistent);

Remarks

The THttpOptions class contains settings for HTTP connection.
For more information on HTTP tunneling refer to the Network Tunneling article.

Inheritance Hierarchy

TObject
THttpOptions

See Also

Network Tunneling

© 1997-2012 Devart. All Rights Reserved.

THttpOptions class overview.
Properties

Name Description

Password Holds the password for HTTP
authorization.

ProxyOptions Holds a TProxyOptions object that
contains settings for proxy
connection.

Url Holds the url of the tunneling PHP
script.

Username Holds the user name for HTTP

authorization.

© 1997-2012 Devart. All Rights Reserved.

Properties of the THttpOptions class.
For a complete list of the THttpOptions class members, see the THttpOptions Members topic.

Published

Data Access Components for MySQL 119

Name Description

Password Holds the password for HTTP
authorization.

ProxyOptions Holds a TProxyOptions object that
contains settings for proxy
connection.

Url Holds the url of the tunneling PHP
script.

Username Holds the user name for HTTP

authorization.

See Also
THttpOptions Class
THttpOptions Class Members

© 1997-2012 Devart. All Rights Reserved.
Holds the password for HTTP authorization.
Class
THttpOptions
Syntax
property Password: string;

Remarks

The Password property holds the password for HTTP authorization.

© 1997-2012 Devart. All Rights Reserved.
Holds a TProxyOptions object that contains settings for proxy connection.
Class
THttpOptions
Syntax
property ProxyOptions: TProxyOptions;

Remarks

The ProxyOptions property holds a TProxyOptions object that contains settings for proxy connection.
If it is necessary to connect to server in another network, sometimes the client can reach it only through
proxy. In this case in addition to connection string you have to setup ProxyOptions.

© 1997-2012 Devart. All Rights Reserved.
Holds the url of the tunneling PHP script.
Class
THttpOptions
Syntax
property Url: string;

Remarks

The Url property holds the url of the tunneling PHP script. For example, if the script is in the server root,
the url can be the following: http://server/tunnel.php.

© 1997-2012 Devart. All Rights Reserved.

120 Data Access Components for MySQL

Holds the user name for HTTP authorization.
Class

THttpOptions
Syntax
property Username: string;

Remarks
The Username property holds the user name for HTTP authorization.

© 1997-2012 Devart. All Rights Reserved.

17.5.1.2 CRVio.TProxyOptions Class
This class is used when connecting through proxy server to establish an HTTP connection.
For a list of all members of this type, see TProxyOptions members.

Unit
CRVio
Syntax
TProxyOptions = class(TPersistent);
Remarks
The TProxyOptions class is used when connecting through proxy server to establish an HTTP connection.
Inheritance Hierarchy

TObject
TProxyOptions

© 1997-2012 Devart. All Rights Reserved.

TProxyOptions class overview.
Properties

Name Description

Hostname Holds the host name or IP address
to connect to proxy server.

Password Holds the password for the proxy
server account.

Port Used to specify the port number for
TCP/IP connection with proxy
server.

Username Holds the proxy server account
name.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TProxyOptions class.
For a complete list of the TProxyOptions class members, see the TProxyOptions Members topic.

Published
Name Description
Hostname Holds the host name or IP address
to connect to proxy server.
Password Holds the password for the proxy
server account.
Port Used to specify the port number for

TCP/IP connection with proxy
server.

Data Access Components for MySQL

121

Username Holds the proxy server account
name.

See Also
TProxyOptions Class
TProxyOptions Class Members

© 1997-2012 Devart. All Rights Reserved.

Holds the host name or IP address to connect to proxy server.
Class
TProxyOptions

Syntax
property Hostname: string;
Remarks

The Hostname property holds the host name or IP address to connect to proxy server.

© 1997-2012 Devart. All Rights Reserved.

Holds the password for the proxy server account.
Class

TProxyOptions

Syntax
property Password: string;

Remarks

The Password property holds the password for the proxy server account.

© 1997-2012 Devart. All Rights Reserved.

Used to specify the port number for TCP/IP connection with proxy server.
Class
TProxyOptions

Syntax
property Port: integer default O;
Remarks

Use the Port property to specify the port number for TCP/IP connection with proxy server.

© 1997-2012 Devart. All Rights Reserved.
Holds the proxy server account name.
Class
TProxyOptions

Syntax
property Username: string;

Remarks

The Username property holds the proxy server account name.

122

Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 123

17.6 DADuUmp

This unit contains the base class for the TMyDump component.
Classes

Name
TDADump

TDADumpOptions

Types

Name
TDABackupProgressEvent

TDARestoreProgressEvent

Description

A base class that defines
functionality for descendant classes
that dump database objects to a
script.

This class allows setting up the
behaviour of the TDADump class.

Description

This type is used for the TDADump.
OnBackupProgress event.
This type is used for the TDADump.
OnRestoreProgress event.

© 1997-2012 Devart. All Rights Reserved.

124 Data Access Components for MySQL

17.6.1 Classes

Classes in the DADump unit.

Classes
Name Description
TDADump A base class that defines
functionality for descendant classes
that dump database objects to a
script.
TDADumpOptions This class allows setting up the

behaviour of the TDADump class.

© 1997-2012 Devart. All Rights Reserved.

17.6.1.1 DADump.TDADump Class
A base class that defines functionality for descendant classes that dump database objects to a script.
For a list of all members of this type, see TDADump members.

Unit
DADump
Syntax
TDADump = class(TComponent);

Remarks

TDADump is a base class that defines functionality for descendant classes that dump database objects to
a script. Applications never use TDADump objects directly. Instead they use descendants of TDADump.
Use TDADump descedants to dump database objects, such as tables, stored procedures, and functions
for backup or for transferring the data to another SQL server. The dump contains SQL statements to
create the table or other database objects and/or populate the table.

Inheritance Hierarchy

TObject
TDADump

© 1997-2012 Devart. All Rights Reserved.

TDADump class overview.

Properties

Name Description

Connection Used to specify a connection object
that will be used to connect to a
data store.

Debug Used to display executing
statement, all its parameters'
values, and the type of parameters.

Options Used to specify the behaviour of a
TDADump component.

SOL Used to set or get the dump script.

TableNames Used to set the names of the tables
to dump.

Methods
Name Description
Backup Dumps database objects to the

TDADUmMp.SOL property.

Data Access Components for MySQL 125

BackupQuery
BackupToFile

BackupToStream

Restore

RestoreFromFile
RestoreFromStream

Events

Name
OnBackupProgress

OnError

OnRestoreProgress

Dumps the results of a particular
query.

Dumps database objects to the
specified file.

Dumps database objects to the
stream.

Executes a script contained in the
SQL property.
Executes a script from a file.

Executes a script received from the
stream.

Description

Occurs to indicate the TDADump.
Backup, M:Devart.Dac. TDADump.
BackupToFile(System.String) or M:
Devart.Dac. TDADump.
BackupToStream(Borland.Vcl.
TStream) method execution
progress.

Occurs when MySQL raises some
error on TDADump.Restore.

Occurs to indicate the TDADump.
Restore, TDADump.RestoreFromFile
, or TDADump.RestoreFromStream
method execution progress.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDADump class.

For a complete list of the TDADump class members, see the TDADump Members topic.

Public

Name
Connection

Options

Published

Name
Debug

SOL

TableNames

See Also

TDADump Class
TDADump Class Members

Description

Used to specify a connection object
that will be used to connect to a
data store.

Used to specify the behaviour of a
TDADump component.

Description

Used to display executing
statement, all its parameters'
values, and the type of parameters.
Used to set or get the dump script.
Used to set the names of the tables
to dump.

© 1997-2012 Devart. All Rights Reserved.

Used to specify a connection object that will be used to connect to a data store.

Class

TDADump

126 Data Access Components for MySQL

Syntax
property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify a connection object that will be used to connect to a data store.
Set at design-time by selecting from the list of provided TCustomDAConnection or its descendant class
objects.

At runtime, link an instance of a TCustomDAConnection descendant to the Connection property.

See Also

TCustomDAConnection

© 1997-2012 Devart. All Rights Reserved.
Used to display executing statement, all its parameters' values, and the type of parameters.
Class

TDADump
Syntax
property Debug: boolean default False;

Remarks

Used to display executing statement, all its parameters' values, and the type of parameters.

See Also

TCustomDADataSet.Debug
TCustomDASQL.Debug

© 1997-2012 Devart. All Rights Reserved.
Used to specify the behaviour of a TDADump component.
Class
TDADump
Syntax
property Options: TDADumpOptions;

Remarks

Use the Options property to specify the behaviour of a TDADump component.
Descriptions of all options are in the table below.

Option Name Description

AddDrop Used to add drop statements to a script before
creating statements.

GenerateHeader Used to add a comment header to a script.

QuoteNames Used for TDADump to quote all database object

names in generated SQL statements.

©

1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 127

Used to set or get the dump script.

Class

TDADump
Syntax
property SQL: _TStrings;
Remarks

Use the SQL property to get or set the dump script. The SQL property stores script that is executed by
the Restore method. This property will store the result of Backup and BackupQuery. At design time the
SQL property can be edited by invoking the String List editor in Object Inspector.

See Also

Restore

Backup
BackupQuery

© 1997-2012 Devart. All Rights Reserved.
Used to set the names of the tables to dump.
Class

TDADump
Syntax
property TableNames: string;

Remarks

Use the TableNames property to set the names of the tables to dump. Table names must be separated
with commas. If it is empty, the Backup method will dump all available tables.

See Also

Backup

© 1997-2012 Devart. All Rights Reserved.

Methods of the TDADump class.
For a complete list of the TDADump class members, see the TDADump Members topic.

Public

Name Description

Backup Dumps database objects to the
TDADUmMp.SOQL property.

BackupQuery Dumps the results of a particular
query.

BackupToFile Dumps database objects to the
specified file.

BackupToStream Dumps database objects to the
stream.

Restore Executes a script contained in the
SQL property.

RestoreFromrFile Executes a script from a file.

RestoreFromStream Executes a script received from the

stream.

128

Data Access Components for MySQL

See Also

TDADump Class
TDADump Class Members

© 1997-2012 Devart. All Rights Reserved.

Dumps database objects to the SQL property.
Class

TDADump
Syntax
procedure Backup;

Remarks
Call the Backup method to dump database objects. The result script will be stored in the SQL property.

See Also

SOL

Restore
BackupToFile
BackupToStream
BackupQuery

© 1997-2012 Devart. All Rights Reserved.

Dumps the results of a particular query.

Class

TDADump

Syntax

procedure BackupQuery(const Query: string);
Parameters

Query
Holds a query used for data selection.

Remarks

Call the BackupQuery method to dump the results of a particular query. Query must be a valid select
statement. If this query selects data from several tables, only data of the first table in the from list will
be dumped.

See Also

Restore

Backup
BackupToFile
BackupToStream

© 1997-2012 Devart. All Rights Reserved.
Dumps database objects to the specified file.
Class

TDADump
Syntax

Data Access Components for MySQL 129

procedure BackupToFile(const FileName: string; const Query: string

= ");

Parameters

FileName
Holds the file name to dump database objects to.

Query
Your query to receive the data for dumping.

Remarks
Call the BackupToFile method to dump database objects to the specified file.

See Also

RestoreFromStream

Backup
BackupToStream

© 1997-2012 Devart. All Rights Reserved.

Dumps database objects to the stream.

Class

TDADump
Syntax

procedure BackupToStream(Stream: TStream; const Query: string = **

)

Parameters

Stream
Holds the stream to dump database objects to.

Query
Your query to receive the data for dumping.

Remarks

Call the BackupToStream method to dump database objects to the stream.

See Also

RestoreFromStream
Backup
BackupToFile

© 1997-2012 Devart. All Rights Reserved.
Executes a script contained in the SQL property.
Class
TDADump
Syntax
procedure Restore;

Remarks

Call the Restore method to execute a script contained in the SQL property.

130

Data Access Components for MySQL

See Also

RestoreFromFile
RestoreFromStream
Backup

SOL

© 1997-2012 Devart. All Rights Reserved.

Executes a script from a file.

Class

TDADump

Syntax
procedure RestoreFromFile(const FileName: string);
Parameters

FileName
Holds the file name to execute a script from.

Remarks
Call the RestoreFromFile method to execute a script from the specified file.

See Also

Restore
RestoreFromStream

BackupToFile

© 1997-2012 Devart. All Rights Reserved.

Executes a script received from the stream.
Class

TDADump

Syntax

procedure RestoreFromStream(Stream: TStream);
Parameters

Stream
Holds a stream to receive a script to be executed.

Remarks
Call the RestoreFromStream method to execute a script received from the stream.

See Also

Restore
RestoreFromFile

BackupToStream

© 1997-2012 Devart. All Rights Reserved.

Events of the TDADump class.
For a complete list of the TDADump class members, see the TDADump Members topic.

Published

Data Access Components for MySQL 131

Name Description

OnBackupProgress Occurs to indicate the TDADump.
Backup, M:Devart.Dac. TDADump.
BackupToFile(System.String) or M:
Devart.Dac. TDADump.
BackupToStream(Borland.Vcl.
TStream) method execution

progress.

OnError Occurs when MySQL raises some
error on TDADump.Restore.

OnRestoreProgress Occurs to indicate the TDADump.

Restore, TDADump.RestoreFromFile
, or TDADump.RestoreFromStream
method execution progress.

See Also

TDADump Class
TDADump Class Members

© 1997-2012 Devart. All Rights Reserved.

Occurs to indicate the Backup, M:Devart.Dac. TDADump.BackupToFile(System.String) or M:Devart.Dac.
TDADump.BackupToStream(Borland.Vcl.TStream) method execution progress.

Class
TDADump
Syntax
property OnBackupProgress: TDABackupProgressEvent;

Remarks

The OnBackupProgress event occurs several times during the dumping process of the Backup, M:Devart.
Dac.TDADump.BackupToFile(System.String), or M:Devart.Dac. TDADump.BackupToStream(Borland.Vcl.
TStream) method execution and indicates its progress. ObjectName parameter indicates the name of the
currently dumping database object. ObjectNum shows the number of the current database object in the
backup queue starting from zero. ObjectCount shows the quantity of database objects to dump. Percent
parameter shows the current percentage of the current table data dumped, not the current percentage
of the entire dump process.

See Also

Backup
BackupToFile
BackupToStream

© 1997-2012 Devart. All Rights Reserved.
Occurs when MySQL raises some error on Restore.
Class
TDADump
Syntax
property OnError: TOnErrorEvent;

Remarks

The OnError event occurs when MySQL raises some error on Restore.

Action indicates the action to take when the OnError handler exits. On entry into the handler, Action is
always set to eaException.

Note: You should add the DAScript module to the 'uses' list to use the OnError event handler.

132 Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Occurs to indicate the Restore, RestoreFromFile, or RestoreFromStream method execution progress.

Class

TDADump
Syntax
property OnRestoreProgress: TDARestoreProgressEvent;

Remarks

The OnRestoreProgress event occurs several times during the dumping process of the Restore,
RestoreFromFile, or RestoreFromStream method execution and indicates its progress. The Percent
parameter of the OnRestoreProgress event handler indicates the percentage of the whole restore script

execution.

See Also

Restore
RestoreFromFile
RestoreFromStream

© 1997-2012 Devart. All Rights Reserved.

17.6.1.2 DADump.TDADumpOptions Class
This class allows setting up the behaviour of the TDADump class.
For a list of all members of this type, see TDADumpOptions members.

Unit
DADump
Syntax
TDADumpOptions = class(TPersistent);
Inheritance Hierarchy

TObject
TDADumpOptions

© 1997-2012 Devart. All Rights Reserved.

TDADumpOptions class overview.

Properties

Name Description

AddDrop Used to add drop statements to a
script before creating statements.

GenerateHeader Used to add a comment header to a
script.

QuoteNames Used for TDADump to quote all
database object names in generated

SQL statements.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDADumpOptions class.
For a complete list of the TDADumpOptions class members, see the TDADumpOptions Members topic.

Published

Name Description

Data Access Components for MySQL 133

AddDrop Used to add drop statements to a
script before creating statements.

GenerateHeader Used to add a comment header to a
script.

QuoteNames Used for TDADump to quote all

database object names in generated
SQL statements.

See Also
TDADumpOptions Class
TDADumpOptions Class Members

© 1997-2012 Devart. All Rights Reserved.
Used to add drop statements to a script before creating statements.
Class
TDADumpOptions
Syntax
property AddDrop: boolean default True;

Remarks

Use the AddDrop property to add drop statements to a script before creating statements.

© 1997-2012 Devart. All Rights Reserved.

Used to add a comment header to a script.
Class
TDADumpOptions
Syntax
property GenerateHeader: boolean default True;

Remarks

Use the GenerateHeader property to add a comment header to a script. It contains script generation
date, DAC version, and some other information.

© 1997-2012 Devart. All Rights Reserved.
Used for TDADump to quote all database object names in generated SQL statements.
Class
TDADumpOptions
Syntax
property QuoteNames: boolean default False;

Remarks

If the QuoteNames property is True, TDADump quotes all database object names in generated SQL
statements.

© 1997-2012 Devart. All Rights Reserved.

134 Data Access Components for MySQL

17.6.2 Types
Types in the DADump unit.
Types
Name Description
TDABackupProgressEvent This type is used for the TDADump.
OnBackupProgress event.
TDARestoreProgressEvent This type is used for the TDADump.

OnRestoreProgress event.

© 1997-2012 Devart. All Rights Reserved.

17.6.2.1 DADump.TDABackupProgressEvent Procedure Reference
This type is used for the TDADump.OnBackupProgress event.
Unit
DADUmp
Syntax
TDABackupProgresskEvent = procedure (Sender: TObject; ObjectName:
string; ObjectNum: integer; ObjectCount: integer; Percent:

integer) of object;
Parameters

Sender
An object that raised the event.

ObjectName
The name of the currently dumping database object.

ObjectNum
The number of the current database object in the backup queue starting from zero.

ObjectCount
The quantity of database objects to dump.

Percent
The current percentage of the current table data dumped.

© 1997-2012 Devart. All Rights Reserved.

17.6.2.2 DADump.TDARestoreProgressEvent Procedure Reference
This type is used for the TDADump.OnRestoreProgress event.

Unit
DADUmp

Syntax

TDARestoreProgresstEvent = procedure (Sender: TObject; Percent:
integer) of object;

Parameters

Sender
An object that raised the event.

Percent
The percentage of the whole restore script execution.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 135

17.7 DALoader

This unit contains the base class for the TMyLoader component.

Classes

Name
TDAColumn

TDAColumns
TDALoader

Types

Name
TDAPutDataEvent

TGetColumnDataEvent

TLoaderProgressEvent

Description

Represents the attributes for
column loading.

Holds a collection of TDAColumn
objects.

This class allows loading external
data into database.

Description
This type is used for the
TDALoader.OnPutData event.

This type is used for the
TDALoader.OnGetColumnData
event.

This type is used for the
TDALoader.OnProgress event.

© 1997-2012 Devart. All Rights Reserved.

136 Data Access Components for MySQL

17.7.1 Classes

Classes in the DALoader unit.

Classes
Name Description
TDAColumn Represents the attributes for
column loading.
TDAColumns Holds a collection of TDAColumn
objects.
TDALoader This class allows loading external

data into database.

© 1997-2012 Devart. All Rights Reserved.

17.7.1.1 DALoader.TDAColumn Class
Represents the attributes for column loading.
For a list of all members of this type, see TDAColumn members.

Unit
DALoader

Syntax
TDAColumn = class(TCollectionltem);

Remarks
Each TDALoader uses TDAColumns to maintain a collection of TDAColumn objects. TDAColumn object
represents the attributes for column loading. Every TDAColumn object corresponds to one of the table

fields with the same name as its TDAColumn.Name property.
To create columns at design-time use the column editor of the TDALoader component.

Inheritance Hierarchy
TObject

TDAColumn
See Also

TDALoader
TDAColumns

© 1997-2012 Devart. All Rights Reserved.

TDAColumn class overview.

Properties
Name Description
FieldType Used to specify the types of values
that will be loaded.
Name Used to specify the field name of

loading table.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDAColumn class.
For a complete list of the TDAColumn class members, see the TDAColumn Members topic.

Published
Name Description

Data Access Components for MySQL 137

FieldType Used to specify the types of values
that will be loaded.
Name Used to specify the field name of

loading table.

See Also
TDAColumn Class
TDAColumn Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify the types of values that will be loaded.
Class
TDAColumn
Syntax
property FieldType: TFieldType default ftString;

Remarks

Use the FieldType property to specify the types of values that will be loaded. Field types for columns
may not match data types for the corresponding fields in the database table. TDALoader will cast data
values to the types of their fields.

© 1997-2012 Devart. All Rights Reserved.

Used to specify the field name of loading table.
Class
TDAColumn
Syntax
property Name: string;
Remarks

Each TDAColumn corresponds to one field of the loading table. Use the Name property to specify the
name of this field.

See Also

FieldType

© 1997-2012 Devart. All Rights Reserved.

17.7.1.2 DALoader.TDAColumns Class
Holds a collection of TDAColumn objects.
For a list of all members of this type, see TDAColumns members.

Unit
DALoader
Syntax
TDAColumns = class(TOwnedCollection);
Remarks

Each TDAColumns holds a collection of TDAColumn objects. TDAColumns maintains an index of the
columns in its Items array. The Count property contains the number of columns in the collection. At
design-time, use the Columns editor to add, remove, or modify columns.

Inheritance Hierarchy

138 Data Access Components for MySQL

TObject
TDAColumns
See Also

TDALoader
TDAColumn

© 1997-2012 Devart. All Rights Reserved.

TDAColumns class overview.
Properties

Name Description
Items Used to access individual columns.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDAColumns class.
For a complete list of the TDAColumns class members, see the TDAColumns Members topic.

Public

Name Description

ltems Used to access individual columns.
See Also

TDAColumns Class
TDAColumns Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to access individual columns.
Class
TDAColumns
Syntax
property ltems[Index: integer]: TDAColumn; default;

Parameters

Index
Holds the Index of TDAColumn to refer to.

Remarks

Use the Items property to access individual columns. The value of the Index parameter corresponds to
the Index property of TDAColumn.

See Also

TDAColumn

© 1997-2012 Devart. All Rights Reserved.

17.7.1.3 DALoader.TDALoader Class
This class allows loading external data into database.
For a list of all members of this type, see TDALoader members.

Unit
DALoader

Data Access Components for MySQL 139

Syntax
TDALoader = class(TComponent);

Remarks

TDALoader allows loading external data into database. To specify the name of loading table set the
TDALoader.TableName property. Use the TDALoader.Columns property to access individual columns.
Write the TDALoader.OnGetColumnData or TDALoader.OnPutData event handlers to read external data
and pass it to the database. Call the TDALoader.Load method to start loading data.

Inheritance Hierarchy

TObject
TDALoader

See Also

TMyLoader

© 1997-2012 Devart. All Rights Reserved.

TDALoader class overview.

Properties
Name Description
Columns Used to add a TDAColumn object
for each field that will be loaded.
Connection Used to specify

TCustomDAConnection in which
TDALoader will be executed.

TableName Used to specify the name of the
table to which data will be loaded.

Methods
Name Description
CreateColumns Creates TDAColumn objects for all
fields of the table with the same
name as TDALoader.TableName.
Load Starts loading data.
LoadFromDataSet Loads data from the specified
dataset.
PutColumnData Overloaded. Puts the value of
individual columns.
Events
Name Description
OnGetColumnData Occurs when it is needed to put
column values.
OnProgress Occurs if handling data loading
progress of the TDALoader.
LoadFromDataSet method is
needed.
OnPutData Occurs when putting loading data

by rows is needed.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDALoader class.
For a complete list of the TDALoader class members, see the TDALoader Members topic.

Public

140

Data Access Components for MySQL

Name Description

Columns Used to add a TDAColumn object
for each field that will be loaded.

Connection Used to specify

TCustomDAConnection in which
TDALoader will be executed.

TableName Used to specify the name of the
table to which data will be loaded.

See Also
TDALoader Class
TDALoader Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to add a TDAColumn object for each field that will be loaded.
Class
TDALoader
Syntax
property Columns: TDAColumns stored IsColumnsStored;

Remarks
Use the Columns property to add a TDAColumn object for each field that will be loaded.

See Also

TDAColumns

© 1997-2012 Devart. All Rights Reserved.

Used to specify TCustomDAConnection in which TDALoader will be executed.
Class

TDALoader
Syntax
property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify TCustomDAConnection in which TDALoader will be executed. If
Connection is not connected, the Load method calls TCustomDAConnection.Connect.

See Also

TCustomDAConnection

© 1997-2012 Devart. All Rights Reserved.

Used to specify the name of the table to which data will be loaded.
Class

TDALoader
Syntax
property TableName: string;

Data Access Components for MySQL 141

Remarks
Set the TableName property to specify the name of the table to which data will be loaded. Add

TDAColumn objects to Columns for the fields that are needed to be loaded.
See Also

TDAColumn
M:Devart.Dac.TCustomDAConnection.GetTableNames(Borland.Vcl.TStrings,System.Boolean)

© 1997-2012 Devart. All Rights Reserved.

Methods of the TDALoader class.
For a complete list of the TDALoader class members, see the TDALoader Members topic.

Public

Name Description

CreateColumns Creates TDAColumn objects for all
fields of the table with the same
name as TDALoader.TableName.

Load Starts loading data.

LoadFromDataSet Loads data from the specified
dataset.

PutColumnData Overloaded. Puts the value of

individual columns.

See Also
TDALoader Class
TDALoader Class Members

© 1997-2012 Devart. All Rights Reserved.

Creates TDAColumn objects for all fields of the table with the same name as TableName.
Class

TDALoader
Syntax
procedure CreateColumns;

Remarks

Call the CreateColumns method to create TDAColumn objects for all fields of the table with the same
name as TableName. If columns were created before, they will be recreated. You can call CreateColumns
from the component popup menu at design-time. After you can customize column loading by setting
properties of TDAColumn objects.

See Also

TDAColumn
TableName

© 1997-2012 Devart. All Rights Reserved.

Starts loading data.
Class
TDALoader

Syntax

142

Data Access Components for MySQL

procedure Load; virtual;

Remarks

Call the Load method to start loading data. At first it is necessary to create columns and write one of
the OnPutData or OnGetColumnData event handlers.

See Also

OnGetColumnData
OnPutData

© 1997-2012 Devart. All Rights Reserved.

Loads data from the specified dataset.
Class
TDALoader

Syntax

procedure LoadFromDataSet(DataSet: TDataSet);
Parameters

DataSet
Holds the dataset to load data from.

Remarks

Call the LoadFromDataSet method to load data from the specified dataset. There is no need to create
columns and write event handlers for OnPutData and OnGetColumnData before calling this method.

© 1997-2012 Devart. All Rights Reserved.

Puts the value of individual columns.

Class
TDALoader

Overload List
Name Description
PutColumnData(Col: integer; Row: integer; Puts the value of individual columns by the
const Value: variant) column index.
PutColumnData(const ColName: string; Row: Puts the value of individual columns by the
integer; const Value: variant) column name.

© 1997-2012 Devart. All Rights Reserved.

Puts the value of individual columns by the column index.
Class
TDALoader

Syntax

procedure PutColumnData(Col: integer; Row: integer; const Value:
variant); overload; virtual
Parameters

Col
Holds the index of a loading column. The first column has index O.

Row

Data Access Components for MySQL 143

Holds the number of loading row. Row starts from 1.

Value
Holds the column value.

Remarks

Call the PutColumnData method to put the value of individual columns. The Col parameter indicates the
index of loading column. The first column has index 0. The Row parameter indicates the number of the
loading row. Row starts from 1.

This overloaded method works faster because it searches the right index by its index, not by the index
name.

The value of a column should be assigned to the Value parameter.

See Also

TDALoader.OnPutData

© 1997-2012 Devart. All Rights Reserved.

Puts the value of individual columns by the column name.
Class
TDALoader

Syntax

procedure PutColumnData(const ColName: string; Row: integer; const

Value: variant); overload
Parameters

ColName
Hods the name of a loading column.

Row
Holds the number of loading row. Row starts from 1.

Value
Holds the column value.

© 1997-2012 Devart. All Rights Reserved.

Events of the TDALoader class.
For a complete list of the TDALoader class members, see the TDALoader Members topic.

Public

Name Description

OnGetColumnData Occurs when it is needed to put
column values.

OnProgress Occurs if handling data loading

progress of the TDALoader.
LoadFromDataSet method is
needed.

OnPutData Occurs when putting loading data
by rows is needed.

See Also
TDALoader Class
TDALoader Class Members

© 1997-2012 Devart. All Rights Reserved.

144

Data Access Components for MySQL

Occurs when it is needed to put column values.
Class
TDALoader
Syntax
property OnGetColumnData: TGetColumnDataEvent;

Remarks

Write the OnGetColumnData event handler to put column values. TDALoader calls the OnGetColumnData
event handler for each column in the loop. Column points to a TDAColumn object that corresponds to the
current loading column. Use its Name or Index property to identify what column is loading. The Row
parameter indicates the current loading record. TDALoader increments the Row parameter when all the
columns of the current record are loaded. The first row is 1. Set EOF to True to stop data loading. Fill the
Value parameter by column values. To start loading call the Load method.

Another way to load data is using the OnPutData event.

Example

This handler loads 1000 rows.

procedure TfmMain.GetColumnData(Sender: TObject;
Column: TDAColumn; Row: Integer; var Value: Variant;
var EOF: Boolean);

begin
iT Row <= 1000 then begin

case Column.Index of

0: Value := Row;
1: Value := Random(100);
2: Value := Random*100;
3: Value := "abc01234567890123456789" ;
4: Value := Date;
else
Value := Null;
end;
end
else
EOF := True;
end;
See Also
OnPutData

Load

© 1997-2012 Devart. All Rights Reserved.

Occurs if handling data loading progress of the LoadFromDataSet method is needed.

Class
TDALoader
Syntax
property OnProgress: TLoaderProgressEkEvent;

Remarks

Data Access Components for MySQL

145

Add a handler to this event if you want to handle data loading progress of the LoadFromDataSet

method.

See Also

LoadFromDataSet

© 1997-2012 Devart. All Rights Reserved.

Occurs when putting loading data by rows is needed.

Class
TDALoader

Syntax

property OnPutData: TDAPutDataEvent;

Remarks

Write the OnPutData event handler to put loading data by rows.
Note that rows should be loaded from the first in the ascending order.TMyLoader will flush data to
MySQL when it is needed (see TMyLoader.RowsPerQuery).

To start loading, call the Load method.

Example
This handler loads 1000 rows.

procedure TfmMain.PutData(Sender: TDALoader);

var
Count: Integer;
i: Integer;
begin

Count := StrTolnt(edRows.Text);

for i

end;
end;

See Also

TDALoader.PutColumnData
Load
OnGetColumnData

© 1997-2012 Devart. All Rights Reserved.

:= 1 to Count dobegin
Sender .PutColumnData(o,
Sender.PutColumnData(1,
Sender .PutColumnData(2,
Sender.PutColumnData(3,
Sender .PutColumnData(4,

1);

Random(100));

Random*100) ;
"abc01234567890123456789%) ;
Date);

146 Data Access Components for MySQL

17.7.2 Types
Types in the DALoader unit.
Types

Name Description

TDAPutDataEvent This type is used for the
TDALoader.OnPutData event.

TGetColumnDataEvent This type is used for the
TDALoader.OnGetColumnData
event.

TLoaderProgressEvent This type is used for the

TDALoader.OnProgress event.

© 1997-2012 Devart. All Rights Reserved.

17.7.2.1 DALoader.TDAPutDataEvent Procedure Reference
This type is used for the TDALoader.OnPutData event.

Unit
DALoader
Syntax
TDAPutDataEvent = procedure (Sender: TDALoader) of object;

Parameters

Sender
An object that raised the event.

© 1997-2012 Devart. All Rights Reserved.

17.7.2.2 DALoader.TGetColumnDataEvent Procedure Reference
This type is used for the TDALoader.OnGetColumnData event.
Unit
DALoader
Syntax

TGetColumnDataEvent = procedure (Sender: TObject; Column:
TDAColumn; Row: integer; var Value: variant; var IseOF:
boolean) of object;

Parameters

Sender
An object that raised the event.

Column
Points to TDAColumn object that corresponds to the current loading column.

Row
Indicates the current loading record.

Value
Holds column values.

ISsEOF
True, if data loading needs to be stopped.

© 1997-2012 Devart. All Rights Reserved.

147

Data Access Components for MySQL

17.7.2.3 DALoader.TLoaderProgressEvent Procedure Reference
This type is used for the TDALoader.OnProgress event.

Unit
DALoader

Syntax
TLoaderProgressEvent = procedure (Sender: TObject; Percent:

integer) of object;

Parameters

Sender
An object that raised the event.

Percent
Percentage of the load operation progress.

© 1997-2012 Devart. All Rights Reserved.

148

Data Access Components for MySQL

17.8 DAScript

This unit contains the base class for the TMyScript component.
Classes

Name

TDAScript

TDAStatement

TDAStatements

Types

Name
TAfterStatementExecuteEvent

TBeforeStatementExecuteEvent

TOnErrorEvent

Enumerations

Name
TErrorAction

Description

Makes it possible to execute several
SQL statements one by one.

This class has attributes and
methods for controlling single SQL
statement of a script.

Holds a collection of TDAStatement
objects.

Description

This type is used for the TDAScript.
AfterExecute event.

This type is used for the TDAScript.
BeforeExecute event.

This type is used for the TDAScript.
OnError event.

Description

Indicates the action to take when
the OnError handler exits.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 149

17.8.1 Classes

Classes in the DAScript unit.

Classes

Name Description

TDAScript Makes it possible to execute several
SQL statements one by one.

TDAStatement This class has attributes and
methods for controlling single SQL
statement of a script.

TDAStatements Holds a collection of TDAStatement

objects.

© 1997-2012 Devart. All Rights Reserved.

17.8.1.1 DAScript. TDAScript Class
Makes it possible to execute several SQL statements one by one.
For a list of all members of this type, see TDAScript members.

Unit
DAScript
Syntax

TDAScript = class(TComponent);

Remarks

Often it is necessary to execute several SQL statements one by one. This can be performed using a lot of
components such as TCustomDASQL descendants. Usually it isn't the best solution. With only one
TDAScript descedant component you can execute several SQL statements as one. This sequence of
statements is called script. To separate single statements use semicolon (;) or slash (/) and for
statements that can contain semicolon, only slash. Note that slash must be the first character in line.
Errors that occur during execution can be processed in the TDAScript.OnError event handler. By default,
on error TDAScript shows exception and continues execution.

Inheritance Hierarchy

TObject
TDAScript

See Also
TCustomDASQOL

© 1997-2012 Devart. All Rights Reserved.

TDAScript class overview.

Properties

Name Description

Connection Used to specify the connection in
which the script will be executed.

DataSet Refers to a dataset that holds the
result set of query execution.

Debug Used to display the script execution
and all its parameter values.

Delimiter Used to set the delimiter string that
separates script statements.

EndLine Used to get the current statement

last line number in a script.

150

Data Access Components for MySQL

EndOffset
EndPos
Macros

SQL
StartLine

StartOffset
StartPos
Statements

Methods

Name
BreakExec
ErrorOffset

Execute
ExecuteFile
ExecuteNext
ExecuteStream

FindMacro

MacroByName

Events

Name
AfterExecute
BeforeExecute

OnError

Used to get the offset in the last
line of the current statement.

Used to get the end position of the
current statement.

Used to change SQL script text in
design- or run-time easily.
Used to get or set script text.

Used to get the current statement
start line number in a script.

Used to get the offset in the first
line of the current statement.

Used to get the start position of the
current statement in a script.

Contains a list of statements
obtained from the SQL property.

Description
Stops script execution.

Used to get the offset of the
statement if the Execute method
raised an exception.

Executes a script.

Executes SQL statements contained
in a file.

Executes the next statement in the
script and then stops.

Executes SQL statements contained
in a stream object.

Indicates whether a specified macro
exists in a dataset.

Finds a Macro with the name passed
in Name.

Description
Occurs after a SQL script execution.

Occurs when taking a specific action
before executing the current SQL
statement is needed.

Occurs when MySQL raises an error.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDAScript class.

For a complete list of the TDAScript class members, see the TDAScript Members topic.

Public

Name
Connection

DataSet
EndLine

EndOffset

Description

Used to specify the connection in
which the script will be executed.
Refers to a dataset that holds the
result set of query execution.
Used to get the current statement
last line number in a script.

Used to get the offset in the last
line of the current statement.

Data Access Components for MySQL 151

EndPos Used to get the end position of the
current statement.

StartLine Used to get the current statement
start line number in a script.

StartOffset Used to get the offset in the first
line of the current statement.

StartPos Used to get the start position of the
current statement in a script.

Statements Contains a list of statements
obtained from the SQL property.

Published

Name Description

Debug Used to display the script execution
and all its parameter values.

Delimiter Used to set the delimiter string that
separates script statements.

Macros Used to change SQL script text in
design- or run-time easily.

SOL Used to get or set script text.

See Also

TDAScript Class
TDAScript Class Members

© 1997-2012 Devart. All Rights Reserved.
Used to specify the connection in which the script will be executed.
Class
TDAScript
Syntax
property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify the connection in which the script will be executed. If Connection
is not connected, the Execute method calls the Connect method of Connection.

Set at design-time by selecting from the list of provided TCustomDAConnection objects.

At run-time, set the Connection property to reference an existing TCustomDAConnection object.

See Also

TCustomDAConnection

© 1997-2012 Devart. All Rights Reserved.
Refers to a dataset that holds the result set of query execution.
Class

TDAScript
Syntax
property DataSet: TCustomDADataSet;

Remarks

Set the DataSet property to retrieve the results of the SELECT statements execution inside a script.

152 Data Access Components for MySQL

See Also

ExecuteNext
Execute

© 1997-2012 Devart. All Rights Reserved.

Used to display the script execution and all its parameter values.

Class

TDAScript
Syntax
property Debug: boolean default False;
Remarks

Set the Debug property to True to display the script execution and all its parameter values. Also displays
the type of parameters.

© 1997-2012 Devart. All Rights Reserved.

Used to set the delimiter string that separates script statements.

Class

TDAScript
Syntax
property Delimiter: string stored IsDelimiterStored;
Remarks

Use the Delimiter property to set the delimiter string that separates script statements. By default it is
semicolon (;). You can use slash (/) to separate statements that can contain semicolon if the Delimiter
property's default value is semicolon. Note that slash must be the first character in line.

© 1997-2012 Devart. All Rights Reserved.
Used to get the current statement last line number in a script.
Class
TDAScript
Syntax
property EndLine: Int64;
Remarks

Use the EndLine property to get the current statement last line number in a script.

© 1997-2012 Devart. All Rights Reserved.

Used to get the offset in the last line of the current statement.

Class
TDAScript
Syntax
property EndOffset: Int64;
Remarks

Use the EndOffset property to get the offset in the last line of the current statement.

Data Access Components for MySQL 153

© 1997-2012 Devart. All Rights Reserved.

Used to get the end position of the current statement.
Class
TDAScript
Syntax
property EndPos: Int64;
Remarks

Use the EndPos property to get the end position of the current statement (the position of the last
character in the statement) in a script.

© 1997-2012 Devart. All Rights Reserved.

Used to change SQL script text in design- or run-time easily.

Class

TDAScript
Syntax
property Macros: TMacros stored False;

Remarks

With the help of macros you can easily change SQL script text in design- or run-time. Macros extend
abilities of parameters and allow changing conditions in the WHERE clause or sort order in the ORDER BY
clause. You just insert &MacroName in a SQL query text and change value of macro by the Macro
property editor in design-time or the MacroByName function in run-time. In time of opening query macro
is replaced by its value.

See Also

TMacro
MacroByName

© 1997-2012 Devart. All Rights Reserved.

Used to get or set script text.
Class
TDAScript
Syntax
property SQL: _TStrings;
Remarks
Use the SQL property to get or set script text.

© 1997-2012 Devart. All Rights Reserved.
Used to get the current statement start line number in a script.
Class
TDAScript
Syntax
property StartLine: Int64;

154

Data Access Components for MySQL

Remarks

Use the StartLine property to get the current statement start line number in a script.

© 1997-2012 Devart. All Rights Reserved.

Used to get the offset in the first line of the current statement.
Class

TDAScript
Syntax
property StartOffset: Int64;

Remarks

Use the StartOffset property to get the offset in the first line of the current statement.

© 1997-2012 Devart. All Rights Reserved.

Used to get the start position of the current statement in a script.
Class
TDAScript
Syntax
property StartPos: Int64;
Remarks

Use the StartPos property to get the start position of the current statement (the position of the first
statement character) in a script.

© 1997-2012 Devart. All Rights Reserved.
Contains a list of statements obtained from the SQL property.

Class

TDAScript
Syntax
property Statements: TDAStatements;

Remarks

Contains a list of statements that are obtained from the SQL property. Use the Access Statements
property to view SQL statement, set parameters or execute the specified statement. Statements is a
zero-based array of statement records. Index specifies the array element to access.

For example, consider the following script:

CREATE TABLE A (FIELD1 INTEGER);

INSERT INTO A VALUES(1);

INSERT INTO A VALUES(2);

INSERT INTO A VALUES(3);

CREATE TABLE B (FIELD1 INTEGER);

INSERT INTO B VALUES(1);

INSERT INTO B VALUES(2);

INSERT INTO B VALUES(3);) .
Note: The list of statements is created and filled when the value of Statements property is requested.

That's why the first access to the Statements property can take a long time.

Example

You can use the Statements property in the following way:

in Name.

See Also

TDAScript Class
TDAScript Class Members

Data Access Components for MySQL 155
procedure TForml.ButtonlClick(Sender: TObject);
var
i: integer;
begin
with Script do
begin
for 1 := 0 to Statements.Count - 1 do
1T Copy(Statements[i]-SQL, 1, 6) <> "CREATE" then
Statements[1].Execute;
end;
end;
See Also
TDAStatements
© 1997-2012 Devart. All Rights Reserved.
Methods of the TDAScript class.
For a complete list of the TDAScript class members, see the TDAScript Members topic.
Public

Name Description

BreakExec Stops script execution.

ErrorOffset Used to get the offset of the
statement if the Execute method
raised an exception.

Execute Executes a script.

ExecuteFile Executes SQL statements contained
in a file.

ExecuteNext Executes the next statement in the
script and then stops.

ExecuteStream Executes SQL statements contained
in a stream object.

FindMacro Indicates whether a specified macro
exists in a dataset.

MacroByName Finds a Macro with the name passed

© 1997-2012 Devart. All Rights Reserved.

Stops script execution.

Class

TDAScript

Syntax

procedure BreakExec; virtual;
Remarks

Call the BreakExec method to stop script execution.

156 Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Used to get the offset of the statement if the Execute method raised an exception.
Class

TDAScript
Syntax

function ErrorOffset: Int64;
Return Value

offset of an error.
Remarks

Call the ErrorOffset method to get the offset of the statement if the Execute method raised an exception.

See Also

OnError

© 1997-2012 Devart. All Rights Reserved.
Executes a script.
Class
TDAScript
Syntax
procedure Execute; virtual;
Remarks

Call the Execute method to execute a script. If MySQL raises an error, the OnError event occurs.

See Also

ExecuteNext
OnError
ErrorOffset

© 1997-2012 Devart. All Rights Reserved.

Executes SQL statements contained in a file.

Class

TDAScript
Syntax

procedure ExecuteFile(const FileName: string);
Parameters

FileName
Holds the file name.

Remarks

Call the ExecuteFile method to execute SQL statements contained in a file. Script doesn't load full
content into memory. Reading and execution is performed by blocks of 64k size. Therefore, it is optimal
to use it for big files.

Data Access Components for MySQL 157

© 1997-2012 Devart. All Rights Reserved.

Executes the next statement in the script and then stops.

Class

TDAScript
Syntax

function ExecuteNext: boolean; virtual;
Return Value

True, if there are any statements left in the script, False otherwise.
Remarks

Use the ExecuteNext method to execute the next statement in the script statement and stop. If MySQL
raises an error, the OnError event occurs.

See Also

Execute
OnError
ErrorOffset

© 1997-2012 Devart. All Rights Reserved.

Executes SQL statements contained in a stream object.

Class

TDAScript
Syntax

procedure ExecuteStream(Stream: TStream);
Parameters

Stream
Holds the stream object from which the statements will be executed.

Remarks

Call the ExecuteStream method to execute SQL statements contained in a stream object. Reading from
the stream and execution is performed by blocks of 64k size.

© 1997-2012 Devart. All Rights Reserved.

Indicates whether a specified macro exists in a dataset.

Class

TDAScript
Syntax

function FindMacro(Name: string): TMacro;
Parameters

Name
Holds the name of the macro to search for.

Return Value
a TMacro object, if a macro with matching name was found, otherwise returns nil.
Remarks

Call the FindMacro method to determine if a specified macro exists. If FindMacro finds a macro with a

158

Data Access Components for MySQL

matching name, it returns a TMacro object for the specified Name. Otherwise it returns nil.

See Also

TMacro
Macros

MacroByName

© 1997-2012 Devart. All Rights Reserved.

Finds a Macro with the name passed in Name.

Class

TDAScript
Syntax

function MacroByName(Name: string): TMacro;
Parameters

Name
Holds the name of the Macro to search for.

Return Value
the Macro, if a match was found.

Remarks

Call the MacroByName method to find a Macro with the name passed in Name. If a match was found,
MacroByName returns the Macro. Otherwise, an exception is raised. Use this method rather than a direct
reference to the Items property to avoid depending on the order of the entries.

To locate a parameter by name without raising an exception if the parameter is not found, use the
FindMacro method.

To assign the value of macro use the TMacro.Value property.

See Also
TMacro

Macros
FindMacro

© 1997-2012 Devart. All Rights Reserved.

Events of the TDAScript class.
For a complete list of the TDAScript class members, see the TDAScript Members topic.

Published

Name Description
AfterExecute Occurs after a SQL script execution.
BeforeExecute Occurs when taking a specific action

before executing the current SQL
statement is needed.

OnError Occurs when MySQL raises an error.

See Also

TDAScript Class
TDAScript Class Members

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 159

Occurs after a SQL script execution.
Class
TDAScript
Syntax
property AfterExecute: TAfterStatementExecuteEvent;

Remarks

Occurs after a SQL script has been executed.

See Also

Execute

© 1997-2012 Devart. All Rights Reserved.
Occurs when taking a specific action before executing the current SQL statement is needed.
Class

TDAScript
Syntax
property BeforeExecute: TBeforeStatementExecuteEvent;

Remarks

Write the BeforeExecute event handler to take specific action before executing the current SQL
statement. SQL holds text of the current SQL statement. Write SQL to change the statement that will be
executed. Set Omit to True to skip statement execution.

© 1997-2012 Devart. All Rights Reserved.
Occurs when MySQL raises an error.
Class
TDAScript
Syntax
property OnError: TOnErrorEvent;

Remarks

Occurs when MySQL raises an error.
Action indicates the action to take when the OnError handler exits. On entry into the handler, Action is
always set to eaFail.

See Also

ErrorOffset

© 1997-2012 Devart. All Rights Reserved.

17.8.1.2 DAScript. TDAStatement Class

This class has attributes and methods for controlling single SQL statement of a script.
For a list of all members of this type, see TDAStatement members.

Unit
DAScript
Syntax

160 Data Access Components for MySQL

TDAStatement = class(TCollectionltem);

Remarks

TDAScript contains SQL statements, represented as TDAStatement objects. The TDAStatement class has
attributes and methods for controlling single SQL statement of a script.

Inheritance Hierarchy

TObject
TDAStatement

See Also

TDAScript
TDAStatements

© 1997-2012 Devart. All Rights Reserved.

TDAStatement class overview.

Properties

Name Description

EndLine Used to determine the number of
the last statement line in a script.

EndOffset Used to get the offset in the last
line of the statement.

EndPos Used to get the end position of the
statement in a script.

Omit Used to avoid execution of a
statement.

Params Contains parasmeters for an SQL
statement.

Script Used to determine the TDAScript
object the SQL Statement belongs
to.

SOL Used to get or set the text of an
SQL statement.

StartLine Used to determine the number of
the first statement line in a script.

StartOffset Used to get the offset in the first
line of a statement.

StartPos Used to get the start position of the

statement in a script.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDAStatement class.
For a complete list of the TDAStatement class members, see the TDAStatement Members topic.

Public

Name Description

EndLine Used to determine the number of
the last statement line in a script.

EndOffset Used to get the offset in the last
line of the statement.

EndPos Used to get the end position of the
statement in a script.

Omit Used to avoid execution of a

statement.

Data Access Components for MySQL 161

Params Contains parasmeters for an SQL
statement.

Script Used to determine the TDAScript
object the SQL Statement belongs
to.

SOL Used to get or set the text of an
SQL statement.

StartLine Used to determine the number of
the first statement line in a script.

StartOffset Used to get the offset in the first
line of a statement.

StartPos Used to get the start position of the

statement in a script.

See Also
TDAStatement Class
TDAStatement Class Members

© 1997-2012 Devart. All Rights Reserved.
Used to determine the number of the last statement line in a script.
Class
TDAStatement
Syntax
property EndLine: integer;

Remarks

Use the EndLine property to determine the number of the last statement line in a script.

© 1997-2012 Devart. All Rights Reserved.

Used to get the offset in the last line of the statement.
Class

TDAStatement
Syntax
property EndOffset: integer;

Remarks

Use the EndOffset property to get the offset in the last line of the statement.

© 1997-2012 Devart. All Rights Reserved.
Used to get the end position of the statement in a script.
Class
TDAStatement
Syntax
property EndPos: integer;

Remarks

Use the EndPos property to get the end position of the statement (the position of the last character in
the statement) in a script.

© 1997-2012 Devart. All Rights Reserved.

162

Data Access Components for MySQL

Used to avoid execution of a statement.
Class

TDAStatement
Syntax
property Omit: boolean;

Remarks

Set the Omit property to True to avoid execution of a statement.

© 1997-2012 Devart. All Rights Reserved.

Contains parasmeters for an SQL statement.
Class

TDAStatement
Syntax
property Params: TDAParams;

Remarks

Contains parameters for an SQL statement.
Access Params at runtime to view and set parameter names, values, and data types dynamically.
Params is a zero-based array of parameter records. Index specifies the array element to access.

See Also

TDAParam

© 1997-2012 Devart. All Rights Reserved.

Used to determine the TDAScript object the SQL Statement belongs to.

Class
TDAStatement
Syntax
property Script: TDAScript;
Remarks

Use the Script property to determine the TDAScript object the SQL Statement belongs to.

© 1997-2012 Devart. All Rights Reserved.

Used to get or set the text of an SQL statement.
Class

TDAStatement
Syntax
property SQL: string;

Remarks
Use the SQL property to get or set the text of an SQL statement.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 163

Used to determine the number of the first statement line in a script.
Class

TDAStatement
Syntax
property StartLine: integer;

Remarks
Use the StartLine property to determine the number of the first statement line in a script.

© 1997-2012 Devart. All Rights Reserved.

Used to get the offset in the first line of a statement.
Class

TDAStatement
Syntax
property StartOffset: integer;

Remarks
Use the StartOffset property to get the offset in the first line of a statement.

© 1997-2012 Devart. All Rights Reserved.

Used to get the start position of the statement in a script.
Class

TDAStatement
Syntax
property StartPos: integer;

Remarks

Use the StartPos property to get the start position of the statement (the position of the first statement
character) in a script.

© 1997-2012 Devart. All Rights Reserved.

17.8.1.3 DAScript. TDAStatements Class
Holds a collection of TDAStatement objects.
For a list of all members of this type, see TDAStatements members.

Unit
DAScript
Syntax
TDAStatements = class(TCollection);

Remarks

Each TDAStatements holds a collection of TDAStatement objects. TDAStatements maintains an index of
the statements in its Items array. The Count property contains the number of statements in the
collection. Use TDAStatements class to manipulate script SQL statements.

Inheritance Hierarchy

TObject
TDAStatements

164

Data Access Components for MySQL

See Also

TDAScript
TDAStatement

© 1997-2012 Devart. All Rights Reserved.

TDAStatements class overview.

Properties
Name Description
Items Used to access separate script

statements.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDAStatements class.
For a complete list of the TDAStatements class members, see the TDAStatements Members topic.

Public

Name Description
Iltems Used to access separate script
statements.
See Also

TDAStatements Class
TDAStatements Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to access separate script statements.
Class

TDAStatements
Syntax

property ltems[Index: Integer]: TDAStatement; default;
Parameters

Index
Holds the index value.

Remarks

Use the Items property to access individual script statements. The value of the Index parameter
corresponds to the Index property of TDAStatement.

See Also

TDAStatement

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 165

17.8.2 Types
Types in the DAScript unit.
Types

Name Description

TAfterStatementExecuteEvent This type is used for the TDAScript.
AfterExecute event.

TBeforeStatementExecuteEvent This type is used for the TDAScript.
BeforeExecute event.

TOnErrorEvent This type is used for the TDAScript.

OnError event.

© 1997-2012 Devart. All Rights Reserved.

17.8.2.1 DAScript.TAfterStatementExecuteEvent Procedure Reference
This type is used for the TDAScript.AfterExecute event.

Unit
DAScript
Syntax

TAfterStatementExecuteEvent = procedure (Sender: TObject; SQL:
string) of object;

Parameters

Sender
An object that raised the event.

SQL
Holds the passed SQL statement.

© 1997-2012 Devart. All Rights Reserved.

17.8.2.2 DAScript. TBeforeStatementExecuteEvent Procedure Reference
This type is used for the TDAScript.BeforeExecute event.

Unit
DAScript
Syntax

TBeforeStatementExecuteEvent = procedure (Sender: TObject; var
SQL: string; var Omit: boolean) of object;

Parameters

Sender
An object that raised the event.
SQL
Holds the passed SQL statement.
Omit
True, if the statement execution should be skipped.

© 1997-2012 Devart. All Rights Reserved.

17.8.2.3 DAScript. TOnErrorEvent Procedure Reference
This type is used for the TDAScript.OnError event.

Unit
DAScript

166 Data Access Components for MySQL

Syntax

TOnErrorEvent = procedure (Sender: TObject; E:

string; var Action: TErrorAction) of object;
Parameters

Sender
An object that raised the event.

E
The error code.

SQL
Holds the passed SQL statement.

Action
The action to take when the OnError handler exits.

© 1997-2012 Devart. All Rights Reserved.

Exception; SQL:

Data Access Components for MySQL

17.8.3 Enumerations

167

Enumerations in the DAScript unit.

Enumerations

Name
TErrorAction

Description

Indicates the action to take when
the OnError handler exits.

© 1997-2012 Devart. All Rights Reserved.

17.8.3.1 DAScript. TErrorAction Enumeration

Indicates the action to take when the OnError handler exits.

Unit
DAScript
Syntax

TErrorAction = (eaAbort, eaFail, eaException, eaContinue);

Values

Value
eaAbort
eaContinue
eaException

eaFail

Meaning
Abort execution without displaying an error message.
Continue execution.

In Delphi 6 and higher exception is handled by the Application.
HandleException method.

Abort execution and display an error message.

© 1997-2012 Devart. All Rights Reserved.

168 Data Access Components for MySQL

17.9 DASQLMonitor

This unit contains the base class for the TMySQLMonitor component.

Classes

Name

TCustomDASQLMonitor

TDBMonitorOptions

Types

Name
TDATraceFlags

TMonitorOptions

TONnSQLEvent

Enumerations

Name
TDATraceFlag

TMonitorOption

Description

A base class that introduces
properties and methods to monitor
dynamic SQL execution in database
applications interactively.

This class holds options for
dbMonitor.

Description
Represents the set of TDATraceFlag

Represents the set of
TMonitorOption.

This type is used for the
TCustomDASQLMonitor.OnSOL
event.

Description

Use TraceFlags to specify which

database operations the monitor
should track in an application at
runtime.

Used to define where information
from SQLMonitor will be dispalyed.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 169

17.9.1 Classes

Classes in the DASQLMonitor unit.

Classes

Name Description
TCustomDASQLMonitor A base class that introduces
properties and methods to monitor
dynamic SQL execution in database
applications interactively.

TDBMonitorOptions This class holds options for
dbMonitor.

© 1997-2012 Devart. All Rights Reserved.

17.9.1.1 DASQLMonitor.TCustomDASQLMonitor Class
A base class that introduces properties and methods to monitor dynamic SQL execution in database

applications interactively.
For a list of all members of this type, see TCustomDASQLMonitor members.

Unit
DASQLMonitor
Syntax
TCustomDASQLMonitor = class(TComponent);

Remarks

TCustomDASQLMonitor is a base class that introduces properties and methods to monitor dynamic SQL
execution in database applications interactively. TCustomDASQLMonitor provides two ways of displaying
debug information. It monitors either by dialog window or by Borland's proprietary SQL Monitor.
Furthermore to receive debug information use the TCustomDASQLMonitor.OnSQL event.

In applications use descendants of TCustomDASQLMonitor.

Inheritance Hierarchy

TObject
TCustomDASQLMonitor

© 1997-2012 Devart. All Rights Reserved.

TCustomDASQLMonitor class overview.

Properties

Name Description

Active Used to activate monitoring of SQL.

DBMonitorOptions Used to set options for dbMonitor.

Options Used to include the desired
properties for
TCustomDASQLMonitor.

TraceFlags Used to specify which database
operations the monitor should track
in an application at runtime.

Events
Name Description
OnSoL Occurs when tracing of SQL activity

on database components is needed.

© 1997-2012 Devart. All Rights Reserved.

170

Data Access Components for MySQL

Properties of the TCustomDASQLMonitor class.

For a complete list of the TCustomDASQLMonitor class members, see the TCustomDASQLMonitor

Members topic.

Public
Name Description
Active Used to activate monitoring of SQL.
DBMonitorOptions Used to set options for dbMonitor.
Options Used to include the desired

properties for

TCustomDASQLMonitor.

TraceFlags Used to specify which database
operations the monitor should track
in an application at runtime.

See Also
TCustomDASQLMonitor Class
TCustomDASQLMonitor Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to activate monitoring of SQL.
Class
TCustomDASQLMonitor
Syntax
property Active: boolean default True;

Remarks

Set the Active property to True to activate monitoring of SQL.

See Also

OnSQL

© 1997-2012 Devart. All Rights Reserved.

Used to set options for dbMonitor.
Class
TCustomDASQLMonitor
Syntax
property DBMonitorOptions: TDBMonitorOptions;

Remarks

Use DBMonitorOptions to set options for dbMonitor.

© 1997-2012 Devart. All Rights Reserved.

Used to include the desired properties for TCustomDASQLMonitor.
Class

TCustomDASQLMonitor
Syntax

property Options: TMonitorOptions default [moDialog,
moDBMonitor, moCustom];

moSQLMonitor,

Data Access Components for MySQL 171

Remarks
Set Options to include the desired properties for TCustomDASQLMonitor.

See Also

OnSQL

© 1997-2012 Devart. All Rights Reserved.

Used to specify which database operations the monitor should track in an application at runtime.
Class

TCustomDASQLMonitor
Syntax

property TraceFlags: TDATraceFlags default [tfQPrepare,
tfQExecute, tfError, tfConnect, tfTransact, tfParams, tfMisc];

Remarks

Use the TraceFlags property to specify which database operations the monitor should track in an
application at runtime.

See Also

OnSQL

© 1997-2012 Devart. All Rights Reserved.

Events of the TCustomDASQLMonitor class.
For a complete list of the TCustomDASQLMonitor class members, see the TCustomDASQLMonitor
Members topic.

Public
Name Description
OnSQL Occurs when tracing of SQL activity
on database components is needed.
See Also

TCustomDASQLMonitor Class
TCustomDASQLMonitor Class Members

© 1997-2012 Devart. All Rights Reserved.

Occurs when tracing of SQL activity on database components is needed.

Class
TCustomDASQLMonitor
Syntax
property OnSQL: TOnSQLEvent;
Remarks

Write the OnSQL event handler to let an application trace SQL activity on database components. The
Text parameter holds the detected SQL statement. Use the Flag parameter to make selective processing
of SQL in the handler body.

See Also

172 Data Access Components for MySQL

TraceFlags

© 1997-2012 Devart. All Rights Reserved.

17.9.1.2 DASQLMonitor. TDBMonitorOptions Class
This class holds options for dbMonitor.
For a list of all members of this type, see TDBMonitorOptions members.

Unit
DASQLMoni tor
Syntax
TDBMonitorOptions = class(TPersistent);

Inheritance Hierarchy

TObject
TDBMonitorOptions

© 1997-2012 Devart. All Rights Reserved.

TDBMonitorOptions class overview.

Properties

Name Description

Host Used to set the host name or IP
address of the computer where
dbMonitor application runs.

Port Used to set the port number for
connecting to dbMonitor.

ReconnectTimeout Used to set the minimum time that

should be spent before reconnecting
to dbMonitor is allowed.

SendTimeout Used to set timeout for sending
events to dbMonitor.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDBMonitorOptions class.
For a complete list of the TDBMonitorOptions class members, see the TDBMonitorOptions Members

topic.
Published

Name Description

Host Used to set the host name or IP
address of the computer where
dbMonitor application runs.

Port Used to set the port number for
connecting to dbMonitor.

ReconnectTimeout Used to set the minimum time that

should be spent before reconnecting
to dbMonitor is allowed.

SendTimeout Used to set timeout for sending
events to dbMonitor.

See Also
TDBMonitorOptions Class
TDBMonitorOptions Class Members

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 173

Used to set the host name or IP address of the computer where dbMonitor application runs.
Class

TDBMonitorOptions
Syntax
property Host: string;

Remarks

Use the Host property to set the host name or IP address of the computer where dbMonitor application

runs.
dbMonitor supports remote monitoring. You can run dbMonitor on a different computer than monitored
application runs. In this case you need to set the Host property to the corresponding computer name.

© 1997-2012 Devart. All Rights Reserved.

Used to set the port number for connecting to dbMonitor.
Class
TDBMonitorOptions
Syntax
property Port: integer default DBMonitorPort;

Remarks

Use the Port property to set the port number for connecting to dbMonitor.

© 1997-2012 Devart. All Rights Reserved.

Used to set the minimum time that should be spent before reconnecting to dbMonitor is allowed.
Class

TDBMonitorOptions
Syntax

property ReconnectTimeout: integer default
DefaultReconnectTimeout;

Remarks

Use the ReconnectTimeout property to set the minimum time (in milliseconds) that should be spent
before allowing reconnecting to dbMonitor. If an error occurs when the component sends an event to
dbMonitor (dbMonitor is not running), next events are ignored and the component does not restore the
connection until ReconnectTimeout is over.

© 1997-2012 Devart. All Rights Reserved.

Used to set timeout for sending events to dbMonitor.
Class
TDBMonitorOptions
Syntax
property SendTimeout: integer default DefaultSendTimeout;

Remarks

Use the SendTimeout property to set timeout (in milliseconds) for sending events to dbMonitor. If
dbMonitor does not respond in the specified timeout, event is ignored.

© 1997-2012 Devart. All Rights Reserved.

174 Data Access Components for MySQL

17.9.2 Types
Types in the DASQLMonitor unit.
Types

Name Description

TDATraceFlags Represents the set of TDATraceFlag

TMonitorOptions Represents the set of
TMonitorOption.

TONnSQLEvent This type is used for the
TCustomDASQLMonitor.OnSOL
event.

© 1997-2012 Devart. All Rights Reserved.

17.9.2.1 DASQLMonitor.TDATraceFlags Set
Represents the set of TDATraceFlag.

Unit
DASQLMonitor

Syntax
TDATraceFlags = set of TDATraceFlag;

© 1997-2012 Devart. All Rights Reserved.

17.9.2.2 DASQLMonitor.TMonitorOptions Set
Represents the set of TMonitorOption.

Unit
DASQLMonitor

Syntax
TMonitorOptions = set of TMonitorOption;

© 1997-2012 Devart. All Rights Reserved.

17.9.2.3 DASQLMonitor. TOnSQLEvent Procedure Reference
This type is used for the TCustomDASQLMonitor.OnSOL event.

uUnit
DASQLMonitor
Syntax

TOnSQLEvent = procedure (Sender: TObject; Text: string; Flag:
TDATraceFlag) of object;

Parameters

Sender
An object that raised the event.

Text
Holds the detected SQL statement.

Flag
Use the Flag parameter to make selective processing of SQL in the handler body.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 175

17.9.3 Enumerations

Enumerations in the DASQLMonitor unit.

Enumerations

Name Description
TDATraceFlag Use TraceFlags to specify which

database operations the monitor
should track in an application at
runtime.

Used to define where information
from SQLMonitor will be dispalyed.

TMonitorOption

© 1997-2012 Devart. All Rights Reserved.

17.9.3.1 DASQLMonitor.TDATraceFlag Enumeration
Use TraceFlags to specify which database operations the monitor should track in an application at
runtime.

Unit
DASQLMonitor
Syntax

TDATraceFlag = (tfQPrepare, tfQExecute, tfQFetch, tfError, tfStmt,
tfConnect, tfTransact, tfBlob, tfService, tfMisc, tfParams,
tfObjDestroy, tfPool);

Values

Value Meaning

tfBlob This option is declared for future use.

tfConnect Establishing a connection.

tfError Errors of query execution.

tfMisc If this flag is set, then just before sending a query to the server, OnSQL
event is called additionally. The difference from usual call is that the query
is already completely decoded, i.e. parameters are quoted and included
into the text of the query. If to use MySQL 4.1 protocol with preparing, a
value of this flag will be ignored.

tfObjDestroy Destroying of components.

tfParams Representing parameter values for tfQPrepare and tfQExecute.

tfPool Connection pool operations.

tfQExecute Execution of the queries.

tfQFetch This option is declared for future use.

tfQPrepare Queries preparation.

tfService This option is declared for future use.

tfStmt This option is declared for future use.

tfTransact Processing transactions.

© 1997-2012 Devart. All Rights Reserved.

17.9.3.2 DASQLMonitor.TMonitorOption Enumeration

Used to define where information from SQLMonitor will be dispalyed.

uUnit

DASQLMonitor

Syntax

TMonitorOption

(moDialog, moSQLMonitor, moDBMonitor, moCustom,

176

Data Access Components for MySQL

moHandled) ;
Values

Value
moCustom

moDBMonitor
moDialog
moHandled
moSQLMonitor

Meaning

Monitoring of SQL for individual components is allowed. Set Debug
properties in SQL-related components to True to let
TCustomDASQLMonitor instance to monitor their behavior. Has effect
when moDialog is included.

Debug information is displayed in DBMonitor.

Debug information is displayed in debug window.

Component handle is included into the event description string.
Debug information is displayed in Borland SQL Monitor.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 177

17.10 DBAccess

This unit contains base classes for most of the components.

Classes
Name Description
EDAError A base class for exceptions that are
raised when an error occurs on the
server side.
TCRDataSource Provides an interface between a

TCustomConnectDialog

TCustomDAConnection

TCustomDADataSet

TCustomDASQL

TCustomDAUpdateSQL

TDAConnectionOptions

TDADataSetOptions

TDAEncryptionOptions

TDAMapRule

TDAMapRules

TDAMetaData

TDAParam

TDAParams

TDATransaction

TMacro

TMacros

DAC dataset components and data-
aware controls on a form.

A base class for the connect dialog
components.

A base class for components used
to establish connections.

Encapsulates general set of
properties, events, and methods for
working with data accessed through
various database engines.

A base class for components
executing SQL statements that do
not return result sets.

A base class for components that
provide DML statements for more
flexible control over data
modifications.

This class allows setting up the
behaviour of the TDAConnection
class.

This class allows setting up the
behaviour of the TDADataSet class.

Used to specify the options of the
data encryption in a dataset.

Class that formes rules for Data
Type Mapping.

Used for adding rules for DataSet
fields mapping with both identifying
by field name and by field type and
Delphi field types.

A class for retrieving
metainformation of the specified
database objects in the form of
dataset.

A class that forms objects to
represent the values of the
parameters set.

This class is used to manage a list
of TDAParam objects for an object
that uses field parameters.

A base class that implements
functionality for controlling
transactions.

Object that represents the value of
a macro.

Controls a list of TMacro objects for
the TCustomDASOQL.Macros or
TCustomDADataSet components.

178

Data Access Components for MySQL

TPoolingOptions

Types

Name
TAfterExecuteEvent

TAfterFetchEvent

TBeforeFetchEvent

TConnectionLostEvent

TDAConnectionErrorEvent

TDATransactionErrorEvent

TRefreshOptions

TUpdateExecuteEvent

Enumerations

Name
TLabelSet

TLockMode
TRefreshOption

TRetryMode

Variables

Name
BaseSQLOldBehavior

ChangeCursor

MacroChar

This class allows setting up the
behaviour of the connection pool.

Description

This type is used for the
TCustomDADataSet.AfterExecute
and TCustomDASOQL.AfterExecute
events.

This type is used for the
TCustomDADataSet.AfterFetch
event.

This type is used for the
TCustomDADataSet.BeforeFetch
event.

This type is used for the
TCustomDAConnection.
OnConnectionLost event.

This type is used for the
TCustomDAConnection.OnError
event.

This type is used for the
TDATransaction.OnError event.
Represents the set of
TRefreshOption.

This type is used for the
TCustomDADataSet.
AfterUpdateExecute and
TCustomDADataSet.
BeforeUpdateExecute events.

Description

Sets the languauge of labels in the
connect dialog.

This enumeration defines a type of
an editing record locking.

Indicates when the editing record
will be refreshed.

Specifies the application behavior
when connection is lost.

Description

After assigning SQL text and
modifying it by AddWhere,
DeleteWhere, and SetOrderBy, all
subsequent changes of the SQL
property will not be reflected in the
BaseSQL property.

When set to True allows data access
components to change screen
cursor for the execution time.

Determinates what character is
used for macros.

Data Access Components for MySQL

SQLGeneratorCompatibility

179

The value of the
TCustomDADataSet.BaseSOL
property is used to complete the
refresh SQL statement, if the
manually assigned
TCustomDAUpdateSQL.RefreshSOL
property contains only WHERE
clause.

© 1997-2012 Devart. All Rights Reserved.

180

Data Access Components for MySQL

17.10.1 Classes

Classes in the DBAccess unit.
Classes

Name
EDAError

TCRDataSource

TCustomConnectDialog

TCustomDAConnection

TCustomDADataSet

TCustomDASQL

TCustomDAUpdateSQL

TDAConnectionOptions

TDADataSetOptions

TDAEnNcryptionOptions

TDAMapRule

TDAMapRules

TDAMetaData

TDAParam

TDAParams

TDATransaction

TMacro

TMacros

TPoolingOptions

Description

A base class for exceptions that are
raised when an error occurs on the
server side.

Provides an interface between a
DAC dataset components and data-
aware controls on a form.

A base class for the connect dialog
components.

A base class for components used
to establish connections.

Encapsulates general set of
properties, events, and methods for
working with data accessed through
various database engines.

A base class for components
executing SQL statements that do
not return result sets.

A base class for components that
provide DML statements for more
flexible control over data
modifications.

This class allows setting up the
behaviour of the TDAConnection
class.

This class allows setting up the
behaviour of the TDADataSet class.

Used to specify the options of the
data encryption in a dataset.

Class that formes rules for Data
Type Mapping.

Used for adding rules for DataSet
fields mapping with both identifying
by field name and by field type and
Delphi field types.

A class for retrieving
metainformation of the specified
database objects in the form of
dataset.

A class that forms objects to
represent the values of the
parameters set.

This class is used to manage a list
of TDAParam objects for an object
that uses field parameters.

A base class that implements
functionality for controlling
transactions.

Object that represents the value of
a macro.

Controls a list of TMacro objects for
the TCustomDASQL.Macros or
TCustomDADataSet components.
This class allows setting up the
behaviour of the connection pool.

Data Access Components for MySQL 181

© 1997-2012 Devart. All Rights Reserved.

17.10.1.1 DBAccess.EDAError Class
A base class for exceptions that are raised when an error occurs on the server side.
For a list of all members of this type, see EDAError members.

Unit
DBAccess
Syntax
EDAError = class(EDatabaseError);
Remarks
EDAETrror is a base class for exceptions that are raised when an error occurs on the server side.

Inheritance Hierarchy

TObject
EDAError

© 1997-2012 Devart. All Rights Reserved.

EDAETrror class overview.

Properties
Name Description
Component Contains the component that
caused the error.
ErrorCode Determines the error code returned

by the server.

© 1997-2012 Devart. All Rights Reserved.

Properties of the EDAError class.
For a complete list of the EDAError class members, see the EDAError Members topic.

Public
Name Description
Component Contains the component that
caused the error.
ErrorCode Determines the error code returned
by the server.
See Also

EDAError Class
EDAError Class Members

© 1997-2012 Devart. All Rights Reserved.

Contains the component that caused the error.
Class

EDAError
Syntax
property Component: TObject;

Remarks
The Component property contains the component that caused the error.

182 Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Determines the error code returned by the server.
Class

EDAError
Syntax
property ErrorCode: integer;
Remarks

Use the ErrorCode property to determine the error code returned by MySQL. This value is always
positive.
See MySQL server Reference Manual.

See Also

EMyError

© 1997-2012 Devart. All Rights Reserved.

17.10.1.2 DBAccess.TCRDataSource Class
Provides an interface between a DAC dataset components and data-aware controls on a form.
For a list of all members of this type, see TCRDataSource members.

Unit
DBAccess
Syntax
TCRDataSource = class(TDataSource);

Remarks

TCRDataSource provides an interface between a DAC dataset components and data-aware controls on a
form.

TCRDataSource inherits its functionality directly from the TDataSource component.

At design time assign individual data-aware components' DataSource properties from their drop-down
listboxes.

Inheritance Hierarchy

TObject
TCRDataSource

© 1997-2012 Devart. All Rights Reserved.

TCRDataSource class overview.

© 1997-2012 Devart. All Rights Reserved.

17.10.1.3 DBAccess.TCustomConnectDialog Class
A base class for the connect dialog components.
For a list of all members of this type, see TCustomConnectDialog members.

Unit
DBAccess

Syntax
TCustomConnectDialog = class(TComponent);

Remarks

Data Access Components for MySQL 183

TCustomConnectDialog is a base class for the connect dialog components. It provides functionality to
show a dialog box where user can edit username, password and server name before connecting to a
database. You can customize captions of buttons and labels by their properties.

Inheritance Hierarchy

TObject
TCustomConnectDialog

© 1997-2012 Devart. All Rights Reserved.

TCustomConnectDialog class overview.

Properties

Name Description

CancelButton Used to specify the label for the
Cancel button.

Caption Used to set the caption of dialog
box.

ConnectButton Used to specify the label for the
Connect button.

DialogClass Used to specify the class of the

form that will be displayed to enter
login information.

LabelSet Used to set the language of buttons
and labels captions.

PasswordLabel Used to specify a prompt for
password edit.

Retries Used to indicate the number of
retries of failed connections.

SavePassword Used for the password to be
displayed in ConnectDialog in
asterisks.

ServerlLabel Used to specify a prompt for the
server name edit.

StoreLoglnfo Used to specify whether the login

information should be kept in
system registry after a connection
was established.

Usernamelabel Used to specify a prompt for
username edit.

Methods
Name Description
Execute Displays the connect dialog and
calls the connection's Connect
method when user clicks the
Connect button.
GetServerlList Retrieves a list of available server

names.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TCustomConnectDialog class.
For a complete list of the TCustomConnectDialog class members, see the TCustomConnectDialog
Members topic.

Public

Name
CancelButton

Description

Used to specify the label for the
Cancel button.

184 Data Access Components for MySQL

Caption Used to set the caption of dialog
box.

ConnectButton Used to specify the label for the
Connect button.

DialogClass Used to specify the class of the

form that will be displayed to enter
login information.

LabelSet Used to set the language of buttons
and labels captions.

PasswordLabel Used to specify a prompt for
password edit.

Retries Used to indicate the number of
retries of failed connections.

SavePassword Used for the password to be
displayed in ConnectDialog in
asterisks.

ServerlLabel Used to specify a prompt for the
server name edit.

StoreLoglnfo Used to specify whether the login

information should be kept in
system registry after a connection
was established.

Usernamelabel Used to specify a prompt for
username edit.

See Also
TCustomConnectDialog Class
TCustomConnectDialog Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify the label for the Cancel button.
Class
TCustomConnectDialog

Syntax
property CancelButton: string;

Remarks
Use the CancelButton property to specify the label for the Cancel button.

© 1997-2012 Devart. All Rights Reserved.
Used to set the caption of dialog box.
Class
TCustomConnectDialog

Syntax
property Caption: str ing;
Remarks
Use the Caption property to set the caption of dialog box.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 185

Used to specify the label for the Connect button.
Class
TCustomConnectDialog

Syntax
property ConnectButton: string;

Remarks
Use the ConnectButton property to specify the label for the Connect button.

© 1997-2012 Devart. All Rights Reserved.
Used to specify the class of the form that will be displayed to enter login information.

Class
TCustomConnectDialog

Syntax
property DialogClass: string;

Remarks

Use the DialogClass property to specify the class of the form that will be displayed to enter login
information. When this property is blank, TCustomConnectDialog uses the default form - TConnectForm.
You can write your own login form to enter login information and assign its class name to the
DialogClass property. Each login form must have ConnectDialog: TCustomConnectDialog published
property to access connection information. For details see the implementation of the connect form which
sources are in the Lib subdirectory of the MyDAC installation directory.

See Also

GetServerlList

© 1997-2012 Devart. All Rights Reserved.

Used to set the language of buttons and labels captions.
Class
TCustomConnectDialog

Syntax
property LabelSet: TLabelSet default IsEnglish;

Remarks
Use the LabelSet property to set the language of labels and buttons captions.

The default value is IsEnglish.
© 1997-2012 Devart. All Rights Reserved.

Used to specify a prompt for password edit.
Class
TCustomConnectDialog

Syntax
property PasswordLabel: string;

Remarks
Use the PasswordLabel property to specify a prompt for password edit.

186

Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Used to indicate the number of retries of failed connections.
Class
TCustomConnectDialog

Syntax
property Retries: word default 3;

Remarks

Use the Retries property to determine the number of retries of failed connections.

© 1997-2012 Devart. All Rights Reserved.

Used for the password to be displayed in ConnectDialog in asterisks.
Class
TCustomConnectDialog

Syntax
property SavePassword: boolean default False;
Remarks

If True, and the Password property of the connection instance is assigned, the password in
ConnectDialog is displayed in asterisks.

© 1997-2012 Devart. All Rights Reserved.

Used to specify a prompt for the server name edit.
Class
TCustomConnectDialog

Syntax
property ServerlLabel: string;

Remarks

Use the ServerLabel property to specify a prompt for the server name edit.

© 1997-2012 Devart. All Rights Reserved.

Used to specify whether the login information should be kept in system registry after a connection was
established.

Class
TCustomConnectDialog

Syntax
property StoreLoglnfo: boolean default True;

Remarks

Use the StoreLoglnfo property to specify whether to keep login information in system registry after a
connection was established using provided username, password and servername.

Set this property to True to store login information.

The default value is True.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 187

Used to specify a prompt for username edit.
Class
TCustomConnectDialog

Syntax
property UsernamelLabel: string;

Remarks

Use the Usernamelabel property to specify a prompt for username edit.

© 1997-2012 Devart. All Rights Reserved.

Methods of the TCustomConnectDialog class.
For a complete list of the TCustomConnectDialog class members, see the TCustomConnectDialog
Members topic.

Public
Name Description
Execute Displays the connect dialog and
calls the connection's Connect
method when user clicks the
Connect button.
GetServerlList Retrieves a list of available server
names.
See Also

TCustomConnectDialog Class
TCustomConnectDialog Class Members

© 1997-2012 Devart. All Rights Reserved.

Displays the connect dialog and calls the connection's Connect method when user clicks the Connect
button.

Class
TCustomConnectDialog

Syntax
function Execute: boolean; virtual;
Return Value

True, if connected.

Remarks

Displays the connect dialog and calls the connection's Connect method when user clicks the Connect
button. Returns True if connected. If user clicks Cancel, Execute returns False.
In the case of failed connection Execute offers to connect repeat Retries times.

© 1997-2012 Devart. All Rights Reserved.

Retrieves a list of available server names.
Class
TCustomConnectDialog

Syntax

procedure GetServerList(List: _TStrings); virtual;
Parameters

List

188 Data Access Components for MySQL

Holds a list of available server names.
Remarks

Call the GetServerList method to retrieve a list of available server names. It is particularly relevant for
writing custom login form.

See Also

DialogClass

© 1997-2012 Devart. All Rights Reserved.

17.10.1.4 DBAccess.TCustomDAConnection Class
A base class for components used to establish connections.
For a list of all members of this type, see TCustomDAConnection members.

Unit
DBAccess

Syntax
TCustomDAConnection = class(TCustomConnection);

Remarks

TCustomDAConnection is a base class for components that establish connection with database, provide
customised login support, and perform transaction control.

Do not create instances of TCustomDAConnection. To add a component that represents a connection to a
source of data, use descendants of the TCustomDAConnection class.

Inheritance Hierarchy

TObject
TCustomDAConnection

© 1997-2012 Devart. All Rights Reserved.

TCustomDAConnection class overview.

Properties

Name Description

ConnectDialog Allows to link a
TCustomConnectDialog component.

ConvertEOL Allows customizing line breaks in
string fields and parameters.

InTransaction Indicates whether the transaction is
active.

LoginPrompt Specifies whether a login dialog

appears immediately before
opening a new connection.

Options Specifies the connection behavior.

Password Serves to supply a password for
login.

Pooling Enables or disables using
connection pool.

PoolingOptions Specifies the behaviour of
connection pool.

Server Serves to supply the server name
for login.

Username Used to supply a user name for
login.

Methods

Data Access Components for MySQL 189

Name Description

ApplyUpdates Overloaded. Applies changes in
datasets.

Commit Commits current transaction.

Connect Establishes a connection to the
server.

CreateDataSet Creates a dataset component.

CreateSOL Creates a component for queries
execution.

Disconnect Performs disconnect.

ExecProc Allows to execute stored procedure
or function providing its name and
parameters.

ExecProcEx Allows to execute a stored
procedure or function.

ExecSOL Executes a SQL statement with
parameters.

ExecSOQLEX Executes any SQL statement
outside the TQuery or TSQL
components.

GetDatabaseNames Returns a database list from the
server.

GetStoredProcNames Returns a list of stored procedures
from the server.

MonitorMessage Sends a specified message through
the TCustomDASQLMonitor
component.

RemoveFromPool Marks the connection that should
not be returned to the pool after
disconnect.

Rollback Discards all current data changes
and ends transaction.

StartTransaction Begins a new user transaction.

Events

Name Description

OnConnectionLost This event occurs when connection
was lost.

OnError This event occurs when an error has

arisen in the connection.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TCustomDAConnection class.
For a complete list of the TCustomDAConnection class members, see the TCustomDAConnection
Members topic.

Public

Name Description

ConnectDialog Allows to link a
TCustomConnectDialog component.

ConvertEOL Allows customizing line breaks in
string fields and parameters.

InTransaction Indicates whether the transaction is
active.

LoginPrompt Specifies whether a login dialog

appears immediately before
opening a new connection.

Options Specifies the connection behavior.

190 Data Access Components for MySQL

Password Serves to supply a password for
login.

Pooling Enables or disables using
connection pool.

PoolingOptions Specifies the behaviour of
connection pool.

Server Serves to supply the server name
for login.

Username Used to supply a user name for
login.

See Also

TCustomDAConnection Class
TCustomDAConnection Class Members

© 1997-2012 Devart. All Rights Reserved.

Allows to link a TCustomConnectDialog component.

Class
TCustomDAConnection

Syntax
property ConnectDialog: TCustomConnectDialog;

Remarks

Use the ConnectDialog property to assign to connection a TCustomConnectDialog component.

See Also

TCustomConnectDialog

© 1997-2012 Devart. All Rights Reserved.

Allows customizing line breaks in string fields and parameters.
Class
TCustomDAConnection

Syntax
property ConvertEOL: boolean default False;

Remarks

Affects the line break behavior in string fields and parameters. When fetching strings (including the TEXT
fields) with ConvertEOL = True, dataset converts their line breaks from the LF to CRLF form. And when
posting strings to server with ConvertEOL turned on, their line breaks are converted from CRLF to LF
form. By default, strings are not converted.

© 1997-2012 Devart. All Rights Reserved.

Indicates whether the transaction is active.
Class
TCustomDAConnection

Syntax
property InTransaction: boolean;

Remarks

Data Access Components for MySQL 191

Examine the InTransaction property at runtime to determine whether user transaction is currently in
progress. In other words InTransaction is set to True when user explicitly calls StartTransaction. Calling
Commit or Rollback sets InTransaction to False. The value of the InTransaction property cannot be
changed directly.

See Also

StartTransaction
Commit
Rollback

© 1997-2012 Devart. All Rights Reserved.

Specifies whether a login dialog appears immediately before opening a new connection.
Class
TCustomDAConnection

Syntax
property LoginPrompt default True;

Remarks

Specifies whether a login dialog appears immediately before opening a new connection. If ConnectDialog
is not specified, the default connect dialog will be shown. The connect dialog will appear only if the
MyDacVcl unit appears to the uses clause.

© 1997-2012 Devart. All Rights Reserved.

Specifies the connection behavior.
Class
TCustomDAConnection

Syntax
property Options: TDAConnectionOptions;

Remarks

Set the properties of Options to specify the behaviour of the connection.
Descriptions of all options are in the table below.

Option Name Description
DefaultSortType Used to determine the default type of local

sorting for string fields. It is used when a sort
type is not specified explicitly after the field
name in the TMemDataSet.|ndexFieldNames
property of a dataset.

DisconnectedMode Used to open a connection only when needed for
performing a server call and closes after
performing the operation.

KeepDesignConnected Used to prevent an application from establishing
a connection at the time of startup.
LocalFailover If True, the OnConnectionLost event occurs and

a failover operation can be performed after
connection breaks.

See Also

Disconnected Mode

192

Data Access Components for MySQL

Working in an Unstable Network

©
1997-2012 Devart. All Rights Reserved.

Serves to supply a password for login.
Class
TCustomDAConnection

Syntax
property Password: string;
Remarks

Use the Password property to supply a password to handle server's request for a login.
Warning: Storing hard-coded user name and password entries as property values or in code for the
OnLogin event handler can compromise server security.

See Also

Username
Server

© 1997-2012 Devart. All Rights Reserved.

Enables or disables using connection pool.
Class
TCustomDAConnection

Syntax
property Pooling: boolean default False;

Remarks

Normally, when TCustomDAConnection establishes connection with the server it takes server memory
and time resources for allocating new server connection. For example, pooling can be very useful when
using disconnect mode. If an application has wide user activity that forces many connect/disconnect
operations, it may spend a lot of time on creating connection and sending requests to the server.
TCustomDAConnection has software pool which stores open connections with identical parameters.
Connection pool uses separate thread that validates the pool every 30 seconds. Pool validation consists
of checking each connection in the pool. If a connection is broken due to a network problem or another
reason, it is deleted from the pool. The validation procedure removes also connections that are not used
for a long time even if they are valid from the pool.

Set Pooling to True to enable pooling. Specify correct values for PoolingOptions. Two connections belong
to the same pool if they have identical values for the parameters: MinPoolSize, MaxPoolSize, Validate,
ConnectionLifeTime , Server, Username, Password, TCustomMyConnection.Database,
TCustomMyConnection.lIsolationLevel, TMyConnection.Port, TMyConnection.lOHandler,
TCustomMyConnection.ConnectionTimeout, TMyConnectionOptions.Compress, TMyConnectionOptions.
Direct, TMyConnectionOptions.Embedded, TMyConnectionOptions.Protocol,
TCustomMyConnectionOptions.Charset, TCustomMyConnectionOptions.UseUnicode,
TCustomMyConnectionOptions.NumericType.

Note: Using Pooling := True can cause errors with working with temporary tables.

See Also

Data Access Components for MySQL 193

Username
Password

PoolingOptions
Connection Pooling

© 1997-2012 Devart. All Rights Reserved.

Specifies the behaviour of connection pool.
Class
TCustomDAConnection

Syntax
property PoolingOptions: TPoolingOptions;

Remarks

Set the properties of PoolingOptions to specify the behaviour of connection pool.
Descriptions of all options are in the table below.

Option Name Description

ConnectionLifetime Used to specify the maximum time during which
an opened connection can be used by connection
pool.

MaxPoolSize Used to specify the maximum number of
connections that can be opened in connection
pool.

MinPoolSize Used to specify the minimum number of
connections that can be opened in the connection
pool.

Validate Used for a connection to be validated when it is

returned from the pool.

See Also

Pooling

©
1997-2012 Devart. All Rights Reserved.

Serves to supply the server name for login.
Class
TCustomDAConnection

Syntax
property Server: string;

Remarks

Use the Server property to supply server name to handle server's request for a login. If this property is
not set, MyDAC tries to connect to Localhost.
The Server property can be used only if TMyConnectionOptions.Embedded is set to False.

See Also

Username

194

Data Access Components for MySQL

Password
TMyConnection.Port

© 1997-2012 Devart. All Rights Reserved.

Used to supply a user name for login.
Class
TCustomDAConnection

Syntax
property Username: string;

Remarks

Use the Username property to supply a user name to handle server's request for login. If this property is

not set, MyDAC tries to connect with the empty user name.

Warning: Storing hard-coded user name and password entries as property values or in code for the

OnLogin event handler can compromise server security.

See Also

Password
Server

© 1997-2012 Devart. All Rights Reserved.

Methods of the TCustomDAConnection class.

For a complete list of the TCustomDAConnection class members, see the TCustomDAConnection

Members topic.
Public

Name
ApplyUpdates

Commit
Connect

CreateDataSet
CreateSQL

Disconnect
ExecProc

ExecProcEx
ExecSOL

ExecSOQLEX

GetDatabaseNames

GetStoredProcNames

MonitorMessage

Description

Overloaded. Applies changes in
datasets.

Commits current transaction.
Establishes a connection to the
server.

Creates a dataset component.
Creates a component for queries
execution.

Performs disconnect.

Allows to execute stored procedure
or function providing its name and
parameters.

Allows to execute a stored
procedure or function.

Executes a SQL statement with
parameters.

Executes any SQL statement
outside the TQuery or TSQL
components.

Returns a database list from the
server.

Returns a list of stored procedures
from the server.

Sends a specified message through
the TCustomDASQLMonitor
component.

Data Access Components for MySQL 195

RemoveFromPool Marks the connection that should
not be returned to the pool after
disconnect.

Rollback Discards all current data changes
and ends transaction.

StartTransaction Begins a new user transaction.

See Also

TCustomDAConnection Class
TCustomDAConnection Class Members

© 1997-2012 Devart. All Rights Reserved.

Applies changes in datasets.
Class
TCustomDAConnection

Overload List

Name Description

ApplyUpdates Applies changes from all active datasets.
ApplyUpdates(DataSets: array of Applies changes from the specified datasets.
TCustomDADataSet)

© 1997-2012 Devart. All Rights Reserved.

Applies changes from all active datasets.
Class
TCustomDAConnection

Syntax
procedure ApplyUpdates; overload; virtual

Remarks

Call the ApplyUpdates method to write all pending cached updates from all active datasets attached to
this connection to a database or from specific datasets. The ApplyUpdates method passes cached data to
the database for storage, takes care of committing or rolling back transactions, and clearing the cache
when the operation is successful.

Using ApplyUpdates for connection is a preferred method of updating datasets rather than calling each
individual dataset's ApplyUpdates method.

See Also

TMemDataSet.CachedUpdates
TMemDataSet.ApplyUpdates

© 1997-2012 Devart. All Rights Reserved.

Applies changes from the specified datasets.
Class
TCustomDAConnection

Syntax

procedure ApplyUpdates(DataSets: array of TCustomDADataSet);
overload; virtual
Parameters

196

Data Access Components for MySQL

DataSets
A list of datasets changes in which are to be applied.

Remarks

Call the ApplyUpdates method to write all pending cached updates from the specified datasets. The
ApplyUpdates method passes cached data to the database for storage, takes care of committing or
rolling back transactions and clearing the cache when operation is successful.

Using ApplyUpdates for connection is a preferred method of updating datasets rather than calling each
individual dataset's ApplyUpdates method.

© 1997-2012 Devart. All Rights Reserved.

Commits current transaction.
Class
TCustomDAConnection

Syntax
procedure Commit; virtual;

Remarks

Call the Commit method to commit current transaction. On commit server writes permanently all
pending data updates associated with the current transaction to the database and then ends the
transaction. The current transaction is the last transaction started by calling StartTransaction.

See Also
Rollback

StartTransaction
TCustomMyDataSet.FetchAll

© 1997-2012 Devart. All Rights Reserved.

Establishes a connection to the server.
Class
TCustomDAConnection

Syntax
procedure Connect;

Remarks

Call the Connect method to establish a connection to the server. Connect sets the Connected property to
True. If LoginPrompt is True, Connect prompts user for login information as required by the server, or
otherwise tries to establish a connection using values provided in the Username, Password, and Server
properties.

See Also

Disconnect
Username
Password
Server

ConnectDialog

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 197

Creates a dataset component.
Class
TCustomDAConnection

Syntax

function CreateDataSet: TCustomDADataSet; virtual;
Return Value

Returns a new instance of the class.

Remarks

Call the CreateDataSet method to return a new instance of the TCustomDADataSet class and associate it
with this connection object. In the descendant classes this method should be overridden to create an
appropriate descendant of the TCustomDADataset component.

© 1997-2012 Devart. All Rights Reserved.

Creates a component for queries execution.
Class
TCustomDAConnection

Syntax

function CreateSQL: TCustomDASQL; virtual;
Return Value

A new instance of the class.

Remarks

Call the CreateSQL to return a new instance of the TCustomDASQL class and associates it with this
connection object. In the descendant classes this method should be overridden to create an appropriate
descendant of the TCustomDASQL component.

© 1997-2012 Devart. All Rights Reserved.

Performs disconnect.
Class
TCustomDAConnection

Syntax
procedure Disconnect;

Remarks

Call the Disconnect method to drop a connection to database. Before the connection component is
deactivated, all associated datasets are closed. Calling Disconnect is similar to setting the Connected
property to False.

In most cases, closing a connection frees system resources allocated to the connection.

If user transaction is active, e.g. the InTransaction flag is set, calling to Disconnect rolls back the current
user transaction.

Note: If a previously active connection is closed and then reopened, any associated datasets must be
individually reopened; reopening the connection does not automatically reopen associated datasets.

See Also

Connect

© 1997-2012 Devart. All Rights Reserved.

198

Data Access Components for MySQL

Allows to execute stored procedure or function providing its name and parameters.
Class
TCustomDAConnection

Syntax

function ExecProc(Name: string; const Params: array of variant):
variant; virtual;
Parameters

Name
Holds the name of the stored procedure or function.

Params
Holds the parameters of the stored procedure or function.

Return Value

the result of the stored procedure.
Remarks

Allows to execute stored procedure or function providing its name and parameters.

Use the following Name value syntax for executing specific overloaded routine: "StoredProcName:1" or
"StoredProcName:5". The first example executes the first overloaded stored procedure, while the second
example executes the fifth overloaded procedure.

Assign parameters' values to the Params array in exactly the same order and number as they appear in
the stored procedure declaration. Out parameters of the procedure can be accessed with the
ParamByName procedure.

If the value of an input parameter was not included to the Params array, parameter default value is
taken. Only parameters at the end of the list can be unincluded to the Params array. If the parameter
has no default value, the NULL value is sent.

Note: Stored functions unlike stored procedures return result values that are obtained internally through
the RESULT parameter. You will no longer have to provide anonymous value in the Params array to
describe the result of the function. The stored function result is obtained from the Params[0] indexed
property or with the ParamByName('"RESULT") method call.

For further examples of parameter usage see ExecSQL, ExecSQLEX.

Example

For example, having stored function declaration presented in Example 1), you may execute it and
retrieve its result with commands presented in Example 2):

Example 1)
CREATE procedure MY_SUM (

A INTEGER,

B INTEGER)
RETURNS (

RESULT INTEGER)
as
begin

Result = a + b;

end;
Example 2)
Labell.Caption:= MyMyConnectionl.ExecProc(*My_Sum®, [10, 20]);
Label2.Caption:= MyMyConnectionl.ParamByName("Result®) .AsString;

See Also

ExecProcEx

ExecSOL

Data Access Components for MySQL 199

ExecSOQOLEX

© 1997-2012 Devart. All Rights Reserved.

Allows to execute a stored procedure or function.
Class
TCustomDAConnection

Syntax

function ExecProcEx(Name: string; const Params: array of variant):
variant; virtual;
Parameters

Name
Holds the stored procedure name.

Params
Holds an array of pairs of parameters' names and values.

Return Value

the result of the stored procedure.
Remarks

Allows to execute a stored procedure or function. Provide the stored procedure name and its parameters
to the call of ExecProcEx.

Use the following Name value syntax for executing specific overloaded routine: "StoredProcName:1" or
"StoredProcName:5". The first example executes the first overloaded stored procedure, while the second
example executes the fifth overloaded procedure.

Assign pairs of parameters' nhames and values to a Params array so that every name comes before its
corresponding value when an array is being indexed.

Out parameters of the procedure can be accessed with the ParamByName procedure. If the value for an
input parameter was not included to the Params array, the parameter default value is taken. If the
parameter has no default value, the NULL value is sent.

Note: Stored functions unlike stored procedures return result values that are obtained internally through
the RESULT parameter. You will no longer have to provide anonymous value in the Params array to
describe the result of the function. Stored function result is obtained from the Params[0] indexed
property or with the ParamByName('"RESULT") method call.

For an example of parameters usage see ExecSQLEX.

Example

If you have some stored procedure accepting four parameters, and you want to provide values only for
the first and fourth parameters, you should call ExecProcEx in the following way:

Connection.ExecProcEx("Some_Stored Procedure®, ["Param_Namel®, “Param Vali

See Also

ExecSOQL
ExecSOQLEX

ExecProc

© 1997-2012 Devart. All Rights Reserved.
Executes a SQL statement with parameters.
Class
TCustomDAConnection

Syntax

200

Data Access Components for MySQL

function ExecSQL(Text: string): variant; overload;function ExecSQL
(Text: string; const Params: array of variant): variant;
overload; virtual;
Parameters

Text
a SQL statement to be executed.

Params
Array of parameter values arranged in the same order as they appear in SQL statement.

Return Value

Out parameter with the name Result will hold the result of function having data type dtString.
Otherwise returns Null.

Remarks

Use the ExecSQL method to execute any SQL statement outside the TCustomDADataSet or
TCustomDASQL components. Supply the Params array with the values of parameters arranged in the
same order as they appear in a SQL statement which itself is passed to the Text string parameter.
Note: If a query doesn't have parameters (Params.Count = 0), this query will be executed faster.

See Also

ExecSOQOLEX

ExecProc
TCustomMyConnection.ExecSQL

© 1997-2012 Devart. All Rights Reserved.

Executes any SQL statement outside the TQuery or TSQL components.
Class
TCustomDAConnection

Syntax

function ExecSQLEx(Text: string; const Params: array of variant):
variant; virtual;
Parameters

Text
a SQL statement to be executed.

Params
Array of parameter values arranged in the same order as they appear in SQL statement.

Return Value

Out parameter with the name Result will hold the result of a function having data type dtString.
Otherwise returns Null.

Remarks

Call the ExecSQLEx method to execute any SQL statement outside the TQuery or TSQL components.
Supply the Params array with values arranged in pairs of parameter name and its value. This way each
parameter name in the array is found on even index values whereas parameter value is on odd index
value but right after its parameter name. The parameter pairs must be arranged according to their
occurrence in a SQL statement which itself is passed in the Text string parameter.

The Params array must contain all IN and OUT parameters defined in the SQL statement. For OUT
parameters provide any values of valid types so that they are explicitly defined before call to the
ExecSQLEx method.

Out parameter with the name Result will hold the result of a function having data type dtString. If
neither of the parameters in the Text statement is named Result, ExecSQLEx will return Null.

To get the values of OUT parameters use the ParamByName function.

Data Access Components for MySQL 201

Example
MyConnection.ExecSQLEx(*begin :A:= B + :C; end;",
[-A.1 01 -B.1 51 -C.’ 3]);

= MyConnection.ParamByName("A") .AslInteger;

See Also

ExecSQL

© 1997-2012 Devart. All Rights Reserved.

Returns a database list from the server.

Class
TCustomDAConnection

Syntax

procedure GetDatabaseNames(List: _TStrings); virtual;
Parameters

List
A TStrings descendant that will be filled with database names.

Remarks

Populates a string list with the names of databases.
Note: Any contents already in the target string list object are eliminated and overwritten by data

produced by GetDatabaseNames.

See Also

M:Devart.Dac.TCustomDAConnection.GetTableNames(Borland.Vcl.TStrings,System.Boolean)
GetStoredProcNames
TCustomMyConnection.Database

© 1997-2012 Devart. All Rights Reserved.

Returns a list of stored procedures from the server.

Class
TCustomDAConnection

Syntax
procedure GetStoredProcNames(List: _TStrings; AllIProcs: boolean =

False); virtual;
Parameters

List
A TStrings descendant that will be filled with the names of stored procedures in the database.

AllProcs
True, if stored procedures from all schemas or including system procudures (depending on the server)

are returned. False otherwise.
Remarks

Call the GetStoredProcNames method to get the names of available stored procedures and functions.
GetStoredProcNames populates a string list with the names of stored procs in the database. If AllProcs =

202 Data Access Components for MySQL

True, the procedure returns to the List parameter the names of the stored procedures that belong to all
schemas; otherwise, List will contain the names of functions that belong to the current schema.

Note: Any contents already in the target string list object are eliminated and overwritten by data
produced by GetStoredProcNames.

See Also
GetDatabaseNames

M:Devart.Dac.TCustomDAConnection.GetTableNames(Borland.Vcl.TStrings,System.Boolean)
M:Devart.Dac.TCustomDAConnection.GetTableNames(Borland.Vcl.TStrings,System.Boolean)

© 1997-2012 Devart. All Rights Reserved.

Sends a specified message through the TCustomDASQLMonitor component.

Class
TCustomDAConnection

Syntax

procedure MonitorMessage(const Msg: string);
Parameters

Msg
Message text that will be sent.

Remarks

Call the MonitorMessage method to output specified message via the TCustomDASQLMonitor component.

See Also

TCustomDASQLMonitor

© 1997-2012 Devart. All Rights Reserved.

Marks the connection that should not be returned to the pool after disconnect.
Class
TCustomDAConnection

Syntax
procedure RemoveFromPool ;

Remarks

Call the RemoveFromPool method to mark the connection that should be deleted after disconnect instead
of returning to the connection pool.

See Also

Pooling
PoolingOptions

© 1997-2012 Devart. All Rights Reserved.

Discards all current data changes and ends transaction.
Class
TCustomDAConnection

Data Access Components for MySQL 203

Syntax
procedure Rollback; virtual;

Remarks

Call the Rollback method to discard all updates, insertions, and deletions of data associated with the
current transaction to the database server and then end the transaction. The current transaction is the
last transaction started by calling StartTransaction.

See Also
Commit

StartTransaction
TCustomMyDataSet.FetchAll

© 1997-2012 Devart. All Rights Reserved.

Begins a new user transaction.
Class
TCustomDAConnection

Syntax
procedure StartTransaction; virtual;

Remarks

Call the StartTransaction method to begin a new user transaction against the database server. Before
calling StartTransaction, an application should check the status of the InTransaction property. If
InTransaction is True, indicating that a transaction is already in progress, a subsequent call to
StartTransaction without first calling Commit or Rollback to end the current transaction raises
EDatabaseError. Calling StartTransaction when connection is closed also raises EDatabaseError.
Updates, insertions, and deletions that take place after a call to StartTransaction are held by the server
until an application calls Commit to save the changes, or Rollback to cancel them.

See Also

Commit

Rollback

InTransaction
TCustomMyConnection.lsolationLevel

© 1997-2012 Devart. All Rights Reserved.

Events of the TCustomDAConnection class.
For a complete list of the TCustomDAConnection class members, see the TCustomDAConnection
Members topic.

Public
Name Description
OnConnectionLost This event occurs when connection
was lost.
OnError This event occurs when an error has
arisen in the connection.
See Also

TCustomDAConnection Class
TCustomDAConnection Class Members

© 1997-2012 Devart. All Rights Reserved.

204 Data Access Components for MySQL

This event occurs when connection was lost.

Class
TCustomDAConnection

Syntax
property OnConnectionLost: TConnectionLostEvent;

Remarks

Write the OnConnectionLost event handler to process fatal errors and perform failover.
Note: you should explicitly add the MemData unit to the ‘uses’ list to use the OnConnectionLost event

handler.

© 1997-2012 Devart. All Rights Reserved.
This event occurs when an error has arisen in the connection.

Class
TCustomDAConnection

Syntax
property OnError: TDAConnectionErrorEvent;

Remarks

Write the OnError event handler to respond to errors that arise with connection. Check the E parameter
to get the error code. Set the Fail parameter to False to prevent an error dialog from being displayed
and to raise the EAbort exception to cancel current operation. The default value of Fail is True.

© 1997-2012 Devart. All Rights Reserved.

17.10.1.5 DBAccess.TCustomDADataSet Class
Encapsulates general set of properties, events, and methods for working with data accessed through

various database engines.
For a list of all members of this type, see TCustomDADataSet members.

Unit
DBAccess

Syntax
TCustomDADataSet = class(TMemDataSet);

Remarks
TCustomDADataSet encapsulates general set of properties, events, and methods for working with data
accessed through various database engines. All database-specific features are supported by descendants

of TCustomDADataSet.
Applications should not use TCustomDADataSet objects directly.

Inheritance Hierarchy

TObject
TMemDataSet
TCustomDADataSet

© 1997-2012 Devart. All Rights Reserved.

TCustomDADataSet class overview.

Properties
Name Description

Data Access Components for MySQL 205

BaseSQL

CachedUpdates (inherited from TMemDataSet)

Connection

Debug

DetailFields

Disconnected

Encryption

FetchRows

FilterSOL

FinalSQL

IndexFieldNames (inherited from TMemDataSet)

IsQuery

KeyFields

LocalConstraints (inherited from TMemDataSet)

LocalUpdate (inherited from TMemDataSet)

MacroCount

Macros

MasterFields

MasterSource

Options

Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

Used to enable or disable the use of
cached updates for a dataset.

Used to specify a connection object
to use to connect to a data store.

Used to display executing
statement, all its parameters'
values, and the type of parameters.

Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Used to keep dataset opened after
connection is closed.

Used to specify the options of the
data encryption in a dataset.

Used to define the number of rows
to be transferred across the
network at the same time.

Used to change the WHERE clause
of SELECT statement and reopen a
query.

Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

Used to get or set the list of fields
on which the recordset is sorted.

Used to check whether SQL
statement returns rows.

Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

Used to prevent implicit update of
rows on database server.

Used to get the number of macros
associated with the Macros
property.

Makes it possible to change SQL
queries easily.

Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

Used to specify the data source

component which binds current

dataset to the master one.

Used to specify the behaviour of
TCustomDADataSet object.

206

Data Access Components for MySQL

ParamCheck

ParamCount

Params

Prepared (inherited from TMemDataSet)

ReadOnly

RefreshOptions

RowsAffected

SOL

SQLDelete

SQLInsert

SQLLock

SQLRefresh

SQLUpdate

UniDirectional

UpdateRecordTypes (inherited from TMemDataSet)

UpdatesPending (inherited from TMemDataSet)

Methods

Name
AddWhere

ApplyUpdates (inherited from TMemDataSet)

BreakExec

Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

Used to indicate how many
parameters are there in the Params
property.

Used to view and set parameter
names, values, and data types
dynamically.

Determines whether a query is
prepared for execution or not.

Used to prevent users from
updating, inserting, or deleting data
in the dataset.

Used to indicate when the editing
record is refreshed.

Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

Used to provide a SQL statement
that a query component executes
when its Open method is called.

Used to specify a SQL statement
that will be used when applying a
deletion to a record.

Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

Used to specify a SQL statement
that will be used to perform a
record lock.

Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

Used to specify a SQL statement
that will be used when applying an
update to a dataset.

Used if an application does not need
bidirectional access to records in
the result set.

Used to indicate the update status
for the current record when cached
updates are enabled.

Used to check the status of the
cached updates buffer.

Description

Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

Overloaded. Writes dataset's
pending cached updates to a
database.

Breaks execution of the SQL
statement on the server.

Data Access Components for MySQL 207

CancelUpdates (inherited from TMemDataSet)

CommitUpdates (inherited from TMemDataSet)

CreateBlobStream

DeferredPost (inherited from TMemDataSet)

DeleteWhere

Execute

Executing

Fetched

Fetching

FetchingAll

FindKey

FindMacro

FindNearest

FindParam

GetBlob (inherited from TMemDataSet)

GetDataType

GetFieldObject
GetFieldPrecision
GetFieldScale

GetOrderBy

GotoCurrent

Locate (inherited from TMemDataSet)

Clears all pending cached updates
from cache and restores dataset in
its prior state.

Clears the cached updates buffer.

Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

Makes permanent changes to the
database server.

Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

Executes a SQL statement on the
server.

Indicates whether SQL statement is
still being executed.

Used to learn whether
TCustomDADataSet has already
fetched all rows.

Used to learn whether
TCustomDADataSet is still fetching
rows.

Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

Searches for a record which
contains specified field values.

Indicates whether a specified macro
exists in a dataset.

Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

Determines if a parameter with the
specified name exists in a dataset.

Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

Returns internal field types defined
in the MemData and accompanying
modules.

Returns a multireference shared
object from field.

Retrieves the precision of a number
field.

Retrieves the scale of a number
field.

Retrieves an ORDER BY clause from
a SQL statement.

Sets the current record in this
dataset similar to the current record
in another dataset.

Overloaded. Searches a dataset for

a specific record and positions the
cursor on it.

208

Data Access Components for MySQL

LocateEx (inherited from TMemDataSet)

Lock
MacroByName

ParamByName

Prepare

RefreshRecord
RestoreSOQL
RestoreUpdates (inherited from TMemDataSet)

Resync

RevertRecord (inherited from TMemDataSet)

SaveSQL

SaveToXML (inherited from TMemDataSet)

SetOrderBy

SQLSaved

UnLock
UnPrepare (inherited from TMemDataSet)

UpdateResult (inherited from TMemDataSet)

UpdateStatus (inherited from TMemDataSet)

Events

Name
AfterExecute

AfterFetch

AfterUpdateExecute

BeforeFetch

Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Locks the current record.

Finds a Macro with the name passed
in Name.

Sets or uses parameter information
for a specific parameter based on
its name.

Allocates, opens, and parses cursor
for a query.

Actualizes field values for the
current record.

Restores the SQL property modified
by AddWhere and SetOrderBy.

Marks all records in the cache of
updates as unapplied.

Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

Cancels changes made to the
current record when cached
updates are enabled.

Saves the SQL property value to
BaseSQL.

Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

Builds an ORDER BY clause of a
SELECT statement.

Determines if the SQL property
value was saved to the BaseSQL
property.

Releases a record lock.

Frees the resources allocated for a
previously prepared query on the
server and client sides.

Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.
Indicates the current update status
for the dataset when cached
updates are enabled.

Description

Occurs after a component has
executed a query to database.

Occurs after dataset finishes
fetching data from server.

Occurs after executing insert,
delete, update, lock and refresh
operations.

Occurs before dataset is going to
fetch block of records from the
server.

Data Access Components for MySQL 209

BeforeUpdateExecute

OnUpdateError (inherited from TMemDataSet)

OnUpdateRecord (inherited from TMemDataSet)

© 1997-2012 Devart. All Rights Reserved.

Properties of the TCustomDADataSet class.

Occurs before executing insert,
delete, update, lock, and refresh
operations.

Occurs when an exception is
generated while cached updates are
applied to a database.

Occurs when a single update
component can not handle the
updates.

For a complete list of the TCustomDADataSet class members, see the TCustomDADataSet Members

topic.
Public

Name
ApplyUpdates (inherited from TMemDataSet)

BaseSOQL

CachedUpdates (inherited from TMemDataSet)

CancelUpdates (inherited from TMemDataSet)

CommitUpdates (inherited from TMemDataSet)
Connection

Debug

DeferredPost (inherited from TMemDataSet)

DetailFields

Disconnected

Encryption

FetchRows

FilterSQL

FinalSQL

GetBlob (inherited from TMemDataSet)

Description

Overloaded. Writes dataset's
pending cached updates to a
database.

Used to return SQL text without any
changes performed by AddWhere,
SetOrderBy, and FilterSQL.

Used to enable or disable the use of
cached updates for a dataset.

Clears all pending cached updates
from cache and restores dataset in
its prior state.

Clears the cached updates buffer.

Used to specify a connection object
to use to connect to a data store.

Used to display executing
statement, all its parameters'
values, and the type of parameters.

Makes permanent changes to the
database server.

Used to specify the fields that
correspond to the foreign key fields
from MasterFields when building
master/detail relationship.

Used to keep dataset opened after
connection is closed.

Used to specify the options of the
data encryption in a dataset.

Used to define the number of rows
to be transferred across the
network at the same time.

Used to change the WHERE clause
of SELECT statement and reopen a
query.

Used to return SQL text with all
changes performed by AddWhere,
SetOrderBy, and FilterSQL, and with
expanded macros.

Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

210

Data Access Components for MySQL

IndexFieldNames (inherited from TMemDataSet)

IsQuery

KeyFields

LocalConstraints (inherited from TMemDataSet)

LocalUpdate (inherited from TMemDataSet)

Locate (inherited from TMemDataSet)

LocateEx (inherited from TMemDataSet)

MacroCount

Macros

MasterFields

MasterSource

OnUpdateError (inherited from TMemDataSet)

OnUpdateRecord (inherited from TMemDataSet)

Options

ParamCheck

ParamCount

Params

Prepare (inherited from TMemDataSet)

Prepared (inherited from TMemDataSet)

ReadOnly

Used to get or set the list of fields
on which the recordset is sorted.

Used to check whether SQL
statement returns rows.

Used to build SQL statements for
the SQLDelete, SQLInsert, and
SQLUpdate properties if they were
empty before updating the
database.

Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

Used to prevent implicit update of
rows on database server.

Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Used to get the number of macros
associated with the Macros
property.

Makes it possible to change SQL
queries easily.

Used to specify the names of one or
more fields that are used as foreign
keys for dataset when establishing
detail/master relationship between
it and the dataset specified in
MasterSource.

Used to specify the data source
component which binds current
dataset to the master one.

Occurs when an exception is
generated while cached updates are
applied to a database.

Occurs when a single update
component can not handle the
updates.

Used to specify the behaviour of
TCustomDADataSet object.

Used to specify whether parameters
for the Params property are
generated automatically after the
SQL property was changed.

Used to indicate how many
parameters are there in the Params
property.

Used to view and set parameter
names, values, and data types
dynamically.

Allocates resources and creates
field components for a dataset.
Determines whether a query is
prepared for execution or not.

Used to prevent users from
updating, inserting, or deleting data
in the dataset.

Data Access Components for MySQL

RefreshOptions

RestoreUpdates (inherited from TMemDataSet)

RevertRecord (inherited from TMemDataSet)

RowsAffected

SaveToXML (inherited from TMemDataSet)

SOL

SQLDelete

SQLInsert

SQLLock

SQLRefresh

SQLUpdate

UniDirectional

UnPrepare (inherited from TMemDataSet)

UpdateRecordTypes (inherited from TMemDataSet)

UpdateResult (inherited from TMemDataSet)

UpdatesPending (inherited from TMemDataSet)

UpdateStatus (inherited from TMemDataSet)

See Also

TCustomDADataSet Class
TCustomDADataSet Class Members

211

Used to indicate when the editing
record is refreshed.

Marks all records in the cache of
updates as unapplied.

Cancels changes made to the
current record when cached
updates are enabled.

Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

Used to provide a SQL statement
that a query component executes
when its Open method is called.

Used to specify a SQL statement
that will be used when applying a
deletion to a record.

Used to specify the SQL statement
that will be used when applying an
insertion to a dataset.

Used to specify a SQL statement
that will be used to perform a
record lock.

Used to specify a SQL statement
that will be used to refresh current
record by calling the
TCustomDADataSet.RefreshRecord
procedure.

Used to specify a SQL statement
that will be used when applying an
update to a dataset.

Used if an application does not need
bidirectional access to records in
the result set.

Frees the resources allocated for a
previously prepared query on the
server and client sides.

Used to indicate the update status
for the current record when cached
updates are enabled.

Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

Used to check the status of the
cached updates buffer.

Indicates the current update status
for the dataset when cached
updates are enabled.

© 1997-2012 Devart. All Rights Reserved.

212

Data Access Components for MySQL

Used to return SQL text without any changes performed by AddWhere, SetOrderBy, and FilterSQL.
Class

TCustomDADataSet
Syntax
property BaseSQL: string;

Remarks

Use the BaseSQL property to return SQL text without any changes performed by AddWhere, SetOrderBy,
and FilterSQL, only macros are expanded. SQL text with all these changes can be returned by FinalSOL.

See Also

FinalSQL
AddWhere

SaveSQL

SQLSaved
RestoreSQL

© 1997-2012 Devart. All Rights Reserved.

Used to specify a connection object to use to connect to a data store.
Class

TCustomDADataSet
Syntax
property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify a connection object that will be used to connect to a data store.
Set at design-time by selecting from the list of provided TCustomDAConnection or its descendant class
objects.

At runtime, link an instance of a TCustomDAConnection descendant to the Connection property.

© 1997-2012 Devart. All Rights Reserved.

Used to display executing statement, all its parameters' values, and the type of parameters.
Class

TCustomDADataSet
Syntax
property Debug: boolean default False;

Remarks

Set the Debug property to True to display executing statement and all its parameters' values. Also
displays the type of parameters.

You should add the MyDacVcl unit to the uses clause of any unit in your project to make the Debug
property work.

Note: To enable debug window you should explicitly include the MyDacVcl (MyDacClx under Kylix) unit

to your project.

See Also

TCustomDASQL.Debug

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL

213

Used to specify the fields that correspond to the foreign key fields from MasterFields when building

master/detail relationship.
Class
TCustomDADataSet
Syntax
property DetailFields: string;

Remarks

Use the DetailFields property to specify the fields that correspond to the foreign key fields from

MasterFields when building master/detail relationship. DetailFields is a string containing one or more field

names in the detail table. Separate field names with semicolons.
Use Field Link Designer to set the value in design time.
See Also

MasterFields
MasterSource

© 1997-2012 Devart. All Rights Reserved.

Used to keep dataset opened after connection is closed.
Class

TCustomDADataSet
Syntax
property Disconnected: boolean;

Remarks

Set the Disconnected property to True to keep dataset opened after connection is closed.

© 1997-2012 Devart. All Rights Reserved.
Used to specify the options of the data encryption in a dataset.
Class
TCustomDADataSet
Syntax
property Encryption: TDAEncryptionOptions;

Remarks

Set the properties of Encryption to specify the options of the data encryption in a dataset.

© 1997-2012 Devart. All Rights Reserved.

Used to define the number of rows to be transferred across the network at the same time.
Class

TCustomDADataSet
Syntax
property FetchRows: integer default 25;

Remarks

The number of rows that will be transferred across the network at the same time. This property can
have a great impact on performance. So it is preferable to choose the optimal value of the FetchRows

214 Data Access Components for MySQL

property for each SQL statement and software/hardware configuration experimentally.
The default value is 25.

© 1997-2012 Devart. All Rights Reserved.

Used to change the WHERE clause of SELECT statement and reopen a query.
Class

TCustomDADataSet
Syntax
property FilterSQL: string;

Remarks

The FilterSQL property is similar to the Filter property, but it changes the WHERE clause of SELECT
statement and reopens query. Syntax is the same to the WHERE clause.

Example
Queryl._FilterSQL := "Dept >= 20 and DName LIKE "*M%""";

See Also

AddWhere

© 1997-2012 Devart. All Rights Reserved.

Used to return SQL text with all changes performed by AddWhere, SetOrderBy, and FilterSQL, and with
expanded macros.

Class
TCustomDADataSet
Syntax
property FinalSQL: string;

Remarks

Use FinalSQL to return SQL text with all changes performed by AddWhere, SetOrderBy, and FilterSQL,
and with expanded macros. This is the exact statement that will be passed on to the database server.

See Also

FinalSQL
AddWhere
SaveSOQL
SQLSaved
RestoreSOQL
BaseSOQL

© 1997-2012 Devart. All Rights Reserved.

Used to check whether SQL statement returns rows.
Class
TCustomDADataSet

Syntax

Data Access Components for MySQL 215

property IsQuery: boolean;
Remarks

After the TCustomDADataSet component is prepared, the IsQuery property returns True if SQL
statement is a SELECT query.

Use the IsQuery property to check whether the SQL statement returns rows or not.

IsQuery is a read-only property. Reading IsQuery on unprepared dataset raises an exception.

© 1997-2012 Devart. All Rights Reserved.

Used to build SQL statements for the SQLDelete, SQLInsert, and SQLUpdate properties if they were
empty before updating the database.

Class
TCustomDADataSet
Syntax
property KeyFields: string;

Remarks

TCustomDADataset uses the KeyFields property to build SQL statements for the SQLDelete, SQLInsert,
and SQLUpdate properties if they were empty before updating the database. For this feature KeyFields
may hold a list of semicolon-delimited field names. If KeyFields is not defined before opening dataset,
TCustomDADataset uses the metainformation sent by the server together with data.

See Also

SQLDelete
SQLInsert
SQLRefresh
SQLUpdate

© 1997-2012 Devart. All Rights Reserved.
Used to get the number of macros associated with the Macros property.
Class
TCustomDADataSet
Syntax
property MacroCount: word;

Remarks

Use the MacroCount property to get the number of macros associated with the Macros property.

See Also

Macros

© 1997-2012 Devart. All Rights Reserved.
Makes it possible to change SQL queries easily.
Class
TCustomDADataSet
Syntax
property Macros: TMacros stored False;

216 Data Access Components for MySQL

Remarks

With the help of macros you can easily change SQL query text at design- or runtime. Marcos extend
abilities of parameters and allow to change conditions in a WHERE clause or sort order in an ORDER BY
clause. You just insert &MacroName in the SQL query text and change value of macro in the Macro
property editor at design time or call the MacroByName function at run time. At the time of opening the
query macro is replaced by its value.

Example

MyQuery.SQL:= “"SELECT * FROM Dept ORDER BY &Order”;
MyQuery._.MacroByName("Order®) .Value:= "DeptNo-;
MyQuery.Open;

See Also

TMacro

MacroByName
Params

© 1997-2012 Devart. All Rights Reserved.

Used to specify the names of one or more fields that are used as foreign keys for dataset when
establishing detail/master relationship between it and the dataset specified in MasterSource.

Class
TCustomDADataSet
Syntax
property MasterFields: string;

Remarks

Use the MasterFields property after setting the MasterSource property to specify the names of one or
more fields that are used as foreign keys for this dataset when establishing detail/master relationship
between it and the dataset specified in MasterSource.

MasterFields is a string containing one or more field names in the master table. Separate field names
with semicolons.

Each time the current record in the master table changes, the new values in these fields are used to
select corresponding records in this table for display.

Use Field Link Designer to set the values at design time after setting the MasterSource property.

See Also
DetailFields

MasterSource
Master/Detail Relationships

© 1997-2012 Devart. All Rights Reserved.

Used to specify the data source component which binds current dataset to the master one.
Class

TCustomDADataSet
Syntax
property MasterSource: TDataSource;

Data Access Components for MySQL 217

Remarks

The MasterSource property specifies the data source component which binds current dataset to the
master one.

TCustomDADataset uses MasterSource to extract foreign key fields values from the master dataset when
building master/detail relationship between two datasets. MasterSource must point to another dataset; it
cannot point to this dataset component.

When MasterSource is not nil dataset fills parameter values with corresponding field values from the
current record of the master dataset.

Note: Do not set the DataSource property when building master/detail relationships. Although it points
to the same object as the MasterSource property, it may lead to undesirable results.

See Also
MasterFields

DetailFields
Master/Detail Relationships

© 1997-2012 Devart. All Rights Reserved.

Used to specify the behaviour of TCustomDADataSet object.
Class

TCustomDADataSet
Syntax
property Options: TDADataSetOptions;

Remarks

Set the properties of Options to specify the behaviour of a TCustomDADataSet object.
Descriptions of all options are in the table below.

Option Name Description

AutoPrepare Used to execute automatic Prepare on the query
execution.

CachecCalcFields Used to enable caching of the TField.Calculated
and TField.Lookup fields.

DefaultValues Used to request default values/expressions from

the server and assign them to the
DefaultExpression property.

DetailDelay Used to get or set a delay in milliseconds before
refreshing detail dataset while navigating master
dataset.

FieldsOrigin Used for TCustomDADataSet to fill the Origin

property of the TField objects by appropriate
value when opening a dataset.

FlatBuffers Used to control how a dataset treats data of the
ftString and ftVarBytes fields.
LocalMasterDetail Used for TCustomDADataSet to use local filtering

to establish master/detail relationship for detail
dataset and does not refer to the server.

LongStrings Used to represent string fields with the length
that is greater than 255 as TStringField.
NumberRange Used to set the MaxValue and MinValue

properties of TIntegerField and TFloatField to
appropriate values.

QueryRecCount Used for TCustomDADataSet to perform
additional query to get the record count for this
SELECT, so the RecordCount property reflects
the actual number of records.

218

Data Access Components for MySQL

QuoteNames Used for TCustomDADataSet to quote all
database object names in autogenerated SQL
statements such as update SQL.

RemoveOnRefresh Used for a dataset to locally remove a record
that can not be found on the server.

RequiredFields Used for TCustomDADataSet to set the Required
property of the TField objects for the NOT NULL
fields.

ReturnParams Used to return the new value of fields to dataset
after insert or update.

SetFieldsReadOnly Used for a dataset to set the ReadOnly property

to True for all fields that do not belong to
UpdatingTable or can not be updated.

StrictUpdate Used for TCustomDADataSet to raise an
exception when the number of updated or
deleted records is not equal 1.

UpdateAllFields Used to include all dataset fields in the generated
UPDATE and INSERT statements.
UpdateBatchSize Used to get or set a value that enables or

disables batch processing support, and specifies
the number of commands that can be executed
in a batch.

See Also

Master/Detail Relationships

TMemDataSet.CachedUpdates

©
1997-2012 Devart. All Rights Reserved.

Used to specify whether parameters for the Params property are generated automatically after the SQL
property was changed.

Class
TCustomDADataSet
Syntax
property ParamCheck: boolean default True;

Remarks

Use the ParamCheck property to specify whether parameters for the Params property are generated
automatically after the SQL property was changed.

Set ParamCheck to True to let dataset automatically generate the Params property for the dataset based
on a SQL statement.

Setting ParamCheck to False can be used if the dataset component passes to a server the DDL
statements that contain, for example, declarations of stored procedures which themselves will accept
parameterized values. The default value is True.

See Also

Params

Data Access Components for MySQL 219

© 1997-2012 Devart. All Rights Reserved.
Used to indicate how many parameters are there in the Params property.
Class
TCustomDADataSet
Syntax
property ParamCount: word;

Remarks

Use the ParamCount property to determine how many parameters are there in the Params property.

See Also

Params

© 1997-2012 Devart. All Rights Reserved.

Used to view and set parameter names, values, and data types dynamically.
Class

TCustomDADataSet
Syntax
property Params: TDAParams stored False;

Remarks

Contains the parameters for a query's SQL statement.

Access Params at runtime to view and set parameter names, values, and data types dynamically (at
design time use the Parameters editor to set the parameter information). Params is a zero-based array
of parameter records. Index specifies the array element to access.

An easier way to set and retrieve parameter values when the name of each parameter is known is to call
ParamByName.

See Also

ParamByName
Macros

© 1997-2012 Devart. All Rights Reserved.
Used to prevent users from updating, inserting, or deleting data in the dataset.
Class
TCustomDADataSet
Syntax
property ReadOnly: boolean default False;

Remarks

Use the ReadOnly property to prevent users from updating, inserting, or deleting data in the dataset. By
default, ReadOnly is False, meaning that users can potentially alter data stored in the dataset.

To guarantee that users cannot modify or add data to a dataset, set ReadOnly to True.

When ReadOnly is True, the dataset's CanModify property is False.

© 1997-2012 Devart. All Rights Reserved.

220

Data Access Components for MySQL

Used to indicate when the editing record is refreshed.
Class
TCustomDADataSet
Syntax
property RefreshOptions: TRefreshOptions default [];

Remarks

Use the RefreshOptions property to determine when the editing record is refreshed.

Refresh is performed by the RefreshRecord method.

It queries the current record and replaces one in the dataset. Refresh record is useful when the table has
triggers or the table fields have default values. Use roBeforeEdit to get actual data before editing.

The default value is [].

See Also

RefreshRecord

© 1997-2012 Devart. All Rights Reserved.

Used to indicate the number of rows which were inserted, updated, or deleted during the last query
operation.

Class
TCustomDADataSet
Syntax
property RowsAffected: integer;

Remarks

Check RowsAffected to determine how many rows were inserted, updated, or deleted during the last
query operation. If RowsAffected is -1, the query has not inserted, updated, or deleted any rows.

© 1997-2012 Devart. All Rights Reserved.
Used to provide a SQL statement that a query component executes when its Open method is called.
Class
TCustomDADataSet
Syntax
property SQL: _TStrings;

Remarks

Use the SQL property to provide a SQL statement that a query component executes when its Open
method is called. At the design time the SQL property can be edited by invoking the String List editor in
Object Inspector.

When SQL is changed, TCustomDADataSet calls Close and UnPrepare.

See Also

SQLInsert
SQLUpdate
SQLDelete
SQLRefresh

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 221

Used to specify a SQL statement that will be used when applying a deletion to a record.
Class

TCustomDADataSet
Syntax
property SQLDelete: TStrings;

Remarks

Use the SQLDelete property to specify the SQL statement that will be used when applying a deletion to a
record. Statements can be parameterized queries.
To create a SQLDelete statement at design-time, use the query statements editor.

Example

DELETE FROM Orders
WHERE
OrderID = :01d_OrderliD

See Also

SOL
SQLInsert
SQLUpdate
SQLRefresh

© 1997-2012 Devart. All Rights Reserved.

Used to specify the SQL statement that will be used when applying an insertion to a dataset.
Class

TCustomDADataSet
Syntax
property SQLInsert: _TStrings;

Remarks

Use the SQLInsert property to specify the SQL statement that will be used when applying an insertion to
a dataset. Statements can be parameterized queries. Names of the parameters should be the same as
field names. Parameters prefixed with OLD_ allow using current values of fields prior to the actual
operation.

To create a SQLInsert statement at design-time, use the query statements editor.

See Also

SOL
SQLUpdate
SQLDelete
SQLRefresh

© 1997-2012 Devart. All Rights Reserved.

Used to specify a SQL statement that will be used to perform a record lock.
Class
TCustomDADataSet

222

Data Access Components for MySQL

Syntax
property SQLLock: _TStrings;

Remarks

Use the SQLLock property to specify a SQL statement that will be used to perform a record lock.
Statements can be parameterized queries. Names of the parameters should be the same as field names.
The parameters prefixed with OLD__ allow to use current values of fields prior to the actual operation.

To create a SQLLock statement at design-time, the use query statement editor.

See Also

SOL
SQLInsert
SQLUpdate
SQLDelete
SQLRefresh

© 1997-2012 Devart. All Rights Reserved.

Used to specify a SQL statement that will be used to refresh current record by calling the RefreshRecord
procedure.

Class
TCustomDADataSet

Syntax

property SQLRefresh: _TStrings;

Remarks

Use the SQLRefresh property to specify a SQL statement that will be used to refresh current record by
calling the RefreshRecord procedure.

Different behavior is observed when the SQLRefresh property is assigned with a single WHERE clause
that holds frequently altered search condition. In this case the WHERE clause from SQLRefresh is
combined with the same clause of the SELECT statement in a SQL property and this final query is then
sent to the database server.

To create a SQLRefresh statement at design-time, use the query statements editor.

Example

SELECT Shipname FROM Orders
WHERE
OrderID = :OrderlID

See Also

RefreshRecord
SOoL
SQLInsert
SQLUpdate
SQLDelete

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 223

Used to specify a SQL statement that will be used when applying an update to a dataset.
Class

TCustomDADataSet
Syntax
property SQLUpdate: TStrings;

Remarks

Use the SQLUpdate property to specify a SQL statement that will be used when applying an update to a
dataset. Statements can be parameterized queries. Names of the parameters should be the same as
field names. The parameters prefixed with OLD__ allow to use current values of fields prior to the actual

operation.
To create a SQLUpdate statement at design-time, use the query statement editor.

Example

UPDATE Orders
set
ShipName = :ShipName
WHERE
OrderID = :01d_OrderliD

See Also

SOL
SQLInsert
SQLDelete
SQLRefresh

© 1997-2012 Devart. All Rights Reserved.

Used if an application does not need bidirectional access to records in the result set.
Class

TCustomDADataSet
Syntax
property UniDirectional: boolean default False;

Remarks

Traditionally SQL cursors are unidirectional. They can travel only forward through a dataset.
TCustomDADataset, however, permits bidirectional travelling by caching records. If an application does
not need bidirectional access to the records in the result set, set UniDirectional to True. When
UniDirectional is True, an application requires less memory and performance is improved. However,
UniDirectional datasets cannot be modified.

In FetchAll=False mode data is fetched on demand. When UniDirectional is set to True, data is fetched
on demand as well, but obtained rows are not cached except for the current row. So, FetchAll=False
mode is a component of UniDirectional=True mode, and setting UniDirectional to True requires FetchAll
to be set to False. Pay attention to the restrictions of TCustomMyDataSet.FetchAll = False mode.

The default value of UniDirectional is False, enabling forward and backward navigation.

See Also

TCustomMyDataSet.FetchAll

224

Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Methods of the TCustomDADataSet class.

For a complete list of the TCustomDADataSet class members, see the TCustomDADataSet Members

topic.
Public

Name
AddWhere

ApplyUpdates (inherited from TMemDataSet)

BreakExec

CachedUpdates (inherited from TMemDataSet)

CancelUpdates (inherited from TMemDataSet)

CommitUpdates (inherited from TMemDataSet)
CreateBlobStream

DeferredPost (inherited from TMemDataSet)

DeleteWhere

Execute

Executing

Fetched

Fetching

FetchingAll

FindKey

FindMacro

FindNearest

FindParam

GetBlob (inherited from TMemDataSet)

Description

Adds condition to the WHERE clause
of SELECT statement in the SQL
property.

Overloaded. Writes dataset's
pending cached updates to a
database.

Breaks execution of the SQL
statement on the server.

Used to enable or disable the use of
cached updates for a dataset.

Clears all pending cached updates
from cache and restores dataset in
its prior state.

Clears the cached updates buffer.

Used to obtain a stream for reading
data from or writing data to a BLOB
field, specified by the Field
parameter.

Makes permanent changes to the
database server.

Removes WHERE clause from the
SQL property and assigns the
BaseSQL property.

Executes a SQL statement on the
server.

Indicates whether SQL statement is
still being executed.

Used to learn whether
TCustomDADataSet has already
fetched all rows.

Used to learn whether
TCustomDADataSet is still fetching
rows.

Used to learn whether
TCustomDADataSet is fetching all
rows to the end.

Searches for a record which
contains specified field values.

Indicates whether a specified macro
exists in a dataset.

Moves the cursor to a specific
record or to the first record in the
dataset that matches or is greater
than the values specified in the
KeyValues parameter.

Determines if a parameter with the
specified name exists in a dataset.

Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

Data Access Components for MySQL 225

GetDataType

GetFieldObject

GetFieldPrecision

GetFieldScale

GetOrderBy

GotoCurrent

IndexFieldNames (inherited from TMemDataSet)

LocalConstraints (inherited from TMemDataSet)

LocalUpdate (inherited from TMemDataSet)

Locate (inherited from TMemDataSet)

LocateEx (inherited from TMemDataSet)

Lock
MacroByName

OnUpdateError (inherited from TMemDataSet)

OnUpdateRecord (inherited from TMemDataSet)

ParamByName

Prepare

Prepared (inherited from TMemDataSet)
RefreshRecord

RestoreSOL

RestoreUpdates (inherited from TMemDataSet)

Resync

RevertRecord (inherited from TMemDataSet)

SaveSQL

Returns internal field types defined
in the MemData and accompanying
modules.

Returns a multireference shared
object from field.

Retrieves the precision of a number
field.

Retrieves the scale of a number
field.

Retrieves an ORDER BY clause from
a SQL statement.

Sets the current record in this
dataset similar to the current record
in another dataset.

Used to get or set the list of fields
on which the recordset is sorted.

Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

Used to prevent implicit update of
rows on database server.

Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Locks the current record.

Finds a Macro with the name passed
in Name.

Occurs when an exception is
generated while cached updates are
applied to a database.

Occurs when a single update
component can not handle the
updates.

Sets or uses parameter information
for a specific parameter based on
its name.

Allocates, opens, and parses cursor
for a query.

Determines whether a query is
prepared for execution or not.

Actualizes field values for the
current record.

Restores the SQL property modified
by AddWhere and SetOrderBy.

Marks all records in the cache of
updates as unapplied.

Resynchronize the dataset with
underlying physical data when
making calls that may change the
internal cursor position.

Cancels changes made to the
current record when cached
updates are enabled.

Saves the SQL property value to
BaseSQL.

226 Data Access Components for MySQL

SaveToXML (inherited from TMemDataSet) Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with

ADO format.

SetOrderBy Builds an ORDER BY clause of a
SELECT statement.

SQLSaved Determines if the SQL property
value was saved to the BaseSQL
property.

UnLock Releases a record lock.

UnPrepare (inherited from TMemDataSet) Frees the resources allocated for a

previously prepared query on the
server and client sides.

UpdateRecordTypes (inherited from TMemDataSet) Used to indicate the update status
for the current record when cached
updates are enabled.

UpdateResult (inherited from TMemDataSet) Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of the
cached updates buffer.
UpdateStatus (inherited from TMemDataSet) Indicates the current update status

for the dataset when cached
updates are enabled.

See Also
TCustomDADataSet Class
TCustomDADataSet Class Members

© 1997-2012 Devart. All Rights Reserved.

Adds condition to the WHERE clause of SELECT statement in the SQL property.
Class

TCustomDADataSet
Syntax

procedure AddWhere(Condition: string);
Parameters

Condition
Holds the condition that will be added to the WHERE clause.

Remarks

Call the AddWhere method to add a condition to the WHERE clause of SELECT statement in the SQL
property.

If SELECT has no WHERE clause, AddWhere creates it.

Note: The AddWhere method is implicitly called by RefreshRecord. The AddWhere method works for the
SELECT statements only.

See Also

DeleteWhere

© 1997-2012 Devart. All Rights Reserved.

Breaks execution of the SQL statement on the server.
Class
TCustomDADataSet

Data Access Components for MySQL 227

Syntax
procedure BreakExec; virtual;

Remarks

Call the BreakExec method to break execution of the SQL statement on the server. Execution is broken
by the KILL operator execution on server. It makes sense to call BreakExec only from another thread.

© 1997-2012 Devart. All Rights Reserved.

Used to obtain a stream for reading data from or writing data to a BLOB field, specified by the Field
parameter.

Class
TCustomDADataSet

Syntax

function CreateBlobStream(Field: TField; Mode: TBlobStreamMode):
TStream; override;
Parameters

Field
Holds the BLOB field for reading data from or writing data to from a stream.

Mode
Holds the stream mode, for which the stream will be used.

Return Value
The BLOB Stream.
Remarks

Call the CreateBlobStream method to obtain a stream for reading data from or writing data to a BLOB
field, specified by the Field parameter. It must be a TBlobField component. You can specify whether the
stream will be used for reading, writing, or updating the contents of the field with the Mode parameter.

© 1997-2012 Devart. All Rights Reserved.
Removes WHERE clause from the SQL property and assigns the BaseSQL property.
Class
TCustomDADataSet
Syntax
procedure DeleteWhere;

Remarks
Call the DeleteWhere method to remove WHERE clause from the the SQL property and assign BaseSQL.

See Also

AddWhere
BaseSQL
© 1997-2012 Devart. All Rights Reserved.

Executes a SQL statement on the server.
Class
TCustomDADataSet

228

Data Access Components for MySQL

Syntax
procedure Execute; virtual;

Remarks

Call the Execute method to execute a SQL statement on the server. If SQL statement is a query, Execute
calls the Open method.

Execute implicitly prepares SQL statement by calling the Prepare method if the Options option is set to
True and the statement has not been prepared yet. To speed up the performance in case of multiple
Execute calls, an application should call Prepare before calling the Execute method for the first time.

See Also
AfterExecute

Executing
Prepare

© 1997-2012 Devart. All Rights Reserved.

Indicates whether SQL statement is still being executed.
Class

TCustomDADataSet
Syntax

function Executing: boolean;
Return Value

True, if SQL statement is still being executed.

Remarks

Check Executing to learn whether TCustomDADataSet is still executing SQL statement. Use the
Executing method if NonBlocking is True.

© 1997-2012 Devart. All Rights Reserved.

Used to learn whether TCustomDADataSet has already fetched all rows.
Class

TCustomDADataSet
Syntax

function Fetched: boolean; virtual;
Return Value

True, if all rows are fetched.

Remarks
Check Fetched to learn whether TCustomDADataSet has already fetched all rows.

See Also

Fetching

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 229

Used to learn whether TCustomDADataSet is still fetching rows.
Class

TCustomDADataSet
Syntax

function Fetching: boolean;
Return Value

True, if TCustomDADataSet is still fetching rows.

Remarks

Check Fetching to learn whether TCustomDADataSet is still fetching rows. Use the Fetching method if
NonBlocking is True.

See Also

Executing

© 1997-2012 Devart. All Rights Reserved.

Used to learn whether TCustomDADataSet is fetching all rows to the end.
Class

TCustomDADataSet
Syntax

function FetchingAll: boolean;
Return Value

True, if TCustomDADataSet is fetching all rows to the end.

Remarks
Check FetchingAll to learn whether TCustomDADataSet is fetching all rows to the end.

See Also

Executing

© 1997-2012 Devart. All Rights Reserved.

Searches for a record which contains specified field values.
Class
TCustomDADataSet

Syntax

function FindKey(const KeyValues: array of System.TVarRec):

Boolean;
Parameters

KeyValues
Holds a key.

Remarks

Call the FindKey method to search for a specific record in a dataset. KeyValues holds a comma-delimited

array of field values, that is called a key.
This function is provided for BDE compatibility only. It is recommended to use functions TMemDataSet.
Locate and TMemDataSet.LocateEx for the record search.

230

Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Indicates whether a specified macro exists in a dataset.
Class
TCustomDADataSet

Syntax

function FindMacro(const Value: string): TMacro;

Parameters

Value
Holds the name of the macro to search for.

Return Value
a TMacro object, if a macro with matching name was found, otherwise returns nil.

Remarks

Call the FindMacro method to determine if a specified macro exists. If FindMacro finds a macro with a
matching name, it returns a TMacro object for the specified Name. Otherwise it returns nil.

See Also
TMacro

Macros
MacroByName

© 1997-2012 Devart. All Rights Reserved.

Moves the cursor to a specific record or to the first record in the dataset that matches or is greater than
the values specified in the KeyValues parameter.

Class
TCustomDADataSet
Syntax

procedure FindNearest(const KeyValues: array of System.TVarRec);
Parameters

KeyValues
Holds the values of the record key fields to which the cursor should be moved.

Remarks

Call the FindNearest method to move the cursor to a specific record or to the first record in the dataset

that matches or is greater than the values specified in the KeyValues parameter. If there are no records
that match or exceed the specified criteria, the cursor will not move.

This function is provided for BDE compatibility only. It is recommended to use functions TMemDataSet.

Locate and TMemDataSet.LocateEx for the record search.

See Also

TMemDataSet.Locate
TMemDataSet.LocateEx

FindKey

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 231

Determines if a parameter with the specified name exists in a dataset.
Class

TCustomDADataSet
Syntax

function FindParam(const Value: string): TDAParam;
Parameters

Value
Holds the name of the param for which to search.

Return Value
the TDAParam object for the specified Name. Otherwise it returns nil.

Remarks

Call the FindParam method to determine if a specified param component exists in a dataset. Name is the
name of the param for which to search. If FindParam finds a param with a matching name, it returns a
TDAParam object for the specified Name. Otherwise it returns nil.

See Also

Params
ParamByName

© 1997-2012 Devart. All Rights Reserved.
Returns internal field types defined in the MemData and accompanying modules.

Class
TCustomDADataSet

Syntax

function GetDataType(const FieldName: string): integer; virtual;
Parameters

FieldName
Holds the name of the field.

Return Value
internal field types defined in MemData and accompanying modules.

Remarks

Call the GetDataType method to return internal field types defined in the MemData and accompanying
modules. Internal field data types extend the TFieldType type of VCL by specific database server data
types. For example, ftString, ftFile, ftObject.

© 1997-2012 Devart. All Rights Reserved.

Returns a multireference shared object from field.
Class
TCustomDADataSet

Syntax

function GetFieldObject(Field: TField): TSharedObject; overload;
function GetFieldObject(FieldDesc: TFieldDesc): TSharedObject;
overload;function GetFieldObject(const FieldName: string):
TSharedObject; overload;

232

Data Access Components for MySQL

Parameters

FieldName
Holds the field name.

Return Value
multireference shared object.

Remarks

Call the GetFieldObject method to return a multireference shared object from field. If field does not hold
one of the TSharedObject descendants, GetFieldObject raises an exception.

© 1997-2012 Devart. All Rights Reserved.

Retrieves the precision of a number field.

Class
TCustomDADataSet

Syntax

function GetFieldPrecision(const FieldName: string): integer;
Parameters

FieldName
Holds the existing field name.

Return Value
precision of number field.

Remarks

Call the GetFieldPrecision method to retrieve the precision of a number field. FieldName is the name of
an existing field.

See Also

GetFieldScale

© 1997-2012 Devart. All Rights Reserved.

Retrieves the scale of a number field.
Class
TCustomDADataSet

Syntax

function GetFieldScale(const FieldName: string): integer;
Parameters

FieldName
Holds the existing field name.

Return Value
the scale of the number field.

Remarks

Call the GetFieldScale method to retrieve the scale of a number field. FieldName is the name of an
existing field.

See Also

Data Access Components for MySQL

233

GetFieldPrecision

© 1997-2012 Devart. All Rights Reserved.

Retrieves an ORDER BY clause from a SQL statement.
Class

TCustomDADataSet
Syntax
function GetOrderBy: string;

Return Value

an ORDER BY clause from the SQL statement.
Remarks

Call the GetOrderBy method to retrieve an ORDER BY clause from a SQL statement.
Note: GetOrderBy and SetOrderBy methods serve to process only quite simple queries and don't
support, for example, subqueries.

See Also

SetOrderBy

© 1997-2012 Devart. All Rights Reserved.

Sets the current record in this dataset similar to the current record in another dataset.
Class

TCustomDADataSet
Syntax
procedure GotoCurrent(DataSet: TCustomDADataSet);

Parameters

DataSet
Holds the TCustomDADataSet descendant to synchronize the record position with.

Remarks

Call the GotoCurrent method to set the current record in this dataset similar to the current record in

another dataset. The key fields in both these DataSets must be coincident.

See Also

TMemDataSet.Locate
TMemDataSet.LocateEx

© 1997-2012 Devart. All Rights Reserved.
Locks the current record.

Class
TCustomDADataSet

Syntax

procedure Lock; virtual;

Remarks

Call the Lock method to lock the current record by executing the statement that is defined in the

234

Data Access Components for MySQL

SQLLock property.
The Lock method sets the savepoint with the name LOCK_ + <component_name>.

See Also

UnLock

© 1997-2012 Devart. All Rights Reserved.

Finds a Macro with the name passed in Name.

Class
TCustomDADataSet

Syntax

function MacroByName(const Value: string): TMacro;
Parameters

Value
Holds the name of the Macro to search for.

Return Value
the Macro, if a match was found.

Remarks

Call the MacroByName method to find a Macro with the name passed in Name. If a match was found,
MacroByName returns the Macro. Otherwise, an exception is raised. Use this method rather than a direct
reference to the Items property to avoid depending on the order of the entries.

To locate a parameter by name without raising an exception if the parameter is not found, use the

FindMacro method.
To assign the value of macro use the TMacro.Value property.

Example

MyQuery.SQL:= "SELECT * FROM Scott.Dept ORDER BY &Order”;
MyQuery._.MacroByName("Order™) .Value:= "DeptNo";
MyQuery.Open;

See Also

TMacro
Macros
FindMacro

© 1997-2012 Devart. All Rights Reserved.

Sets or uses parameter information for a specific parameter based on its name.

Class
TCustomDADataSet

Syntax

function ParamByName(const Value: string): TDAParam;
Parameters

Value
Holds the name of the parameter for which to retrieve information.

Data Access Components for MySQL 235

Return Value

a TDAParam object.
Remarks

Call the ParamByName method to set or use parameter information for a specific parameter based on its
name. Name is the name of the parameter for which to retrieve information. ParamByName is used to
set a parameter's value at runtime and returns a TDAParam object.

Example

The following statement retrieves the current value of a parameter called "Contact" into an edit box:

Editl.Text := Queryl.ParamsByName("Contact"™) .AsString;

See Also

Params
FindParam

© 1997-2012 Devart. All Rights Reserved.

Allocates, opens, and parses cursor for a query.
Class

TCustomDADataSet
Syntax
procedure Prepare; override;

Remarks

Call the Prepare method to allocate, open, and parse cursor for a query. Calling Prepare before
executing a query improves application performance.

The MySQL prepared protocol has certain server restrictions, and its work is not always stable. That is
why it is advisable to perform test before using preparation in production versions of applications.
The UnPrepare method unprepares a query.

Note: When you change the text of a query at runtime, the query is automatically closed and
unprepared.

See Also
TMemDataSet.Prepared

TMemDataSet.UnPrepare
Options

© 1997-2012 Devart. All Rights Reserved.

Actualizes field values for the current record.
Class

TCustomDADataSet
Syntax
procedure RefreshRecord;

Remarks

Call the RefreshRecord method to actualize field values for the current record. RefreshRecord performs
query to database and refetches new field values from the returned cursor.

236

Data Access Components for MySQL

See Also

RefreshOptions
SQLRefresh

© 1997-2012 Devart. All Rights Reserved.

Restores the SQL property modified by AddWhere and SetOrderBy.
Class

TCustomDADataSet
Syntax
procedure RestoreSQL;

Remarks
Call the RestoreSQL method to restore the SQL property modified by AddWhere and SetOrderBy.

See Also

AddWhere

SetOrderBy
SaveSOQL

SQLSaved

© 1997-2012 Devart. All Rights Reserved.

Resynchronize the dataset with underlying physical data when making calls that may change the internal
cursor position.

Class
TCustomDADataSet
Syntax

procedure Resync(Mode: TResyncMode); override;
Parameters

Mode
Holds optional processing that Resync should handle.

Remarks

Resync is used to resynchronize the dataset with underlying physical data when making calls that may
change the internal cursor position.

© 1997-2012 Devart. All Rights Reserved.

Saves the SQL property value to BaseSQL.
Class

TCustomDADataSet
Syntax
procedure SaveSQL;

Remarks
Call the SaveSQL method to save the SQL property value to the BaseSQL property.

Data Access Components for MySQL 237

See Also

SQLSaved
RestoreSOQL

BaseSOQL

© 1997-2012 Devart. All Rights Reserved.
Builds an ORDER BY clause of a SELECT statement.
Class
TCustomDADataSet
Syntax
procedure SetOrderBy(Fields: string);

Parameters

Fields
Holds the names of the fields which will be added to the ORDER BY clause.

Remarks

Call the SetOrderBy method to build an ORDER BY clause of a SELECT statement. The fields are
identified by the comma-delimited field names.

Note: The GetOrderBy and SetOrderBy methods serve to process only quite simple queries and don't
support, for example, subqueries.

Example
Queryl.SetOrderBy("DeptNo;DName*®) ;

See Also

GetOrderBy

© 1997-2012 Devart. All Rights Reserved.

Determines if the SQL property value was saved to the BaseSQL property.
Class

TCustomDADataSet
Syntax

function SQLSaved: boolean;
Return Value

True, if the SQL property value was saved to the BaseSQL property.
Remarks

Call the SQLSaved method to know whether the SQL property value was saved to the BaseSQL property.

© 1997-2012 Devart. All Rights Reserved.

Releases a record lock.
Class

TCustomDADataSet
Syntax

238

Data Access Components for MySQL

procedure UnLock;

Remarks

Call the Unlock method to release the record lock made by the Lock method before.
Unlock is performed by rolling back to the savepoint set by the Lock method.

See Also

Lock

© 1997-2012 Devart. All Rights Reserved.

Events of the TCustomDADataSet class.

For a complete list of the TCustomDADataSet class members, see the TCustomDADataSet Members

topic.
Public

Name
AfterExecute

AfterFetch

AfterUpdateExecute

ApplyUpdates (inherited from TMemDataSet)

BeforeFetch

BeforeUpdateExecute

CachedUpdates (inherited from TMemDataSet)
CancelUpdates (inherited from TMemDataSet)

CommitUpdates (inherited from TMemDataSet)
DeferredPost (inherited from TMemDataSet)

GetBlob (inherited from TMemDataSet)

IndexFieldNames (inherited from TMemDataSet)

LocalConstraints (inherited from TMemDataSet)

LocalUpdate (inherited from TMemDataSet)

Locate (inherited from TMemDataSet)

Description

Occurs after a component has
executed a query to database.

Occurs after dataset finishes
fetching data from server.

Occurs after executing insert,
delete, update, lock and refresh
operations.

Overloaded. Writes dataset's
pending cached updates to a
database.

Occurs before dataset is going to
fetch block of records from the
server.

Occurs before executing insert,
delete, update, lock, and refresh
operations.

Used to enable or disable the use of
cached updates for a dataset.

Clears all pending cached updates
from cache and restores dataset in
its prior state.

Clears the cached updates buffer.

Makes permanent changes to the
database server.

Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

Used to get or set the list of fields
on which the recordset is sorted.
Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

Used to prevent implicit update of
rows on database server.
Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

Data Access Components for MySQL 239

LocateEx (inherited from TMemDataSet)

OnUpdateError (inherited from TMemDataSet)

OnUpdateRecord (inherited from TMemDataSet)

Prepare (inherited from TMemDataSet)
Prepared (inherited from TMemDataSet)
RestoreUpdates (inherited from TMemDataSet)

RevertRecord (inherited from TMemDataSet)

SaveToXML (inherited from TMemDataSet)

UnPrepare (inherited from TMemDataSet)

UpdateRecordTypes (inherited from TMemDataSet)

UpdateResult (inherited from TMemDataSet)

UpdatesPending (inherited from TMemDataSet)

UpdateStatus (inherited from TMemDataSet)

See Also

TCustomDADataSet Class
TCustomDADataSet Class Members

Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Occurs when an exception is
generated while cached updates are
applied to a database.

Occurs when a single update
component can not handle the
updates.

Allocates resources and creates
field components for a dataset.

Determines whether a query is
prepared for execution or not.

Marks all records in the cache of
updates as unapplied.

Cancels changes made to the
current record when cached
updates are enabled.

Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

Frees the resources allocated for a
previously prepared query on the
server and client sides.

Used to indicate the update status
for the current record when cached
updates are enabled.

Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

Used to check the status of the
cached updates buffer.

Indicates the current update status
for the dataset when cached
updates are enabled.

© 1997-2012 Devart. All Rights Reserved.

Occurs after a component has executed a query to database.

Class
TCustomDADataSet

Syntax

property AfterExecute: TAfterExecuteEvent;

Remarks

Occurs after a component has executed a query to database.

See Also

Execute

240 Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Occurs after dataset finishes fetching data from server.
Class

TCustomDADataSet
Syntax
property AfterFetch: TAfterFetchEvent;

Remarks

The AfterFetch event occurs after dataset finishes fetching data from server.

See Also

BeforeFetch

© 1997-2012 Devart. All Rights Reserved.
Occurs after executing insert, delete, update, lock and refresh operations.
Class
TCustomDADataSet
Syntax
property AfterUpdateExecute: TUpdateExecuteEvent;

Remarks

Occurs after executing insert, delete, update, lock, and refresh operations. You can use
AfterUpdateExecute to set the parameters of corresponding statements.

© 1997-2012 Devart. All Rights Reserved.

Occurs before dataset is going to fetch block of records from the server.
Class

TCustomDADataSet
Syntax
property BeforeFetch: TBeforeFetchEvent;

Remarks

The BeforeFetch event occurs every time before dataset is going to fetch a block of records from the
server. Set Cancel to True to abort current fetch operation.

See Also

AfterFetch

© 1997-2012 Devart. All Rights Reserved.

Occurs before executing insert, delete, update, lock, and refresh operations.
Class
TCustomDADataSet

Syntax

Data Access Components for MySQL 241

property BeforeUpdateExecute: TUpdateExecuteEvent;

Remarks

Occurs before executing insert, delete, update, lock, and refresh operations. You can use
BeforeUpdateExecute to set the parameters of corresponding statements.

See Also

AfterUpdateExecute

© 1997-2012 Devart. All Rights Reserved.

17.10.1.6 DBAccess.TCustomDASQL Class
A base class for components executing SQL statements that do not return result sets.
For a list of all members of this type, see TCustomDASQL members.

Unit
DBAccess
Syntax
TCustomDASQL = class(TComponent);

Remarks

TCustomDASQL is a base class that defines functionality for descendant classes which access database
using SQL statements. Applications never use TCustomDASQL objects directly. Instead they use
descendants of TCustomDASQL.

Use TCustomDASQL when client application must execute SQL statement or call stored procedure on the
database server. The SQL statement should not retrieve rows from the database.

Inheritance Hierarchy

TObject
TCustomDASQL

© 1997-2012 Devart. All Rights Reserved.

TCustomDASQL class overview.

Properties

Name Description

ChangeCursor Enables or disables changing screen
cursor when executing commands
in the NonBlocking mode.

Connection Used to specify a connection object
to use to connect to a data store.

Debug Used to display executing
statement, all its parameters'
values, and the type of parameters.

FinalSQL Used to return a SQL statement
with expanded macros.

MacroCount Used to get the number of macros
associated with the Macros
property.

Macros Makes it possible to change SQL
queries easily.

ParamCheck Used to specify whether parameters

for the Params property are
implicitly generated when the SQL
property is being changed.

242

Data Access Components for MySQL

ParamCount
Params

ParamValues

Prepared

RowsAffected

Methods

Name
Execute

Executing
FindMacro
FindParam
MacroByName
ParamByName
Prepare

UnPrepare

WaitExecuting

Events

Name
AfterExecute

Indicates the number of parameters
in the Params property.

Used to contain parameters for a
SQL statement.

Used to get or set the values of
individual field parameters that are
identified by name.

Used to indicate whether a query is
prepared for execution.

Used to indicate the number of rows
which were inserted, updated, or
deleted during the last query
operation.

Used to provide a SQL statement
that a TCustomDASQL component
executes when the Execute method
is called.

Description

Overloaded. Executes SQL
commands.

Checks whether TCustomDASQL still
executes a SQL statement.
Searches for a macro with the
specified name.

Finds a parameter with the specified
name.

Finds a Macro with the name passed
in Name.

Finds a parameter with the specified
name.

Allocates, opens, and parses cursor
for a query.

Frees the resources allocated for a
previously prepared query on the
server and client sides.

Waits until TCustomDASQL
executes a SQL statement.

Description

Occurs after a SQL statement has
been executed.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TCustomDASQL class.

For a complete list of the TCustomDASQL class members, see the TCustomDASQL Members topic.

Public

Name
ChangeCursor

Connection

Description

Enables or disables changing screen
cursor when executing commands
in the NonBlocking mode.

Used to specify a connection object
to use to connect to a data store.

Data Access Components for MySQL 243

Debug Used to display executing
statement, all its parameters'
values, and the type of parameters.

FinalSQL Used to return a SQL statement
with expanded macros.

MacroCount Used to get the number of macros
associated with the Macros
property.

Macros Makes it possible to change SQL
queries easily.

ParamCheck Used to specify whether parameters

for the Params property are
implicitly generated when the SQL
property is being changed.

ParamCount Indicates the number of parameters
in the Params property.

Params Used to contain parameters for a
SQL statement.

ParamValues Used to get or set the values of

individual field parameters that are
identified by name.

Prepared Used to indicate whether a query is
prepared for execution.
RowsAffected Used to indicate the number of rows

which were inserted, updated, or
deleted during the last query
operation.

SOL Used to provide a SQL statement
that a TCustomDASQL component
executes when the Execute method
is called.

See Also
TCustomDASOQL Class
TCustomDASQL Class Members

© 1997-2012 Devart. All Rights Reserved.

Enables or disables changing screen cursor when executing commands in the NonBlocking mode.
Class

TCustomDASOL
Syntax
property ChangeCursor: boolean;

Remarks

Set the ChangeCursor property to False to prevent the screen cursor from changing to crSQLArrow when
executing commands in the NonBlocking mode. The default value is True.

© 1997-2012 Devart. All Rights Reserved.

Used to specify a connection object to use to connect to a data store.
Class

TCustomDASQL
Syntax
property Connection: TCustomDAConnection;

Remarks

244

Data Access Components for MySQL

Use the Connection property to specify a connection object that will be used to connect to a data store.
Set at design-time by selecting from the list of provided TCustomDAConnection or its descendant class
objects.

At runtime, link an instance of a TCustomDAConnection descendant to the Connection property.

© 1997-2012 Devart. All Rights Reserved.

Used to display executing statement, all its parameters' values, and the type of parameters.
Class

TCustomDASOL
Syntax
property Debug: boolean default False;

Remarks

Set the Debug property to True to display executing statement and all its parameters' values. Also
displays the type of parameters.

You should add the MyDacVcl unit to the uses clause of any unit in your project to make the Debug
property work.

Note: To enable debug window you should explicitly include the MyDacVcl (MyDacCIx under Kylix) unit
to your project.

See Also

TCustomDADataSet.Debug

© 1997-2012 Devart. All Rights Reserved.

Used to return a SQL statement with expanded macros.
Class

TCustomDASQL
Syntax
property FinalSQL: string;

Remarks

Read the FinalSQL property to return a SQL statement with expanded macros. This is the exact
statement that will be passed on to the database server.

© 1997-2012 Devart. All Rights Reserved.

Used to get the number of macros associated with the Macros property.
Class

TCustomDASOL
Syntax
property MacroCount: word;

Remarks

Use the MacroCount property to get the number of macros associated with the Macros property.

See Also

Macros

Data Access Components for MySQL 245

© 1997-2012 Devart. All Rights Reserved.

Makes it possible to change SQL queries easily.
Class
TCustomDASQL
Syntax
property Macros: TMacros stored False;

Remarks

With the help of macros you can easily change SQL query text at design- or runtime. Marcos extend
abilities of parameters and allow to change conditions in a WHERE clause or sort order in an ORDER BY
clause. You just insert &MacroName in the SQL query text and change value of macro in the Macro
property editor at design time or call the MacroByName function at run time. At the time of opening the
query macro is replaced by its value.

See Also

TMacro

MacroByName
Params

© 1997-2012 Devart. All Rights Reserved.

Used to specify whether parameters for the Params property are implicitly generated when the SQL
property is being changed.

Class
TCustomDASQL
Syntax
property ParamCheck: boolean default True;

Remarks

Use the ParamCheck property to specify whether parameters for the Params property are implicitly
generated when the SQL property is being changed.

Set ParamCheck to True to let TCustomDASQL generate the Params property for the dataset based on a
SQL statement automatically.

Setting ParamCheck to False can be used if the dataset component passes to a server the DDL
statements that contain, for example, declarations of the stored procedures that will accept
parameterized values themselves. The default value is True.

See Also

Params

© 1997-2012 Devart. All Rights Reserved.

Indicates the number of parameters in the Params property.
Class

TCustomDASQL
Syntax
property ParamCount: word;

Remarks

Use the ParamCount property to determine how many parameters are there in the Params property.

246

Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Used to contain parameters for a SQL statement.
Class
TCustomDASQL
Syntax
property Params: TDAParams stored False;

Remarks

Access the Params property at runtime to view and set parameter names, values, and data types
dynamically (at design-time use the Parameters editor to set parameter properties). Params is a zero-
based array of parameter records. Index specifies the array element to access. An easier way to set and
retrieve parameter values when the name of each parameter is known is to call ParamByName.

Example

Setting parameters at runtime:

procedure TForml.ButtonlClick(Sender: TObject);

begin
with MySQL do
begin
SQL.Clear;

SQL.Add(" INSERT INTO Temp_Table(ld, Name)*®);
SQL.Add("VALUES (:id, :Name)");
ParamByName("1d") .AsInteger := 55;
Params[1] .AsString := " Green";
Execute;

end;

end;

See Also

TDAParam
FindParam
Macros

© 1997-2012 Devart. All Rights Reserved.

Used to get or set the values of individual field parameters that are identified by name.
Class

TCustomDASQL
Syntax

property ParamValues[ParamName: string]: variant; default;
Parameters

ParamName
Holds parameter names separated by semicolon.

Remarks

Use the ParamValues property to get or set the values of individual field parameters that are identified
by name.

Data Access Components for MySQL 247

Setting ParamValues sets the Value property for each parameter listed in the ParamName string. Specify
the values as Variants.

Getting ParamValues retrieves an array of variants, each of which represents the value of one of the
named parameters.

Note: The Params array is generated implicitly if ParamCheck property is set to True. If ParamName
includes a name that does not match any of the parameters in Items, an exception is raised.

© 1997-2012 Devart. All Rights Reserved.

Used to indicate whether a query is prepared for execution.
Class

TCustomDASOL
Syntax
property Prepared: boolean;

Remarks

Check the Prepared property to determine if a query is already prepared for execution. True means that
the query has already been prepared. As a rule prepared queries are executed faster, but the
preparation itself also takes some time. One of the proper cases for using preparation is parametrized
queries that are executed several times.

See Also

Prepare

© 1997-2012 Devart. All Rights Reserved.

Used to indicate the number of rows which were inserted, updated, or deleted during the last query
operation.

Class
TCustomDASQL
Syntax
property RowsAffected: integer;

Remarks

Check RowsAffected to determine how many rows were inserted, updated, or deleted during the last
query operation. If RowsAffected is -1, the query has not inserted, updated, or deleted any rows.

© 1997-2012 Devart. All Rights Reserved.

Used to provide a SQL statement that a TCustomDASQL component executes when the Execute method
is called.

Class
TCustomDASQL
Syntax
property SQL: _TStrings;

Remarks

Use the SQL property to provide a SQL statement that a TCustomDASQL component executes when the
Execute method is called. At design time the SQL property can be edited by invoking the String List
editor in Object Inspector.

See Also

248 Data Access Components for MySQL

FinalSQL
TCustomDASOQL.Execute

© 1997-2012 Devart. All Rights Reserved.

Methods of the TCustomDASQL class.
For a complete list of the TCustomDASQL class members, see the TCustomDASQL Members topic.

Public

Name Description

Execute Overloaded. Executes SQL
commands.

Executing Checks whether TCustomDASQL still
executes a SQL statement.

FindMacro Searches for a macro with the
specified name.

FindParam Finds a parameter with the specified
name.

MacroByName Finds a Macro with the name passed
in Name.

ParamByName Finds a parameter with the specified
name.

Prepare Allocates, opens, and parses cursor
for a query.

UnPrepare Frees the resources allocated for a

previously prepared query on the
server and client sides.

WaitExecuting Waits until TCustomDASQL
executes a SQL statement.

See Also
TCustomDASOQL Class
TCustomDASQL Class Members

© 1997-2012 Devart. All Rights Reserved.

Executes SQL commands.

Class
TCustomDASQL
Overload List
Name Description
Execute Executes SQL commands.
Execute(lters: integer) Is not used in MyDAC.

© 1997-2012 Devart. All Rights Reserved.

Executes SQL commands.
Class
TCustomDASQL
Syntax
procedure Execute; overload; virtual

Remarks

Call the Execute method to execute a SQL statement on the server. If the SQL statement has OUT
parameters, use the TCustomDASQL.ParamByName method or the TCustomDASQL.Params property to

Data Access Components for MySQL 249

get their values. Iters argument is ignored.

© 1997-2012 Devart. All Rights Reserved.
Is not used in MyDAC.

Class
TCustomDASQL

Syntax

procedure Execute(lters: integer); overload; virtual
Parameters

Iters
Is not used in MyDAC.

Remarks
Is not used in MyDAC.

© 1997-2012 Devart. All Rights Reserved.

Checks whether TCustomDASQL still executes a SQL statement.
Class

TCustomDASQL
Syntax

function Executing: boolean;
Return Value

True, if a SQL statement is still being executed by TCustomDASQL.
Remarks

Check Executing to find out whether TCustomDASQL still executes a SQL statement. Executing method is
used for nonblocking execution.

© 1997-2012 Devart. All Rights Reserved.
Searches for a macro with the specified name.
Class
TCustomDASQL
Syntax

function FindMacro(const Value: string): TMacro;
Parameters

Value
Holds the name of a macro to search for.

Return Value

the TMacro object, if a macro with the specified nhame has been found. If it has not, returns nil.
Remarks

Call the FindMacro method to find a macro with the specified name in a dataset.

See Also

TMacro
Macros

250 Data Access Components for MySQL

MacroByName

© 1997-2012 Devart. All Rights Reserved.

Finds a parameter with the specified name.
Class

TCustomDASOL
Syntax

function FindParam(const Value: string): TDAParam;
Parameters

Value
Holds the parameter name to search for.

Return Value
a TDAParm object, if a parameter with the specified nhame has been found. If it has not, returns nil.

Remarks

Call the FindParam method to find a parameter with the specified name in a dataset.

See Also

ParamByName

© 1997-2012 Devart. All Rights Reserved.

Finds a Macro with the name passed in Name.
Class

TCustomDASQL
Syntax

function MacroByName(const Value: string): TMacro;
Parameters

Value
Holds the name of the Macro to search for.

Return Value
the Macro, if a match was found.

Remarks

Call the MacroByName method to find a Macro with the name passed in Name. If a match was found,
MacroByName returns the Macro. Otherwise, an exception is raised. Use this method rather than a direct
reference to the Items property to avoid depending on the order of the entries.

To locate a parameter by name without raising an exception if the parameter is not found, use the
FindMacro method.

To assign the value of macro use the TMacro.Value property.

See Also
TMacro

Macros
FindMacro

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 251

Finds a parameter with the specified name.
Class

TCustomDASOL
Syntax

function ParamByName(const Value: string): TDAParam;
Parameters

Value
Holds the name of the parameter to search for.

Return Value
a TDAParam object, if a match was found. Otherwise, an exception is raised.

Remarks

Use the ParamByName method to find a parameter with the specified name. If no parameter with the
specified name found, an exception is raised.

Example

MyCommandSQL . Execute;
Editl.Text := MyCommandSQL.ParamsByName("Contact") .AsString;

See Also

EindParam

© 1997-2012 Devart. All Rights Reserved.

Allocates, opens, and parses cursor for a query.
Class

TCustomDASOL
Syntax
procedure Prepare; virtual;

Remarks

Call the Prepare method to allocate, open, and parse cursor for a query. Calling Prepare before
executing a query improves application performance.

The MySQL prepared protocol has certain server restrictions, and its work is not always stable. That is
why it is advisable to perform test before using preparation in production versions of applications.
The UnPrepare method unprepares a query.

Note: When you change the text of a query at runtime, the query is automatically closed and
unprepared.

See Also

Prepared
UnPrepare

© 1997-2012 Devart. All Rights Reserved.

252 Data Access Components for MySQL

Frees the resources allocated for a previously prepared query on the server and client sides.
Class

TCustomDASOL
Syntax
procedure UnPrepare; virtual;

Remarks

Call the UnPrepare method to free resources allocated for a previously prepared query on the server and
client sides.

See Also

Prepare

© 1997-2012 Devart. All Rights Reserved.

Waits until TCustomDASQL executes a SQL statement.
Class

TCustomDASQL
Syntax

function WaitExecuting(TimeOut: integer = 0): boolean;
Parameters

TimeOut
Holds the time in seconds to wait while TCustomDASQL executes the SQL statement. Zero means

infinite time.
Return Value

True, if the execution of a SQL statement was completed in the preset time.

Remarks

Call the WaitExecuting method to wait until TCustomDASQL executes a SQL statement. Use the
WaitExecuting method for nonblocking execution.

See Also

Executing

© 1997-2012 Devart. All Rights Reserved.

Events of the TCustomDASQL class.
For a complete list of the TCustomDASQL class members, see the TCustomDASQL Members topic.

Public
Name Description
AfterExecute Occurs after a SQL statement has
been executed.
See Also

TCustomDASOQL Class
TCustomDASQL Class Members

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 253

Occurs after a SQL statement has been executed.
Class
TCustomDASQL
Syntax
property AfterExecute: TAfterExecuteEvent;

Remarks

Occurs after a SQL statement has been executed. This event may be used for descendant components
which use multithreaded environment.

See Also

TCustomDASOQL.Execute

© 1997-2012 Devart. All Rights Reserved.

17.10.1.7 DBAccess.TCustomDAUpdateSQL Class
A base class for components that provide DML statements for more flexible control over data
modifications.
For a list of all members of this type, see TCustomDAUpdateSOL members.

Unit
DBAccess

Syntax
TCustomDAUpdateSQL = class(TComponent);

Remarks

TCustomDAUpdateSQL is a base class for components that provide DML statements for more flexible
control over data modifications. Besides providing BDE compatibility, this component allows to associate
a separate component for each update command.

Inheritance Hierarchy

TObject
TCustomDAUpdateSQL

See Also

P:Devart.MyDac.TCustomMyDataSet.UpdateObject

© 1997-2012 Devart. All Rights Reserved.

TCustomDAUpdateSQL class overview.

Properties

Name Description

DataSet Used to hold a reference to the
TCustomDADataSet object that is
being updated.

DeleteObject Provides ability to perform
advanced adjustment of the delete
operations.

DeleteSOL Used when deleting a record.

InsertObject Provides ability to perform
advanced adjustment of insert
operations.

InsertSQL Used when inserting a record.

254

Data Access Components for MySQL

LockObiject

LockSQL
ModifyObject

ModifySQL
RefreshObject

RefreshSQL

SOL

Methods

Name
Apply

ExecSQL

Provides ability to perform
advanced adjustment of lock
operations.

Used to lock the current record.

Provides ability to perform
advanced adjustment of modify
operations.

Used when updating a record.

Provides ability to perform
advanced adjustment of refresh
operations.

Used to specify an SQL statement
that will be used for refreshing the
current record by
TCustomDADataSet.RefreshRecord
procedure.

Used to return a SQL statement for
one of the ModifySQL, InsertSQL, or
DeleteSQL properties.

Description

Sets parameters for a SQL
statement and executes it to update
a record.

Executes a SQL statement.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TCustomDAUpdateSQL class.

For a complete list of the TCustomDAUpdateSQL class members, see the TCustomDAUpdateSQL

Members topic.
Public

Name
DataSet

SOL

Published

Name
DeleteObject

DeleteSQL
InsertObject

InsertSQL
LockObject

LockSQL
ModifyObject

Description

Used to hold a reference to the
TCustomDADataSet object that is
being updated.

Used to return a SQL statement for
one of the ModifySQL, InsertSQL, or
DeleteSQL properties.

Description

Provides ability to perform
advanced adjustment of the delete
operations.

Used when deleting a record.
Provides ability to perform
advanced adjustment of insert
operations.

Used when inserting a record.
Provides ability to perform
advanced adjustment of lock
operations.

Used to lock the current record.
Provides ability to perform
advanced adjustment of modify
operations.

Data Access Components for MySQL 255

ModifySOL Used when updating a record.

RefreshObiject Provides ability to perform
advanced adjustment of refresh
operations.

RefreshSOQL Used to specify an SQL statement

that will be used for refreshing the
current record by
TCustomDADataSet.RefreshRecord
procedure.

See Also
TCustomDAUpdateSQL Class
TCustomDAUpdateSQL Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to hold a reference to the TCustomDADataSet object that is being updated.

Class
TCustomDAUpdateSQL
Syntax
property DataSet: TCustomDADataSet;
Remarks

The DataSet property holds a reference to the TCustomDADataSet object that is being updated.
Generally it is not used directly.

© 1997-2012 Devart. All Rights Reserved.

Provides ability to perform advanced adjustment of the delete operations.
Class

TCustomDAUpdateSQL
Syntax
property DeleteObject: TComponent;

Remarks

Assign SQL component or a TCustomMyDataSet descendant to this property to perform advanced
adjustment of the delete operations. In some cases this can give some additional performance. Use the
same principle to set the SQL property of an object as for setting the DeleteSQL property.

See Also

DeleteSQL

© 1997-2012 Devart. All Rights Reserved.

Used when deleting a record.
Class
TCustomDAUpdateSQL
Syntax
property DeleteSQL: _TStrings;

Remarks

Set the DeleteSQL property to a DELETE statement to use when deleting a record. Statements can be

256

Data Access Components for MySQL

parameterized queries with parameter names corresponding to the dataset field names.

© 1997-2012 Devart. All Rights Reserved.

Provides ability to perform advanced adjustment of insert operations.
Class

TCustomDAUpdateSQL
Syntax
property InsertObject: TComponent;

Remarks

Assign SQL component or TCustomMyDataSet descendant to this property to perform advanced
adjustment of insert operations. In some cases this can give some additional performance. Set the SQL
property of the object in the same way as used for the InsertSQL property.

See Also

InsertSOL

© 1997-2012 Devart. All Rights Reserved.

Used when inserting a record.
Class
TCustomDAUpdateSQL
Syntax
property InsertSQL: _TStrings;

Remarks

Set the InsertSQL property to an INSERT INTO statement to use when inserting a record. Statements
can be parameterized queries with parameter names corresponding to the dataset field names.

© 1997-2012 Devart. All Rights Reserved.

Provides ability to perform advanced adjustment of lock operations.
Class

TCustomDAUpdateSQL
Syntax
property LockObject: TComponent;

Remarks

Assign a SQL component or TCustomMyDataSet descendant to this property to perform advanced
adjustment of lock operations. In some cases that can give some additional performance. Set the SQL
property of an object in the same way as used for the LockSQL property.

See Also

LockSQL

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 257

Used to lock the current record.

Class
TCustomDAUpdateSQL
Syntax
property LockSQL: _TStrings;
Remarks

Use the LockSQL property to lock the current record. Statements can be parameterized queries with
parameter names corresponding to the dataset field names.

© 1997-2012 Devart. All Rights Reserved.

Provides ability to perform advanced adjustment of modify operations.
Class

TCustomDAUpdateSQL
Syntax
property ModifyObject: TComponent;

Remarks

Assign a SQL component or TCustomMyDataSet descendant to this property to perform advanced
adjustment of modify operations. In some cases this can give some additional performance. Set the SQL
property of the object in the same way as used for the ModifySQL property.

See Also

ModifySOL

© 1997-2012 Devart. All Rights Reserved.

Used when updating a record.
Class
TCustomDAUpdateSQL
Syntax
property ModifySQL: _TStrings;

Remarks

Set ModifySQL to an UPDATE statement to use when updating a record. Statements can be
parameterized queries with parameter names corresponding to the dataset field names.

© 1997-2012 Devart. All Rights Reserved.

Provides ability to perform advanced adjustment of refresh operations.
Class

TCustomDAUpdateSQL
Syntax
property RefreshObject: TComponent;

Remarks

Assign a SQL component or TCustomMyDataSet descendant to this property to perform advanced
adjustment of refresh operations. In some cases that can give some additional performance. Set the
SQL property of the object in the same way as used for the RefreshSQL property.

258

Data Access Components for MySQL

See Also

RefreshSQL

© 1997-2012 Devart. All Rights Reserved.

Used to specify an SQL statement that will be used for refreshing the current record by
TCustomDADataSet.RefreshRecord procedure.

Class
TCustomDAUpdateSQL
Syntax
property RefreshSQL: _TStrings;

Remarks

Use the RefreshSQL property to specify a SQL statement that will be used for refreshing the current
record by the TCustomDADataSet.RefreshRecord procedure.

You can assign to SQLRefresh a WHERE clause only. In such a case it is added to SELECT defined by the
SQL property by TCustomDADataSet.AddWhere.

To create a RefreshSQL statement at design time, use the query statements editor.

See Also

TCustomDADataSet.RefreshRecord

© 1997-2012 Devart. All Rights Reserved.
Used to return a SQL statement for one of the ModifySQL, InsertSQL, or DeleteSQL properties.
Class
TCustomDAUpdateSQL
Syntax
property SQL[UpdateKind: TUpdateKind]: _TStrings;

Parameters

UpdateKind
Specifies which of update SQL statements to return.

Remarks

Returns a SQL statement for one of the ModifySQL, InsertSQL, or DeleteSQL properties, depending on
the value of the UpdateKind index.

© 1997-2012 Devart. All Rights Reserved.

Methods of the TCustomDAUpdateSQL class.
For a complete list of the TCustomDAUpdateSQL class members, see the TCustomDAUpdateSOL

Members topic.

Public
Name Description
Apply Sets parameters for a SQL
statement and executes it to update
a record.
ExecSOL Executes a SQL statement.

See Also

Data Access Components for MySQL 259

TCustomDAUpdateSQL Class
TCustomDAUpdateSQL Class Members

© 1997-2012 Devart. All Rights Reserved.

Sets parameters for a SQL statement and executes it to update a record.
Class

TCustomDAUpdateSQL
Syntax
procedure Apply(UpdateKind: TUpdateKind); virtual;

Parameters

UpdateKind
Specifies which of update SQL statements to execute.

Remarks

Call the Apply method to set parameters for a SQL statement and execute it to update a record.
UpdateKind indicates which SQL statement to bind and execute.

Apply is primarily intended for manually executing update statements from an OnUpdateRecord event
handler.

Note: If a SQL statement does not contain parameters, it is more efficient to call ExecSQL instead of

Apply.

See Also

ExecSOL

© 1997-2012 Devart. All Rights Reserved.

Executes a SQL statement.
Class
TCustomDAUpdateSQL
Syntax
procedure ExecSQL(UpdateKind: TUpdateKind);

Parameters

UpdateKind
Specifies the kind of update statement to be executed.

Remarks

Call the ExecSQL method to execute a SQL statement, necessary for updating the records belonging to a

read-only result set when cached updates is enabled. UpdateKind specifies the statement to execute.
ExecSQL is primarily intended for manually executing update statements from the OnUpdateRecord
event handler.

Note: To both bind parameters and execute a statement, call Apply.

See Also

Apply

© 1997-2012 Devart. All Rights Reserved.

260 Data Access Components for MySQL

17.10.1.8 DBAccess.TDAConnectionOptions Class
This class allows setting up the behaviour of the TDAConnection class.
For a list of all members of this type, see TDAConnectionOptions members.

Unit
DBAccess

Syntax
TDAConnectionOptions = class(TPersistent);

Inheritance Hierarchy

TObject
TDAConnectionOptions

© 1997-2012 Devart. All Rights Reserved.

TDAConnectionOptions class overview.

Properties

Name Description

DefaultSortType Used to determine the default type
of local sorting for string fields. It is
used when a sort type is not
specified explicitly after the field
name in the TMemDataSet.
IndexFieldNames property of a
dataset.

DisconnectedMode Used to open a connection only

when needed for performing a
server call and closes after
performing the operation.

KeepDesignConnected Used to prevent an application from
establishing a connection at the
time of startup.

LocalFailover If True, the TCustomDAConnection.
OnConnectionLost event occurs and
a failover operation can be
performed after connection breaks.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDAConnectionOptions class.
For a complete list of the TDAConnectionOptions class members, see the TDAConnectionOptions
Members topic.

Public

Name Description

DefaultSortType Used to determine the default type
of local sorting for string fields. It is
used when a sort type is not
specified explicitly after the field
name in the TMemDataSet.
IndexFieldNames property of a
dataset.

DisconnectedMode Used to open a connection only

when needed for performing a
server call and closes after
performing the operation.

KeepDesignConnected Used to prevent an application from
establishing a connection at the
time of startup.

Data Access Components for MySQL 261

LocalFailover If True, the TCustomDAConnection.
OnConnectionLost event occurs and
a failover operation can be
performed after connection breaks.

See Also
TDAConnectionOptions Class
TDAConnectionOptions Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to determine the default type of local sorting for string fields. It is used when a sort type is not
specified explicitly after the field name in the TMemDataSet.IndexFieldNames property of a dataset.

Class
TDAConnectionOptions

Syntax
property DefaultSortType: TSortType default stCaseSensitive;

Remarks

Use the DefaultSortType property to determine the default type of local sorting for string fields. It is
used when a sort type is not specified explicitly after the field name in the TMemDataSet.
IndexFieldNames property of a dataset.

© 1997-2012 Devart. All Rights Reserved.

Used to open a connection only when needed for performing a server call and closes after performing
the operation.

Class
TDAConnectionOptions

Syntax
property DisconnectedMode: boolean default False;

Remarks

If True, connection opens only when needed for performing a server call and closes after performing the
operation. Datasets remain opened when connection closes. May be useful to save server resources and
operate in unstable or expensive network. Drawback of using disconnect mode is that each connection
establishing requires some time for authorization. If connection is often closed and opened it can slow
down the application work. See the Disconnected Mode topic for more information.

© 1997-2012 Devart. All Rights Reserved.

Used to prevent an application from establishing a connection at the time of startup.
Class
TDAConnectionOptions

Syntax
property KeepDesignConnected: boolean default True;

Remarks

At the time of startup prevents application from establishing a connection even if the Connected property
was set to True at design-time. Set KeepDesignConnected to False to initialize the connected property to
False, even if it was True at design-time.

© 1997-2012 Devart. All Rights Reserved.

262 Data Access Components for MySQL

If True, the TCustomDAConnection.OnConnectionLost event occurs and a failover operation can be
performed after connection breaks.

Class
TDAConnectionOptions

Syntax
property LocalFailover: boolean default False;

Remarks

If True, the TCustomDAConnection.OnConnectionLost event occurs and a failover operation can be
performed after connection breaks. Read the Working in an Unstable Network topic for more information
about using failover.

© 1997-2012 Devart. All Rights Reserved.

17.10.1.9 DBAccess.TDADataSetOptions Class
This class allows setting up the behaviour of the TDADataSet class.
For a list of all members of this type, see TDADataSetOptions members.

Unit
DBAccess

Syntax
TDADataSetOptions = class(TPersistent);

Inheritance Hierarchy

TObject
TDADataSetOptions

© 1997-2012 Devart. All Rights Reserved.

TDADataSetOptions class overview.

Properties

Name Description
AutoPrepare Used to execute automatic

TCustomDADataSet.Prepare on the
query execution.

CachecCalcFields Used to enable caching of the
TField.Calculated and TField.Lookup
fields.

DefaultValues Used to request default values/

expressions from the server and
assign them to the
DefaultExpression property.

DetailDelay Used to get or set a delay in
milliseconds before refreshing detail
dataset while navigating master
dataset.

FieldsOrigin Used for TCustomDADataSet to fill
the Origin property of the TField
objects by appropriate value when
opening a dataset.

FlatBuffers Used to control how a dataset
treats data of the ftString and
ftvarBytes fields.

LocalMasterDetail Used for TCustomDADataSet to use
local filtering to establish master/
detail relationship for detail dataset
and does not refer to the server.

Data Access Components for MySQL 263

LongStrings

NumberRange

QueryRecCount

QuoteNames

RemoveOnRefresh

RequiredFields

ReturnParams

SetFieldsReadOnly

StrictUpdate

UpdateAllFields

UpdateBatchSize

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDADataSetOptions class.

Used to represent string fields with
the length that is greater than 255
as TStringField.

Used to set the MaxValue and
MinValue properties of TIntegerField
and TFloatField to appropriate
values.

Used for TCustomDADataSet to
perform additional query to get the
record count for this SELECT, so the
RecordCount property reflects the
actual number of records.

Used for TCustomDADataSet to
quote all database object names in
autogenerated SQL statements such
as update SQL.

Used for a dataset to locally remove
a record that can not be found on
the server.

Used for TCustomDADataSet to set
the Required property of the TField
objects for the NOT NULL fields.

Used to return the new value of
fields to dataset after insert or
update.

Used for a dataset to set the
ReadOnly property to True for all
fields that do not belong to
UpdatingTable or can not be
updated.

Used for TCustomDADataSet to
raise an exception when the
number of updated or deleted
records is not equal 1.

Used to include all dataset fields in
the generated UPDATE and INSERT
statements.

Used to get or set a value that
enables or disables batch
processing support, and specifies
the number of commands that can
be executed in a batch.

For a complete list of the TDADataSetOptions class members, see the TDADataSetOptions Members

topic.
Public

Name
AutoPrepare

CacheCalcFields

DefaultValues

Description

Used to execute automatic
TCustomDADataSet.Prepare on the
query execution.

Used to enable caching of the
TField.Calculated and TField.Lookup
fields.

Used to request default values/
expressions from the server and
assign them to the
DefaultExpression property.

264

Data Access Components for MySQL

DetailDelay

FieldsOrigin

FlatBuffers

LocalMasterDetail

LongStrings

NumberRange

QueryRecCount

QuoteNames

RemoveOnRefresh

RequiredFields

ReturnParams

SetFieldsReadOnly

StrictUpdate

UpdateAllFields

UpdateBatchSize

See Also

TDADataSetOptions Class
TDADataSetOptions Class Members

Used to get or set a delay in
milliseconds before refreshing detail
dataset while navigating master
dataset.

Used for TCustomDADataSet to fill
the Origin property of the TField
objects by appropriate value when
opening a dataset.

Used to control how a dataset
treats data of the ftString and
ftvarBytes fields.

Used for TCustomDADataSet to use
local filtering to establish master/
detail relationship for detail dataset
and does not refer to the server.

Used to represent string fields with
the length that is greater than 255
as TStringField.

Used to set the MaxValue and
MinValue properties of TIntegerField
and TFloatField to appropriate
values.

Used for TCustomDADataSet to
perform additional query to get the
record count for this SELECT, so the
RecordCount property reflects the
actual number of records.

Used for TCustomDADataSet to
quote all database object names in
autogenerated SQL statements such
as update SQL.

Used for a dataset to locally remove
a record that can not be found on
the server.

Used for TCustomDADataSet to set
the Required property of the TField
objects for the NOT NULL fields.

Used to return the new value of
fields to dataset after insert or
update.

Used for a dataset to set the
ReadOnly property to True for all
fields that do not belong to
UpdatingTable or can not be
updated.

Used for TCustomDADataSet to
raise an exception when the
number of updated or deleted
records is not equal 1.

Used to include all dataset fields in
the generated UPDATE and INSERT
statements.

Used to get or set a value that
enables or disables batch
processing support, and specifies
the number of commands that can
be executed in a batch.

Data Access Components for MySQL 265

© 1997-2012 Devart. All Rights Reserved.

Used to execute automatic TCustomDADataSet.Prepare on the query execution.

Class
TDADataSetOptions
Syntax
property AutoPrepare: boolean default False;

Remarks

Use the AutoPrepare property to execute automatic TCustomDADataSet.Prepare on the query execution.
Makes sense for cases when a query will be executed several times, for example, in Master/Detail
relationships.

© 1997-2012 Devart. All Rights Reserved.

Used to enable caching of the TField.Calculated and TField.Lookup fields.
Class

TDADataSetOptions
Syntax
property CacheCalcFields: boolean default False;

Remarks

Use the CacheCalcFields property to enable caching of the TField.Calculated and TField.Lookup fields. It
can be useful for reducing CPU usage for calculated fields. Using caching of calculated and lookup fields
increases memory usage on the client side.

© 1997-2012 Devart. All Rights Reserved.

Used to request default values/expressions from the server and assign them to the DefaultExpression
property.

Class
TDADataSetOptions
Syntax
property DefaultValues: boolean default False;

Remarks

If True, the default values/expressions are requested from the server and assigned to the
DefaultExpression property of TField objects replacing already existent values.

© 1997-2012 Devart. All Rights Reserved.

Used to get or set a delay in milliseconds before refreshing detail dataset while navigating master
dataset.

Class
TDADataSetOptions
Syntax
property DetailDelay: integer default O;

Remarks

Use the DetailDelay property to get or set a delay in milliseconds before refreshing detail dataset while
navigating master dataset. If DetailDelay is O (the default value) then refreshing of detail dataset occurs

266

Data Access Components for MySQL

immediately. The DetailDelay option should be used for detail dataset.

© 1997-2012 Devart. All Rights Reserved.

Used for TCustomDADataSet to fill the Origin property of the TField objects by appropriate value when
opening a dataset.

Class
TDADataSetOptions
Syntax
property FieldsOrigin: boolean default False;

Remarks
If True, TCustomDADataSet fills the Origin property of the TField objects by appropriate value when

opening a dataset.
© 1997-2012 Devart. All Rights Reserved.
Used to control how a dataset treats data of the ftString and ftVarBytes fields.
Class
TDADataSetOptions
Syntax
property FlatBuffers: boolean default False;

Remarks

Use the FlatBuffers property to control how a dataset treats data of the ftString and ftVarBytes fields.
When set to True, all data fetched from the server is stored in record pdata without unused tails.

© 1997-2012 Devart. All Rights Reserved.

Used for TCustomDADataSet to use local filtering to establish master/detail relationship for detail dataset

and does not refer to the server.
Class
TDADataSetOptions

Syntax
property LocalMasterDetail: boolean default False;

Remarks

If True, for detail dataset in master-detail relationship TCustomDADataSet uses local filtering for
establishing master/detail relationship and does not refer to the server. Otherwise detail dataset

performs query each time a record is selected in master dataset. This option is useful for reducing server

calls number, server resources economy. It can be useful for slow connection. The TMemDataSet.
CachedUpdates mode can be used for detail dataset only when this option is set to true. Setting the

LocalMasterDetail option to True is hot recommended when detail table contains too many rows, because
when it is set to False, only records that correspond to the current record in master dataset are fetched.

© 1997-2012 Devart. All Rights Reserved.
Used to represent string fields with the length that is greater than 255 as TStringField.

Class
TDADataSetOptions

Syntax

Data Access Components for MySQL 267

property LongStrings: boolean default True;

Remarks

Use the LongStrings property to represent string fields with the length that is greater than 255 as
TStringField, not as TMemoField.

© 1997-2012 Devart. All Rights Reserved.
Used to set the MaxValue and MinValue properties of TIntegerField and TFloatField to appropriate values.
Class
TDADataSetOptions
Syntax
property NumberRange: boolean default False;

Remarks

Use the NumberRange property to set the MaxValue and MinValue properties of TIntegerField and
TFloatField to appropriate values.

© 1997-2012 Devart. All Rights Reserved.

Used for TCustomDADataSet to perform additional query to get the record count for this SELECT, so the
RecordCount property reflects the actual number of records.

Class
TDADataSetOptions
Syntax
property QueryRecCount: boolean default False;

Remarks

If True, and the TCustomMyDataSet.FetchAll property is False, TCustomDADataSet performs additional
query to get the record count for this SELECT, so the RecordCount property reflects the actual number
of records. Does not have any effect if the FetchAll property is True.

© 1997-2012 Devart. All Rights Reserved.

Used for TCustomDADataSet to quote all database object names in autogenerated SQL statements such
as update SQL.

Class
TDADataSetOptions
Syntax
property QuoteNames: boolean default False;

Remarks

If True, TCustomDADataSet quotes all database object names in autogenerated SQL statements such as
update SQL.

© 1997-2012 Devart. All Rights Reserved.

Used for a dataset to locally remove a record that can not be found on the server.
Class
TDADataSetOptions

Syntax

268

Data Access Components for MySQL

property RemoveOnRefresh: boolean default True;

Remarks

When the RefreshRecord procedure can't find necessary record on the server and RemoveOnRefresh is
set to True, dataset removes the record locally. Usually RefreshRecord can't find necessary record when
someone else dropped the record or changed the key value of it.

This option makes sense only if the StrictUpdate option is set to False. If the StrictUpdate option is True,
error will be generated regardless of the RemoveOnRefresh option value.

© 1997-2012 Devart. All Rights Reserved.
Used for TCustomDADataSet to set the Required property of the TField objects for the NOT NULL fields.
Class
TDADataSetOptions
Syntax
property RequiredFields: boolean default True;

Remarks

If True, TCustomDADataSet sets the Required property of the TField objects for the NOT NULL fields. It
is useful when table has a trigger which updates the NOT NULL fields.

© 1997-2012 Devart. All Rights Reserved.

Used to return the new value of fields to dataset after insert or update.
Class

TDADataSetOptions
Syntax
property ReturnParams: boolean default False;

Remarks

Use the ReturnParams property to return the new value of fields to dataset after insert or update. The
actual value of field after insert or update may be different from the value stored in the local memory if
the table has a trigger. When ReturnParams is True, OUT parameters of the SQLInsert and SQLUpdate
statements is assigned to the corresponding fields.

© 1997-2012 Devart. All Rights Reserved.

Used for a dataset to set the ReadOnly property to True for all fields that do not belong to UpdatingTable
or can not be updated.

Class
TDADataSetOptions
Syntax
property SetFieldsReadOnly: boolean default True;

Remarks

If True, dataset sets the ReadOnly property to True for all fields that do not belong to UpdatingTable or
can not be updated. Set this option for datasets that use automatic generation of the update SQL
statements only.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 269

Used for TCustomDADataSet to raise an exception when the number of updated or deleted records is not
equal 1.

Class
TDADataSetOptions
Syntax
property StrictUpdate: boolean default True;

Remarks

If True, TCustomDADataSet raises an exception when the number of updated or deleted records is not
equal 1. Setting this option also causes the exception if the RefreshRecord procedure returns more than
one record. The exception does not occur when you execute SQL query, that doesn't return resultset.
Note: There can be problems if this option is set to True and triggers for UPDATE, DELETE, REFRESH
commands that are defined for the table. So it is recommended to disable (set to False) this option with

triggers.
© 1997-2012 Devart. All Rights Reserved.
Used to include all dataset fields in the generated UPDATE and INSERT statements.

Class
TDADataSetOptions

Syntax
property UpdateAllFields: boolean default False;

Remarks

If True, all dataset fields will be included in the generated UPDATE and INSERT statements. Unspecified
fields will have NULL value in the INSERT statements. Otherwise, only updated fields will be included to
the generated update statements.

© 1997-2012 Devart. All Rights Reserved.

Used to get or set a value that enables or disables batch processing support, and specifies the number of
commands that can be executed in a batch.

Class
TDADataSetOptions
Syntax
property UpdateBatchSize: Integer default 1;

Remarks

Use the UpdateBatchSize property to get or set a value that enables or disables batch processing
support, and specifies the number of commands that can be executed in a batch. Takes effect only when
updating dataset in the TMemDataSet.CachedUpdates mode. The default value is 1.

© 1997-2012 Devart. All Rights Reserved.

17.10.1.10 DBAccess.TDAEnNcryptionOptions Class
Used to specify the options of the data encryption in a dataset.
For a list of all members of this type, see TDAEncryptionOptions members.

uUnit
DBAccess

Syntax
TDAEncryptionOptions = class(TPersistent);

Remarks

270

Data Access Components for MySQL

Set the properties of Encryption to specify the options of the data encryption in a dataset.

Inheritance Hierarchy

TObject
TDAEnNcryptionOptions

© 1997-2012 Devart. All Rights Reserved.

TDAEnNncryptionOptions class overview.

Properties

Name Description

Encryptor Used to specify the encryptor class
that will perform the data
encryption.

Fields Used to set field names for which

encryption will be performed.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDAEncryptionOptions class.
For a complete list of the TDAENncryptionOptions class members, see the TDAEncryptionOptions
Members topic.

Public
Name Description
Encryptor Used to specify the encryptor class
that will perform the data
encryption.
Published
Name Description
Fields Used to set field names for which
encryption will be performed.
See Also

TDAEnNcryptionOptions Class
TDAEnNcryptionOptions Class Members

© 1997-2012 Devart. All Rights Reserved.

Used to specify the encryptor class that will perform the data encryption.
Class
TDAEncryptionOptions

Syntax
property Encryptor: TCREncryptor;

Remarks
Use the Encryptor property to specify the encryptor class that will perform the data encryption.

© 1997-2012 Devart. All Rights Reserved.

Used to set field names for which encryption will be performed.
Class
TDAEncryptionOptions

Syntax

Data Access Components for MySQL 271

property Fields: string;

Remarks

Used to set field names for which encryption will be performed. Field nhames must be separated by

semicolons.

© 1997-2012 Devart. All Rights Reserved.

17.10.1.11 DBAccess.TDAMapRule Class

Class that formes rules for Data Type Mapping.

For a list of all members of this type, see TDAMapRule members.

Unit
DBAccess
Syntax

TDAMapRule = class(IMapRule);

Remarks

Using properties of this class, it is possible to change parameter values of the specified rules from the

TDAMapRules set.

Inheritance Hierarchy

TObject

TMapRule
TDAMapRule

© 1997-2012 Devart. All Rights Reserved.

TDAMapRule class overview.

Properties

Name
DBLengthMax

DBLengthMin

DBScaleMax

DBScaleMin

DBType

FieldLength
FieldName

FieldScale
FieldType

lgnoreErrors

Description

Maximum DB field length, until
which the rule is applied.

Minimum DB field length, starting
from which the rule is applied.
Maximum DB field scale, until which
the rule is applied to the specified
DB field.

Minimum DB field Scale, starting
from which the rule is applied to the
specified DB field.

DB field type, that the rule is
applied to.

The resultant field length in Delphi.
DataSet field name, for which the
rule is applied.

The resultant field Scale in Delphi.
Delphi field type, that the specified
DB type or DataSet field will be
mapped to.

Ignoring errors when converting
data from DB to Delphi type.

© 1997-2012 Devart. All Rights Reserved.

272

Data Access Components for MySQL

Properties of the TDAMapRule class.
For a complete list of the TDAMapRule class members, see the TDAMapRule Members topic.

Published

Name Description

DBLengthMax Maximum DB field length, until
which the rule is applied.

DBLengthMin Minimum DB field length, starting
from which the rule is applied.

DBScaleMax Maximum DB field scale, until which
the rule is applied to the specified
DB field.

DBScaleMin Minimum DB field Scale, starting

from which the rule is applied to the
specified DB field.

DBType DB field type, that the rule is
applied to.

FieldLength The resultant field length in Delphi.

FieldName DataSet field name, for which the
rule is applied.

FieldScale The resultant field Scale in Delphi.

FieldType Delphi field type, that the specified
DB type or DataSet field will be
mapped to.

lgnoreErrors Ignoring errors when converting

data from DB to Delphi type.

See Also
TDAMapRule Class
TDAMapRule Class Members

© 1997-2012 Devart. All Rights Reserved.
Maximum DB field length, until which the rule is applied.
Class
TDAMapRule
Syntax
property DBLengthMax: Integer default rlAny;

Remarks
Setting maximum DB field length, until which the rule is applied to the specified DB field.

© 1997-2012 Devart. All Rights Reserved.

Minimum DB field length, starting from which the rule is applied.
Class

TDAMapRule
Syntax
property DBLengthMin: Integer default rlAny;

Remarks
Setting minimum DB field length, starting from which the rule is applied to the specified DB field.

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 273

Maximum DB field scale, until which the rule is applied to the specified DB field.
Class

TDAMapRule
Syntax
property DBScaleMax: Integer default rlAny;
Remarks

Setting maximum DB field scale, until which the rule is applied to the specified DB field.

© 1997-2012 Devart. All Rights Reserved.
Minimum DB field Scale, starting from which the rule is applied to the specified DB field.
Class
TDAMapRule
Syntax
property DBScaleMin: Integer default rlAny;

Remarks

Setting minimum DB field Scale, starting from which the rule is applied to the specified DB field.

© 1997-2012 Devart. All Rights Reserved.

DB field type, that the rule is applied to.
Class
TDAMapRule
Syntax
property DBType: Word default dtUnknown;
Remarks

Setting DB field type, that the rule is applied to. If the current rule is set for Connection, the rule will be
applied to all fields of the specified type in all DataSets related to this Connection.

© 1997-2012 Devart. All Rights Reserved.
The resultant field length in Delphi.
Class
TDAMapRule
Syntax
property FieldLength: Integer default rlAny;

Remarks

Setting the Delphi field length after conversion.

© 1997-2012 Devart. All Rights Reserved.
DataSet field name, for which the rule is applied.
Class

TDAMapRule
Syntax

274 Data Access Components for MySQL

property FieldName: string;

Remarks

Specifies the DataSet field name, that the rule is applied to. If the current rule is set for Connection, the
rule will be applied to all fields with such name in DataSets related to this Connection.

© 1997-2012 Devart. All Rights Reserved.

The resultant field Scale in Delphi.
Class
TDAMapRule
Syntax
property FieldScale: Integer default rlAny;
Remarks

Setting the Delphi field Scale after conversion.

© 1997-2012 Devart. All Rights Reserved.

Delphi field type, that the specified DB type or DataSet field will be mapped to.
Class

TDAMapRule
Syntax
property FieldType: TFieldType default ftUnknown;

Remarks
Setting Delphi field type, that the specified DB type or DataSet field will be mapped to.

© 1997-2012 Devart. All Rights Reserved.

Ignoring errors when converting data from DB to Delphi type.
Class
TDAMapRule
Syntax
property lIgnoreErrors: Boolean default False;
Remarks

Allows to ignore errors while data conversion in case if data or DB data format cannot be recorded to the
specified Delphi field type. The default value is false.

© 1997-2012 Devart. All Rights Reserved.

17.10.1.12 DBAccess.TDAMapRules Class
Used for adding rules for DataSet fields mapping with both identifying by field name and by field type
and Delphi field types.
For a list of all members of this type, see TDAMapRules members.

Unit
DBAccess
Syntax
TDAMapRules = class(TMapRules);

Data Access Components for MySQL 275

Inheritance Hierarchy

TObject
TMapRules
TDAMapRules

© 1997-2012 Devart. All Rights Reserved.

TDAMapRules class overview.

Methods
Name Description
AddDBTypeRule Overloaded. Adding rules for

mapping Database field types to
Delphi field types.

AddFieldNameRule Overloaded. Adding rules for
mapping named fields to Delphi
field types and setting resultant
length and scale for Delphi fields

AddRule A unified method of adding rules for
mapping a DataSet named field or
DB field type with the specified
length and scale to a field type with
the specified length and scale in
Delphi.

© 1997-2012 Devart. All Rights Reserved.

Methods of the TDAMapRules class.
For a complete list of the TDAMapRules class members, see the TDAMapRules Members topic.

Public

Name Description
AddDBTypeRule Overloaded. Adding rules for

mapping Database field types to
Delphi field types.

AddFieldNameRule Overloaded. Adding rules for
mapping named fields to Delphi
field types and setting resultant
length and scale for Delphi fields

AddRule A unified method of adding rules for
mapping a DataSet named field or
DB field type with the specified
length and scale to a field type with
the specified length and scale in
Delphi.

See Also
TDAMapRules Class
TDAMapRules Class Members

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types.
Class
TDAMapRules

Overload List

Name Description

276

Data Access Components for MySQL

AddDBTypeRule(DBType: Word; FieldType:
TFieldType; lgnoreErrors: boolean)

AddDBTypeRule(DBType: Word; FieldType:

TFieldType; FieldLength: Integer; lgnoreErrors:

boolean)

AddDBTypeRule(DBType: Word; FieldType:
TFieldType; FieldLength: Integer; FieldScale:
Integer; IgnoreErrors: boolean)

AddDBTypeRule(DBType: Word; DBLengthMin:

Integer; DBLengthMax: Integer; FieldType:
TFieldType; lgnoreErrors: boolean)

AddDBTypeRule(DBType: Word; DBLengthMin:

Integer; DBLengthMax: Integer; FieldType:

TFieldType: FieldLength: Integer; lgnoreErrors:

boolean)
AddDBTypeRule(DBType: Word; DBLengthMin:

Integer; DBLengthMax: Integer; DBScaleMin:
Integer; DBScaleMax: Integer; FieldType:
TFieldType; lgnoreErrors: boolean)

AddDBTypeRule(DBType: Word; DBLengthMin:

Integer; DBLengthMax: Integer; DBScaleMin:
Integer; DBScaleMax: Integer; FieldType:
TFieldType; FieldLength: Integer; FieldScale:
Integer; IgnoreErrors: boolean)

Adding rules for mapping Database field types to
Delphi field types.

Adding rules for mapping Database field types to
Delphi field types with the specified Delphi field
length.

Adding rules for mapping Database field types to
Delphi field types with the specified resultant
length and scale of Delphi field.

Adding rules for mapping Database field types to
Delphi field types with the specified minimum
and maximum length of DB fields, for which the
specified conversion will be applied.

Adding rules for mapping Database field types to
Delphi field types with the specified minimum
and maximum length of DB fields, for which the
specified conversion will be applied.

Adding rules for mapping Database field types to
Delphi field types with the specified minimum
and maximum length and scale of DB fields, for
which the specified conversion will be applied,
and with setting the resultant Delphi field length.

Adding rules for mapping Database field types to
Delphi field types with the specified minimum
and maximum length and scale of DB fields, for
which the specified conversion will be applied,
and with setting the resultant Delphi field length
and scale.

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types.

Class
TDAMapRules

Syntax

procedure AddDBTypeRule(DBType: Word; FieldType: TFieldType;
IgnoreErrors: boolean = False); overload

Parameters
DBType
DB type

FieldType
Delphi field type

IgnoreErrors

Ignore data conversion errors. Default value is False.

Remarks

This method can be applied to all DB fields and Delphi fields, that support conversion between each

other.

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types with the specified Delphi field length.

Class
TDAMapRules

Syntax

procedure AddDBTypeRule(DBType:

Word; FieldType: TFieldType;

Data Access Components for MySQL 277

FieldLength: Integer; IgnoreErrors: boolean = False); overload
Parameters

DBType
DB type

FieldType
Delphi field type

FieldLength
Delphi field length

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks
This method can be used for retrieving Delphi fields ftString, ftWideString, ftBytes, ftVarBytes.

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types with the specified resultant length
and scale of Delphi field.

Class
TDAMapRules
Syntax

procedure AddDBTypeRule(DBType: Word; FieldType: TFieldType;
FieldLength: Integer; FieldScale: Integer; IgnoreErrors: boolean
= False); overload
Parameters

DBType
DB type

FieldType
Delphi field type

FieldLength
Delphi field length

FieldScale
Delphi field scale

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks
This method can be used for retrieving Delphi fields ftBCD and ftFMTBCD.

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types with the specified minimum and
maximum length of DB fields, for which the specified conversion will be applied.

Class
TDAMapRules
Syntax

procedure AddDBTypeRule(DBType: Word; DBLengthMin: Integer;
DBLengthMax: Integer; FieldType: TFieldType; lIgnoreErrors:
boolean = False); overload
Parameters

DBType

278

Data Access Components for MySQL

DB type

DBLengthMin
Minimum DB field length

DBLengthMax
Maximum DB field length

FieldType
Delphi field type

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks
This method can be applied for all DB text fields.

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types with the specified minimum and
maximum length of DB fields, for which the specified conversion will be applied.

Class
TDAMapRules
Syntax

procedure AddDBTypeRule(DBType: Word; DBLengthMin: Integer;
DBLengthMax: Integer; FieldType: TFieldType; FieldLength:
Integer; IgnoreErrors: boolean = False); overload
Parameters

DBType
DB type

DBLengthMin
Minimum DB field length

DBLengthMax
Maximum DB field length

FieldType
Delphi field type

FieldLength
Delphi field length

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be applied to DB text fields for retrieving Delphi fields ftString, ftWideString, ftBytes,
ftvarBytes.

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types with the specified minimum and
maximum length and scale of DB fields, for which the specified conversion will be applied, and with
setting the resultant Delphi field length.

Class
TDAMapRules
Syntax

procedure AddDBTypeRule(DBType: Word; DBLengthMin: Integer;
DBLengthMax: Integer; DBScaleMin: Integer; DBScaleMax: Integer;

FieldType: TFieldType; lgnoreErrors: boolean = False); overload
Parameters

Data Access Components for MySQL 279

DBType
DB type

DBLengthMin
Minimum DB field length

DBLengthMax
Maximum DB field length

DBScaleMin
Minimum DB field scale

DBScaleMax
Maximum DB field scale

FieldType
Delphi field type

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks
This method can be applied to those DB fields, for which it is possible to set Scale and Length.

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping Database field types to Delphi field types with the specified minimum and
maximum length and scale of DB fields, for which the specified conversion will be applied, and with
setting the resultant Delphi field length and scale.

Class
TDAMapRules

Syntax

procedure AddDBTypeRule(DBType: Word; DBLengthMin: Integer;
DBLengthMax: Integer; DBScaleMin: Integer; DBScaleMax: Integer;
FieldType: TFieldType; FieldLength: Integer; FieldScale:
Integer; IgnoreErrors: boolean = False); overload
Parameters

DBType
DB type

DBLengthMin
Minimum DB field length

DBLengthMax
Maximum DB field length

DBScaleMin
Minimum DB field scale

DBScaleMax
Maximum DB field scale

FieldType
Delphi field type

FieldLength
Delphi field length

FieldScale
Delphi field scale

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

This method can be applied to those DB fields, for which it is possible to set Scale and Length for
retrieving Delphi fields ftBCD, ftFMTBCD.

280 Data Access Components for MySQL

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping named fields to Delphi field types and setting resultant length and scale for
Delphi fields

Class
TDAMapRules

Overload List

Name Description

AddFieldNameRule(FieldName: string; FieldType: Adding rules for mapping named fields to Delphi
TFieldType; lgnoreErrors: Boolean) field types.

AddFieldNameRule(FieldName: string; FieldType: Adding rules for mapping named fields to Delphi
TFieldType; FieldLength: Integer; IgnoreErrors: field types and setting the length for Delphi

Boolean) fields.

AddFieldNameRule(FieldName: string; FieldType: Adding rules for mapping named fields to Delphi
TFieldType; FieldLength: Integer; FieldScale: field types and setting the resultant length and
Integer; lgnoreErrors: Boolean) scale for Delphi fields

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping named fields to Delphi field types.
Class

TDAMapRules
Syntax

procedure AddFieldNameRule(FieldName: string; FieldType:

TFieldType; IgnoreErrors: Boolean = False); overload
Parameters

FieldName
Field name in DataSet

FieldType
Delphi field type

IgnoreErrors
Ignore data conversion errors. Default value is False.
Remarks

This method can be applied to all DataSet field names and Delphi fields. If the DB field type, whose
name is specified in the rule, doesn't support conversion to the specified Delphi type, the Unsupported
Data Type Mapping error will occur when opening DataSet.

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping named fields to Delphi field types and setting the length for Delphi fields.
Class
TDAMapRules

Syntax

procedure AddFieldNameRule(FieldName: string; FieldType:
TFieldType; FieldLength: Integer; lIgnoreErrors: Boolean =
False); overload
Parameters

FieldName
Field name in DataSet

Data Access Components for MySQL 281

FieldType
Delphi field type

FieldLength
Delphi field length

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks
This method can be used for retrieving Delphi fields ftString, ftWideString, ftBytes, ftVarBytes.

© 1997-2012 Devart. All Rights Reserved.

Adding rules for mapping named fields to Delphi field types and setting the resultant length and scale for
Delphi fields

Class
TDAMapRules

Syntax

procedure AddFieldNameRule(FieldName: string; FieldType:
TFieldType; FieldLength: Integer; FieldScale: Integer;
IgnoreErrors: Boolean = False); overload
Parameters

FieldName
Field name in DataSet

FieldType
Delphi field type

FieldLength
Delphi field length

FieldScale
Delphi field scale

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks
This method can be used for retrieving Delphi fields ftBCD and ftFMTBCD.

© 1997-2012 Devart. All Rights Reserved.

A unified method of adding rules for mapping a DataSet named field or DB field type with the specified
length and scale to a field type with the specified length and scale in Delphi.

Class
TDAMapRules

Syntax

procedure AddRule(FieldName: string; DBType: Word; DBLengthMin:
Integer; DBLengthMax: Integer; DBScaleMin: Integer; DBScaleMax:
Integer; FieldType: TFieldType; FieldLength: Integer;
FieldScale: Integer; lIgnoreErrors: boolean = False); overload;

procedure AddRule(Rule: string); overload;
Parameters

FieldName
Field name in DataSet

DBType
DB type

282

Data Access Components for MySQL

DBLengthMin
Minimum DB field length

DBLengthMax
Maximum DB field length

DBScaleMin
Minimum DB field scale

DBScaleMax
Maximum DB field scale

FieldType
Delphi field type

FieldLength
Delphi field length

FieldScale
Delphi field scale

IgnoreErrors
Ignore data conversion errors. Default value is False.

Remarks

One of two parameters requires to be specified: FieldName or DBType. Also, it is required to specify the
FieldType parameter. The other parameters are not required, therefore it is allowed to set the rlAny
constant for them instead of a specific value. If the rlAny constant is set, then the given rule will be
applied for all fields independently on their length and scale.

For example, if it is necessary to set the field length in a database to 20 or more, then DBLengthMin
should be set to 20, and DBLengthMax - to rlAny.

If it is necessary to set scale to 5 or less, then DBScaleMin should be set to rlAny, and DBScaleMax - to
5.

© 1997-2012 Devart. All Rights Reserved.

17.10.1.13 DBAccess. TDAMetaData Class

A class for retrieving metainformation of the specified database objects in the form of dataset.
For a list of all members of this type, see TDAMetaData members.

Unit
DBAccess
Syntax

TDAMetaData = class(TMemDataSet);

Remarks

TDAMetaData is a TDataSet descendant standing for retrieving metainformation of the specified
database objects in the form of dataset. First of all you need to specify which kind of metainformation
you want to see. For this you need to assign the TDAMetaData.MetaDataKind property. Provide one or
more conditions in the TDAMetaData.Restrictions property to diminish the size of the resultset and get
only information you are interested in.

Use the TDAMetaData.GetMetaDataKinds method to get the full list of supported kinds of meta data.
With the TDAMetaData.GetRestrictions method you can find out what restrictions are applicable to the
specified MetaDataKind.

Example
The code below demonstrates how to get information about columns of the 'emp’ table:
MetaData.Connection := Connection;
MetaData.MetaDataKind := "Columns”;
MetaData.Restrictions.Values["TABLE_NAME"] := "Emp~;

MetaData.Open;

Inheritance Hierarchy
TObject

Data Access Components for MySQL

TMemDataSet
TDAMetaData

See Also

TDAMetaData.MetaDataKind
TDAMetaData.Restrictions
TDAMetaData.GetMetaDataKinds
TDAMetaData.GetRestrictions

283

© 1997-2012 Devart. All Rights Reserved.

TDAMetaData class overview.
Properties

Name
CachedUpdates (inherited from TMemDataSet)

Connection
IndexFieldNames (inherited from TMemDataSet)

LocalConstraints (inherited from TMemDataSet)

LocalUpdate (inherited from TMemDataSet)
MetaDataKind
Prepared (inherited from TMemDataSet)

Restrictions

UpdateRecordTypes (inherited from TMemDataSet)

UpdatesPending (inherited from TMemDataSet)

Methods

Name
ApplyUpdates (inherited from TMemDataSet)

CancelUpdates (inherited from TMemDataSet)

CommitUpdates (inherited from TMemDataSet)
DeferredPost (inherited from TMemDataSet)

GetBlob (inherited from TMemDataSet)

Description

Used to enable or disable the use of
cached updates for a dataset.

Used to specify a connection object
to use to connect to a data store.
Used to get or set the list of fields
on which the recordset is sorted.

Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

Used to prevent implicit update of
rows on database server.

Used to specify which kind of
metainformation to show.

Determines whether a query is
prepared for execution or not.
Used to provide one or more
conditions restricting the list of
objects to be described.

Used to indicate the update status
for the current record when cached
updates are enabled.

Used to check the status of the
cached updates buffer.

Description

Overloaded. Writes dataset's
pending cached updates to a
database.

Clears all pending cached updates
from cache and restores dataset in
its prior state.

Clears the cached updates buffer.

Makes permanent changes to the
database server.

Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

284

Data Access Components for MySQL

GetMetaDataKinds

GetRestrictions

Locate (inherited from TMemDataSet)

LocateEx (inherited from TMemDataSet)

Prepare (inherited from TMemDataSet)

RestoreUpdates (inherited from TMemDataSet)

RevertRecord (inherited from TMemDataSet)

SaveToXML (inherited from TMemDataSet)

UnPrepare (inherited from TMemDataSet)

UpdateResult (inherited from TMemDataSet)

UpdateStatus (inherited from TMemDataSet)

Events

Name
OnUpdateError (inherited from TMemDataSet)

OnUpdateRecord (inherited from TMemDataSet)

Used to get values acceptable in the
MetaDataKind property.

Used to find out which restrictions
are applicable to a certain
MetaDataKind.

Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Allocates resources and creates
field components for a dataset.

Marks all records in the cache of
updates as unapplied.

Cancels changes made to the
current record when cached
updates are enabled.

Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

Frees the resources allocated for a
previously prepared query on the
server and client sides.

Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.
Indicates the current update status
for the dataset when cached
updates are enabled.

Description

Occurs when an exception is
generated while cached updates are
applied to a database.

Occurs when a single update
component can not handle the
updates.

© 1997-2012 Devart. All Rights Reserved.

Properties of the TDAMetaData class.

For a complete list of the TDAMetaData class members, see the TDAMetaData Members topic.

Public

Name
ApplyUpdates (inherited from TMemDataSet)

CachedUpdates (inherited from TMemDataSet)

CancelUpdates (inherited from TMemDataSet)

CommitUpdates (inherited from TMemDataSet)
Connection

Description

Overloaded. Writes dataset's
pending cached updates to a
database.

Used to enable or disable the use of
cached updates for a dataset.
Clears all pending cached updates
from cache and restores dataset in
its prior state.

Clears the cached updates buffer.
Used to specify a connection object
to use to connect to a data store.

Data Access Components for MySQL

DeferredPost (inherited from TMemDataSet)

GetBlob (inherited from TMemDataSet)

IndexFieldNames (inherited from TMemDataSet)

LocalConstraints (inherited from TMemDataSet)

LocalUpdate (inherited from TMemDataSet)

Locate (inherited from TMemDataSet)

LocateEx (inherited from TMemDataSet)

MetaDataKind

OnUpdateError (inherited from TMemDataSet)

OnUpdateRecord (inherited from TMemDataSet)

Prepare (inherited from TMemDataSet)
Prepared (inherited from TMemDataSet)
RestoreUpdates (inherited from TMemDataSet)

Restrictions

RevertRecord (inherited from TMemDataSet)

SaveToXML (inherited from TMemDataSet)

UnPrepare (inherited from TMemDataSet)

UpdateRecordTypes (inherited from TMemDataSet)

UpdateResult (inherited from TMemDataSet)

UpdatesPending (inherited from TMemDataSet)

UpdateStatus (inherited from TMemDataSet)

See Also

285

Makes permanent changes to the
database server.

Overloaded. Retrieves TBlob object
for a field or current record when
only its name or the field itself is
known.

Used to get or set the list of fields
on which the recordset is sorted.

Used to avoid setting the Required
property of a TField component for
NOT NULL fields at the time of
opening TMemDataSet.

Used to prevent implicit update of
rows on database server.

Overloaded. Searches a dataset for
a specific record and positions the
cursor on it.

Overloaded. Excludes features that
don't need to be included to the
TMemDataSet.Locate method of
TDataSet.

Used to specify which kind of
metainformation to show.

Occurs when an exception is
generated while cached updates are
applied to a database.

Occurs when a single update
component can not handle the
updates.

Allocates resources and creates
field components for a dataset.

Determines whether a query is
prepared for execution or not.

Marks all records in the cache of
updates as unapplied.

Used to provide one or more
conditions restricting the list of
objects to be described.

Cancels changes made to the
current record when cached
updates are enabled.

Overloaded. Saves the current
dataset data to a file or a stream in
the XML format compatible with
ADO format.

Frees the resources allocated for a

previously prepared query on the
server and client sides.

Used to indicate the update status
for the current record when cached
updates are enabled.

Reads the status of the latest call to
the ApplyUpdates method while
cached updates are enabled.

Used to check the status of the
cached updates buffer.

Indicates the current update status
for the dataset when cached
updates are enabled.

286

Data Access Components for MySQL

TDAMetaData Class
TDAMetaData Class Members

© 1997-2012 Devart. All Rights Reserved.
Used to specify a connection object to use to connect to a data store.
Class
TDAMetaData
Syntax
property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify a connection object to use to connect to a data store.

Set at design-time by selecting from the list of provided TCustomDAConnection or its descendant class
objects.

At runtime, set the Connection property to reference an instanciated TCustomDAConnection object.

© 1997-2012 Devart. All Rights Reserved.

Used to specify which kind of metainformation to show.
Class

TDAMetaData
Syntax
property MetaDataKind: string;
Remarks

This string property specifies which kind of metainformation to show. The value of this property should
be assigned before activating the component. If MetaDataKind equals to an empty string (the default
value), the full value list that this property accepts will be shown.

They are described in the table below:

MetaDataKind Description

Columns show metainformation about columns of existing tables

Constraints show metainformation about the constraints defined in the database
Databases show metainformation about existing databases

IndexColumns show metainformation about indexed columns

Indexes show metainformation about indexes in a database

show the acceptable values of this property. You will get the same result if

MetaDatakKinds the MetadataKind property is an empty string

ProcedureParamet . . I
ers show metainformation about parameters of existing procedures
Procedures show metainformation about existing procedures

generates a dataset that describes which restrictions are applicable to each
MetaDataKind

Tables show metainformation about existing tables
If you provide a value that equals neither of the values described in the table, an error will be raised.

Restrictions

See Also

Restrictions

© 1997-2012 Devart. All Rights Reserved.

Data Access Components for MySQL 287

Used to provide one or more conditions restricting the list of objects to be described.

Class
TDAMetaData

Syntax

property Restrictions: _TStrings;

Remarks

Use the Restriction list to provide one or more conditions restricting the list of objects to be described.
To see the full list of restrictions and to which metadata kinds they are applicable, you should assign the
Restrictions value to the MetaDataKind property and view the result.

See Also

MetaDataKind

© 1997-2012 Devart. All Rights Reserved.

Methods of the TDAMetaData class.

For a complete list of the TDAMetaData class members, see the TDAMetaData Members topic.

Public

Name
ApplyUpdates (inherited from TMemDataSet)

CachedUpdates (inherited from TMemDataSet)

CancelUpdates (inherited from TMemDataSet)

CommitUpdates (inherited from TMemDataSet)
DeferredPost (inherited from TMemDataSet)

GetBlob (inherited from TMemDataSet)

GetMetaDataKinds

GetRestrictions

IndexFieldNames (inherited from TMemDataSet)

