
SQLite3Professional
version 2.0

©2005-2006 SQLabs. All rights reserved.

Contents

Introduction

 Overview of SQLite3ProfessionalPlugin 3
 Registering 3
 Getting Started 4
 SQLite3 Virtual Machine 5
 InstantQuery Technology 7

SQLite3 Module

 Description 9
 Methods 11

SQLite3Database Class

 Description 12
 Events 13
 Properties 15
 Methods 16

SQLite3VM Class

 Description 20
 Methods 21

Appendix A

 How to create new SQL functions 25

Appendix B

 Contact Information 26
 Copyright 26
 Legal Stuff 26

Introduction

Overview of SQLite3ProfessionalPlugin

SQLite3ProfessionalPlugin is a REALbasic plugin that gives your REALbasic projects
low level access to the SQLite3 database engine. Starting from RB2005, the sqlite3
engine is include in every version of REALbasic, but due to the way it is exposed to the
end user, a lot of its power and its speed aren’t available.
SQLite3ProfessionalPlugin has been designed to take advantage of all the real speed
and real power that the new sqlite3 engine can offer.

SQLite3ProfessionalPlugin is very different from the built-in REALbasic database en-
gine, it does have built-in Database and RecordSet classes but in addition to this, it
supports a lot more sqlite 3 specific methods. It is a near 1 to 1 map to the sqlite3 C
api, so you can have access to every sqlite3 routine, so for example, you can interact
directly with the virtual machine or you can create your own sql functions, and much
more. These are very powerful concepts that cannot be added to the current REAL-
SQLDatabase plugin.

The audience for this plugin are professional database users, that, for example, can
take advantage of the sqlite3 progress handler routine to give time to other threads or
to update the REALbasic GUI while a complex sql operation is in place, or that can use
the sqlite3 virtual machine to build a query system with zero delay time and near zero
memory requirements even if millions of rows are returned from a query.

SQLite3ProfessionalPlugin is divided into 2 main classes and 1 module.

The SQLite3 Module registers a set of constants used by all the methods in every
class, it also defines some “globals” methods.

The SQLite3Database Class is the main class for this plugin, it defines methods ne-
cessary to open a database, close it and perform other operations.

The SQLite3VM Class is the class returned by the SQLite3Database’s Prepare method.
It defines methods necessary to interact with the powerful sqlite3 virtual machine.

Registering

Unregistered version can be evaluated in the REALbasic IDE and during debugging,
but will not allow you to compile a standalone application.

To became a registered user and receive technical support and updates you must
register this plugin via web at the address: http://www.sqlabs.net/store.php

Page 3

http://www.sqlabs.net/store.php

Introduction

Getting Started

SQLite3ProfessionalPlugin requires REALbasic 2005 or higher on Windows, Linux and
Mac OS X (MachO PPC or Universal Binary).

Installing SQLite3ProfessionalPlugin is very easy. Simply drag it to the REALbasic Plugins
folder and launch REALbasic. SQLite3ProfessionalPlugin should now be available for
use.

If you have a registration code, then you will need to pass it to the plugin in your
application with the SQLITE3.PluginRegister global method. This method should be
called as early as possible in your code and before you attempt to call any other
SQLite3ProfessionalPlugin functions.

One good place to put the call is the Open event of your App class. If you don’t pass
a registration number to SQLite3ProfessionalPlugin, then you will be running in demo
mode.

Using SQLite3ProfessionalPlugin is very easy, for example, in order to open a database
just write:

Dim db As New SQLite3Database
Dim f As FolderItem = GetOpenFolderItem(“”)
If (f = nil) then return

if (db.Open(f) <> SQLITE3.kOK) then
 MsgBox “Error while opening the database “ + f.Name
end if

Page 4

Introduction

SQLite3 Virtual Machine

This is the most important and most powerful class inside the plugin, if you take the
time to fully understand it (and this is an easy task) then you can gain a lot of benefits,
like blazing speed and complete control over your sqlite3 database.

The most important thing to understand is that when you send an sql command to sqli-
te, the engine doesn’t know in advance the number of rows returned by the sql query,
the only way to iterate through all the rows of the result, is to call the VMStep method
until an SQLITE3.kDONE result is returned (an error occurs for example).

For example, in order to execute a simple SQL statement like “CREATE TABLE test (a
TEXT, b TEXT)” the correct way is (using the virtual machine):

Sub myCreateTable As Boolean
 Dim vm As SQLite3VM
 Dim sql As String = “CREATE TABLE test (a TEXT, b TEXT)”
 Dim res As Integer

 vm = db.Prepare (sql)
 if (vm = nil) then return false

 res = vm.VMStep
 return (res = SQLITE3.kDONE)
End Sub

The prepare statement does nothing, it just compile the sql ready to be used inside the
virtual machine, you are then responsible to call the VMStep method until the
SQLITE3.kDONE value is returned. Obviously, because this function is trying to execute
an SQL statement, you know in advance that you need to call VMStep just one time ...
but how can you do if you want to implement an SQLSelect like function?

The first solution is the one adopted by the REALSQLDatabase, where when you issue
an SQLSelect statement it just calls the VMStep method N times (if N are the number
of rows returned until an SQLITE3.kDONE result is returned) and it builds an in-memory
array with all the results that you can access with the help of the RecordSet class.

This solution is not very efficient, mainly because memory requirements could became
huge very easily (remember, all the rows are stored in memory) and because you have
to wait the time needed to scan and extract all the columns from the entire record set
before you can start use them.

Page 5

Introduction

A more efficient way to solve the issue is something like this (suppose for example that
you want to fill a ListBox with the data returned from your query):

Dim vm As SQLite3VM
Dim sql As String = “SELECT * FROM test”
Dim res As Integer

vm = db.Prepare (sql)
if (vm = nil) then return

while (vm.VMStep <> SQLITE3.kDONE)
 ListBox1.AddRow vm.ColumnText(0)
wend

As you can see, in this way memory requirement is just the memory needed for the
current column and you can start receiving rows immediately.

As a real world test, we have created an sqlite3 database with 10 columns and 200,000
rows (database size is about 200MB), and we have execute a “SELECT * from test”
query. These are the results of the test:

SQLite3Professional REALSQLDatabase

Memory usage: 44 Bytes 200 MB

Query Time (sec.): 0.0001 15.879

Time to scan RecordSet (sec.): 4.331 0.037

Total Time (sec.): 4.331 15.916

Please note that inside the SQLite3VM Class there are methods that enable you to
know how many columns are returned, their names, their types and so on.

Page 6

Introduction

InstantQuery Technology

InstantQuery is a new technique for retrieving results from a database query at “light-
ning speed”, you can now populate your listbox from a sql query containing millions
of rows in under a second. If your application requires hundreds of thousands or even
millions of results to be returned and you want to start viewing those results instantly,
then InstantQuery is the right choice.

The only requirement in order to gain full speed from the InstantQuery technology is a
REALbasic control that enable you to display any number of rows on demand, without
big delays and bottlenecks. For this reason standard REALbasic ListBoxes are highly
discouraged and we strongly recommend you use one of the following controls:

- Data On Demand ListBox (www.mactechnologies.com)
- DataGrid or StyleGrid Plugin (www.einhugur.com)
- your custom virtual ListBox
- any canvas based solution that emulate a standard ListBox

The core of this technology is the InstantQuery method and the main idea behind it is
that you can have a hidden thread that perform the hard work while you display your
results to the end user. This method not only enable you to gain blazing speed but also
enable you to display millions of row with very little memory requirements.

As a real world example. we take the same sqlite3 database with 10 columns and
200,000 rows mentioned in the previous chapter.

The traditional way to display a ListBox with all the rows from the query “SELECT *
from test”, is to execute an SQLSelect statement and use the resulted RecordSet. That
means that you have to spend 200MB of RAM to hold the RecordSet in memory and
you have to wait about 16 seconds (time measured with an iMac G5) just to fill in entire
RecordSet, plus the time required to display all the rows (this can vary from less than a
second if you use one of the recommended controls to few minutes if you use a stan-
dard ListBox). During this time, your user can just see a blank listbox and a spinning
cursor...

InstantQuery technology can solve this issue in a very elegant way.

Modify the query to send to the InstantQuery method from “SELECT * from test” to
“SELECT rowid from test” (remember that you have to always put the hard work into
the InstantQuery method) and then when row N is requested to be displayed into the
ListBox just use the RowValue method to retrieve and display it.

This is the full example (please note that Data On Demand is used in this code):

// Execute the instant query
// this method returns immediately, even if there are millions of row, so you can start

Page 7

http://www.mactechnologies.com
http://www.einhugur.com

Introduction

display your rows instantly
db.InstantQuery(“SELECT rowid from test”, true)

// start a thread that needs only to add rows to my ListBox
Thread1.Run

// Thread1 Code
while (db.Complete = false)

 // This is optional but recommended
 // sleep 200ms in order to give some time
 // to the InstantQuery to retrieve new rows
 me.Sleep 200

 // add new rows to the Data On Demand ListBox
 DoDList.Reset(db.RowCount, -1)
wend

// and then into your DoDList.RequestRowData (dataRow as integer) event
// just write something like this:

 sql = “SELECT * FROM test WHERE rowid=” + Str(db3.RowValue(dataRow))
 vm = db3.Prepare(sql)
 i = vm.VMStep
 // iterate through all the columsn of the currentrow
 for i=0 to colCount-1
 me.cell(dataRow,i)= vm.ColumnText(i)
 next

In this way you just need the memory required to load ONE column and your user can
start viewing and using the results from your query immediately!
Please take a look at the InstantQuery example in order to fully understand how this
new powerful technology works.

Page 8

SQLITE3 Module

SQLITE3 Module

The module SQLITE3 registers a set of constants and methods used by all the metho-
ds in every class.

Contants
 kOK
 kERROR
 kINTERNAL
 kPERM
 kABORT
 kBUSY
 kLOCKED
 kNOMEM
 kREADONLY
 kINTERRUPT
 kIOERR
 kCORRUPT
 kNOTFOUND
 kFULL
 kCANTOPEN
 kPROTOCOL
 kEMPTY
 kSCHEMA
 kTOOBIG
 kCONSTRAINT
 kMISMATCH
 kMISUSE
 kNOLFS
 kAUTH
 kFORMAT
 kRANGE
 kNOTADB
 kROW
 kDONE
 kCOPY
 kCREATE_INDEX
 kCREATE_TABLE
 kCREATE_TEMP_INDEX
 kCREATE_TEMP_TABLE
 kCREATE_TEMP_TRIGGER
 kCREATE_TEMP_VIEW
 kCREATE_TRIGGER
 kCREATE_VIEW
 kDELETE
 kDROP_INDEX

Page 9

SQLITE3 Module

 kDROP_TABLE
 kDROP_TEMP_INDEX
 kDROP_TEMP_TABLE
 kDROP_TEMP_TRIGGER
 kDROP_TEMP_VIEW
 kDROP_TRIGGER
 kDROP_VIEW
 kINSERT
 kPRAGMA
 kREAD
 kSELECT
 kTRANSACTION
 kUPDATE
 kATTACH
 kDETACH
 kALTER_TABLE
 kREINDEX
 kANALYZE
 kDENY
 kIGNORE
 kINTEGER
 kFLOAT
 kTEXT
 kBLOB
 kNULL
 kUTF8
 kUTF16LE
 kUTF16BE
 kUTF16
 kANY
 kDEMO

Properties
 None

Methods
 LibVersion
 PluginVersion
 MsSleep
 Complete
 LastInsertRowID
 PluginRegister
 AggregateCount* (see Appendix A)
 Result* (see Appendix A)
 Value* (see Appendix A)
 EnableSharedCache

Page 10

SQLITE3 Module

Methods

LibVersion() As String
Returns the version of the underline sqlite3 library.

PluginVersion() As String
Returns the version of the plugin.

MsSleep(ms As Integer)
Sleep for a little while. The parameter is the number of miliseconds to sleep for.
If the operating system does not support sleep requests with milisecond time resolu-
tion, then the time will be rounded up to the nearest second.

Complete(sql As String) As Boolean
This method return true if the given input string comprises one or more complete SQL
statements.

PluginRegister(code As String) As Boolean
Register the plugin with the given code. Returns false if registration fails.

EnableSharedCache(enable As Boolean) As Integer

Due to some limitations of the PEF version, this method is disabled in “MacOSX/Clas-
sic” builds.
This routine enables or disables the sharing of the database cache and schema data
structures between connections to the same database. Sharing is enabled if the argu-
ment is true and disabled if the argument is false.

Cache sharing is enabled and disabled on a thread-by-thread basis. Each call to this
routine enables or disables cache sharing only for connections created in the same
thread in which this routine is called. There is no mechanism for sharing cache between
database connections running in different threads.
Sharing must be disabled prior to shutting down a thread or else the thread will leak
memory. Call this routine with an argument of “false” to turn off sharing.

This routine must not be called when any database connections are active in the cur-
rent thread. Enabling or disabling shared cache while there are active database con-
nections will result in memory corruption.
When the shared cache is enabled, the following routines must always be called from
the same thread: db.Open(), db.prepare(), vm.VMstep(), vm.Reset(), vm.finalize(), and
db.close(). This is due to the fact that the shared cache makes use of thread-specific
storage so that it will be available for sharing with other connections.
This routine returns SQLITE3_kOK if shared cache was enabled or disabled succes-
sfully. An error code is returned otherwise.
Shared cache is disabled by default for backward compatibility.

Page 11

SQLITE3 Database Class

SQLite3Database Class

It is the main class for this plugin, it defines methods necessary to open a database,
close it and perform other operations.

Events
 Trace
 ProgressHandler
 CommitHook
 RollbackHook
 UpdateHook
 BusyHandler
 Authorize

Properties
 TraceEvent
 AuthorizeEvent
 ProgressHandlerPeriod
 CommitHookEvent
 RollbackHookEvent
 UpdateHookEvent
 BusyHandlerEvent
 Complete
 RowCount

Methods
 Open
 Close
 Changes
 TotalChanges
 LastInsertRowID
 ErrCode
 ErrMsg
 GetAutoCommit
 Interrupt
 Prepare
 InstantQuery
 RowValue
 BusyTimeout
 CreateCollation
 CreateScalarFunction
 CreateAggregateFunction
 EnableSharedCache
 TableColumnMetadata

Page 12

SQLITE3 Database Class

Events

Trace(sql As String)
The trace event is called each time an SQL statement is evaluated. This function can be
used (for example) to generate a log file of all SQL executed against a database. This
can be useful when debugging an application that uses SQLite.

ProgressHandler() As Integer
The ProgressHandler event is invoked once for every N virtual machine opcodes, where
N is the value of the ProgressHandlerPeriod property. If a call to sqlite3.VMStep() results
in less than N opcodes being executed, then the progress callback is not invoked. An
example use for this event is to keep a GUI updated during a large query.

If the progress callback returns a result other than 0, then the current query is immedia-
tely terminated and any database changes rolled back. If the query was part of a larger
transaction, then the transaction is not rolled back and remains active. The sqlite3.
VMStep() call returns SQLITE3.kABORT.

CommitHook() As Integer
The CommitHook event is invoked whenever a new transaction is committed. If the
event returns non-zero, then the commit is converted into a rollback.

BusyHandler (nTimes As Integer) As Integer
The BusyHandler event might be invoked whenever an attempt is made to open a da-
tabase table that another thread or process has locked.
If the BusyHandlerEvent property is false, then SQLITE3.kBUSY is returned immediately
upon encountering the lock, otherwise the BusyHandler event might beinvoked. The
nTimes argument is the number of prior calls to the BusyHandler event for the same
lock. If the BusyHandler event returns 0, then no additional attempts are made to ac-
cess the database and SQLITE3.kBUSY is returned. If the event returns non-zero, then
another attempt is made to open the database for reading and the cycle repeats.

The presence of a BusyHandler event does not guarantee that it will be invoked when
there is lock contention. If SQLite determines that invoking the busy handler could re-
sult in a deadlock, it will return SQLITE3.kBUSY instead.

Sqlite is re-entrant, so the BusyHandler may start a new query. (It is not clear why
anyone would every want to do this, but it is allowed, in theory.) But you cannot close
the database inside a BusyHandler event. Closing the database inside a BusyHandler
event will delete data structures out from under the executing query and will probably
result in a coredump.

Authorize (accessFunction As Integer, param1 As String, param2 As String,
param3 As String, param4 As String) As Integer
The authorize event is is invoked for each attempt to access a column of a table in the
database.

Page 13

SQLITE3 Database Class

The event should return SQLITE3.kOK if access is allowed, SQLITE3.kDENY if the
entire SQL statement should be aborted with an error and SQLITE3.kIGNORE if the
column should be treated as a NULL value.

The first argument to the authorize event will be one of the defined constants shown.
These values signify what kind of operation is to be authorized. The 2nd and 3rd ar-
guments to the authorization function will be arguments or empty strings depending
on which of the following codes is used as the first argument. The 4th argument is the
name of the database (“main”, “temp”, etc.) if applicable. The 5th argument is the name
of the inner-most trigger or view that is responsible for the access attempt or an empty
string if this access attempt is directly from input SQL code.

The intent of this routine is to allow applications to safely execute user-entered SQL.
An appropriate callback can deny the user-entered SQL access certain operations (ex:
anything that changes the database) or to deny access to certain tables or columns
within the database.

accessFunction param1 param2
SQLITE3.kCREATE_INDEX Index Name Table Name
SQLITE3.kCREATE_TABLE Table Name Empty String
SQLITE3.kCREATE_TEMP_INDEX Index Name Table Name
SQLITE3.kCREATE_TEMP_TABLE Table Name Empty String
SQLITE3.kCREATE_TEMP_TRIGGER Trigger Name Table Name
SQLITE3.kCREATE_TEMP_VIEW View Name Empty String
SQLITE3.kCREATE_TRIGGER Trigger Name Table Name
SQLITE3.kCREATE_VIEW View Name Empty String
SQLITE3.kDELETE Table Name Empty String
SQLITE3.kDROP_INDEX Index Name Table Name
SQLITE3.kDROP_TABLE Table Name Empty String
SQLITE3.kDROP_TEMP_INDEX Index Name Table Name
SQLITE3.kDROP_TEMP_TABLE Table Name Empty String
SQLITE3.kDROP_TEMP_TRIGGER Trigger Name Table Name
SQLITE3.kDROP_TEMP_VIEW View Name Empty String
SQLITE3.kDROP_TRIGGER Trigger Name Table Name
SQLITE3.kDROP_VIEW View Name Empty String
SQLITE3.kINSERT Table Name Empty String
SQLITE3.kPRAGMA Pragma Name 1starg or Empty String
SQLITE3.kREAD Table Name Column Name
SQLITE3.kSELECT Empty String Empty String
SQLITE3.kTRANSACTION Empty String Empty String
SQLITE3.kUPDATE Table Name Column Name
SQLITE3.kATTACH Filename Empty String
SQLITE3.kDETACH Database Name Empty String

Page 14

INTRODUCTION

RollbackHook()
The RollbackHook event is invoked whenever a new transaction have been rolled back
by an explicit “ROLLBACK” statement or by an error or by a constraint that causes an
implicit rollback to occur. The callback is not invoked if a transaction is automatically
rolled back because the database connection is closed.

UpdateHook (operationType As Integer, tableName As String, rowID As Inte-
ger)
The UpdateHook event is invoked whenever a row is updated, inserted or deleted.
The first parameter can be SQLITE3.kINSERT, SQLITE3.kDELETE or SQLITE3.kUPDA-
TE, depending on the operation that caused the event to be invoked.
The second argument contains the table name of the affected row and the last argu-
ment is its rowid.
In the case of an update, this is the rowid after the update takes place.
The UpdateHook event is not invoked when internal system tables are modified (i.e.
sqlite_master and sqlite_sequence).

Page 15

INTRODUCTIONSQLITE3 Database Class

Properties

TraceEvent as Boolean
The default value is false.
If true, then the trace event is called each time an SQL statement is evaluated.

AuthorizeEvent as Boolean
The default value is false.
If true, then the authorize event is is invoked for each attempt to access a column of a
table in the database.

ProgressHandlerPeriod as Integer
The default value is 0.
If its values is greater than 0, than the ProgressHandler event is invoked once for every
N virtual machine opcodes, where N is the value of the ProgressHandlerPeriod proper-
ty.

CommitHookEvent as Boolean
The default value is false.
If true, then the CommitHook event is invoked whenever a new transaction is commit-
ted.

RoolbackHookEvent as Boolean
The default value is false.
If true, then the RollbackHook event is invoked whenever a new transaction is rolled-
back (by an explicit “Rollback” statement or after an error or a constraint that causes
an implicit rollback to occurs).

UpdateHookEvent as Boolean
The default value is false.
If true, then the UpdateHook event is invoked each time a row is updated, inserted or
deleted.

BusyHandlerEvent as Boolean
The default value is false.
If true, then the BusyHandler event might be invoked whenever an attempt is made to
open a database table that another thread or process has locked.

Complete as Boolean
True if the latest issued InstantQuery has completed its execution.

RowCount As Integer
The number of rows currently returned from the latest issued InstantQuery, please note
that this value can change until the Complete property is true.

Page 16

INTRODUCTIONSQLITE3 Database Class

Methods

Open (path As FolderItem) As Integer
Open or create the sqlite database file pointed by “path”. If the database is opened
(or created) successfully, then SQLITE3.kOK is returned. Otherwise an error code is
returned. The ErrMsg method can be used to obtain an English language description
of the error.

If the database file does not exist, then a new database will be created as needed. The
encoding for the database will be UTF-8.
If path is nil then an in-memory database is created.

Close()
Closes the database.

Changes() As Integer
This method returns the number of database rows that were changed (or inserted or
deleted) by the most recently completed INSERT, UPDATE, or DELETE statement. Only
changes that are directly specified by the INSERT, UPDATE, or DELETE statement are
counted. Auxiliary changes caused by triggers are not counted. Use the TotalChanges
method to find the total number of changes including changes caused by triggers.

SQLite implements the command “DELETE FROM table” without a WHERE clause by
dropping and recreating the table. (This is much faster than going through and deleting
individual elements from the table.) Because of this optimization, the change count for
“DELETE FROM table” will be zero regardless of the number of elements that were
originally in the table. To get an accurate count of the number of rows deleted, use
“DELETE FROM table WHERE 1” instead.

TotalChanges() As Integer
This method returns the total number of database rows that have be modified, inser-
ted, or deleted since the database connection was created using the Open method. All
changes are counted, including changes by triggers and changes to TEMP and auxi-
liary databases. Except, changes to the SQLITE_MASTER table (caused by statements
such as CREATE TABLE) are not counted. Nor are changes counted when an entire
table is deleted using DROP TABLE.

SQLite implements the command “DELETE FROM table” without a WHERE clause by
dropping and recreating the table. (This is much faster than going through and deleting
individual elements form the table.) Because of this optimization, the change count for
“DELETE FROM table” will be zero regardless of the number of elements that were
originally in the table. To get an accurate count of the number of rows deleted, use
“DELETE FROM table WHERE 1” instead.

LastInsertRowID() As Integer
Each entry in an SQLite table has a unique integer key. (The key is the value of the INTE-

Page 17

INTRODUCTIONSQLITE3 Database Class

GER PRIMARY KEY column if there is such a column, otherwise the key is generated at
random. The unique key is always available as the ROWID, OID, or _ROWID_ column.)
This routine returns the integer key of the most recent insert in the database.

ErrCode() As Integer
Return the error code for the most recent failed function call. If a prior API call failed but
the most recent API call succeeded, the return value from this routine is undefined.

Assuming no other intervening sqlite3 API calls are made, the error code returned
by this function is associated with the same error as the strings returned by ErrMsg()
method.

ErrMsg() As String
Return an UTF-8 encoded string describing in English the error condition for the most
recent sqlite3* API call. The string “not an error” is returned when the most recent API
call was successful.

GetAutoCommit() As Boolean
Test to see whether or not the database connection is in autocommit mode. Return
TRUE if it is and FALSE if not. Autocommit mode is on by default. Autocommit is disa-
bled by a BEGIN statement and reenabled by the next COMMIT or ROLLBACK.

Interrupt()
This function causes any pending database operation to abort and return at its earliest
opportunity. This routine is typically called in response to a user action such as pressing
“Cancel” or Ctrl-C where the user wants a long query operation to halt immediately.

Prepare (sql As String) As SQLite3VM
To execute an SQL query, it must first be compiled into a byte-code program using the
Prepare method.
The first argument “sql” is the statement to be compiled.
This method returns an SQLite3VM instance that can be executed using the VMStep()
method. Or if there is an error, nil is returned.

InstantQuery (sql As String, async As Boolean)
Start an instant query with the issued “sql” argument. If the async flag is true then
method returns immediately while a background preemptive thread continue to execu-
te the query. If the async flag is false then method returns only after the entire sql query
finish its execution.

RowValue (index As Integer) As Integer
This is the way to get rows returned by the InstantQuery method. Range come from 0
to RowCount-1. The meaning of the returned value depends of the sql query issued to
the InstantQuery method. If the sql statement was in the form “SELECT rowid FROM...”
then the returned value is the rowid of the “index” row.

Page 18

INTRODUCTIONSQLITE3 Database Class

BusyTimeout (ms As Integer)
This routine sets a busy handler that sleeps for a while when a table is locked. The
handler will sleep multiple times until at least “ms” milliseconds of sleeping have been
done. After “ms” milliseconds of sleeping, the handler returns 0 which causes sqlite3.
VMStep() to return SQLITE3.kBUSY.
Calling this method with an argument less than or equal to zero turns off all busy han-
dlers.

CreateCollation (name As String, myRoutine As SQLite3CollationInterface)
These method is used to add new collation sequences to the sqlite3 database.
The first parameter is the name of the new collation sequence and the second para-
meter is a pointer to the user supplied routine that implements this collation. More in
the SQLite3CollationInterface section. See Appendix A for more information about this
method.

CreateScalarFunction (name As String, nArg As Integer, myRoutine As SQLite
3ScalarFunctionInterface)

CreateAggregateFunction (name As String, nArg As Integer, myRoutine As SQ
Lite3AggregateFunctionInterface)

These methods are used to add new scalar/aggregate functions to the sqlite3 databa-
se. The first parameter is the name of the new scalar/aggregate function, the second
parameter is the number of arguments that the function or aggregate takes. If this ar-
gument is -1 then the function or aggregate may take any number of arguments. The
last parameter is a pointer to the user supplied routine that implements this function.
More in the SQLite3ScalarFunctionInterface and SQLite3AggregateFunctionInterface
section. See Appendix A for more information about these methods.

TableColumnMetadata (tableName As String, columnName As String, ByRef
declaredType As String, ByRef collationName As String, ByRef isNotNULL As
Boolean, ByRef isPriKey As Boolean, ByRef isAutoInc As Boolean)

This routine is used to obtain meta information about a specific column of a specific
database table. The column is identified by the first (tableName) and second (column-
Name) parameters to this function.
Meta information is returned by the ByRef parameters.

This function may load one or more schemas from database files. If an error occurs
during this process, or if the requested table or column cannot be found, an SQLITE
error code is returned and an error message left in the database handle.
If the specified column is “rowid”, “oid” or “_rowid_” and an INTEGER PRIMARY KEY
column has been explicitly declared, then the output parameters are set for the explici-
tly declared column. If there is no explicitly declared IPK column, then the data-type is
“INTEGER”, the collation sequence “BINARY” and the primary-key flag is set. Both the
not-null and auto-increment flags are clear.

Page 19

INTRODUCTIONSQLite3VM Class

SQLite3VM Class

It is the class returned by the SQLite3Database.Prepare method. It defines methods
necessary to interact with the powerful sqlite3 virtual machine.

Events
 None

Properties
 None

Methods
 VMStep
 Expired
 Finalize
 Reset
 ClearBindings
 TransferBinding
 DataCount
 BindBlob
 BindDouble
 BindInt
 BindNull
 BindText
 BindParameterCount
 BindParameterIndex
 BindParameterName
 ColumnBlob
 ColumnBytes
 ColumnDouble
 ColumnInt
 ColumnText
 ColumnType
 ColumnCount
 ColumnDeclType
 ColumnName

Page 20

INTRODUCTIONSQLite3VM Class

Methods

VMStep() As Integer
This method must be called one or more times to execute the statement.
The return value will be either SQLITE3.kBUSY, SQLITE3.kDONE, SQLITE3.kROW,
SQLITE3.kERROR, or SQLITE3.kMISUSE.

SQLITE3.kBUSY means that the database engine attempted to open a locked databa-
se and there is no busy callback registered. Call VMStep() again to retry the open.

SQLITE3.kDONE means that the statement has finished executing successfully. VM-
Step should not be called again on this virtual machine without first calling the Reset()
method to reset the virtual machine back to its initial state. If the SQL statement being
executed returns any data, then SQLITE3.kROW is returned each time a new row of
data is ready for processing by the caller. The values may be accessed using the Colu-
mn*() methods. VMStep() is called again to retrieve the next row of data.

SQLITE3.kERROR means that a run-time error (such as a constraint violation) has oc-
curred. VMStep() should not be called again on the VM. More information may be found
by calling db.ErrMsg().

SQLITE3.kMISUSE means that the this routine was called inappropriately. Perhaps it
was called on a virtual machine that had already been finalized or on one that had pre-
viously returned SQLITE3.kERROR or SQLITE3.kDONE. Or it could be the case that
a database connection is being used by a different thread than the one it was created
it.

Expired() As Boolean
Return TRUE if the statement supplied as an argument needs to be recompiled. A sta-
tement needs to be recompiled whenever the execution environment changes in a way
that would alter the program that the Prepare method generates. For example, if new
functions or collating sequences are registered or if an authorizer function is added or
changed.

Finalize() As Integer
This method is called to delete a prepared SQL statement obtained by a previous call
to db.Prepare. If the statement was executed successfully, or not executed at all, then
SQLITE3.kOK is returned. If execution of the statement failed then an error code is
returned.

This routine can be called at any point during the execution of the virtual the Interrupt
method.) Incomplete updates may be rolled back and transactions canceled, depen-
ding on the circumstances, and the result code returned will be SQLITE3.kABORT.

Reset()
The method is called to reset a prepared SQL statement obtained by a previous back

Page 21

INTRODUCTIONSQLite3VM Class

to it’s initial state, ready to be re-executed. Any SQL statement variables that had va-
lues bound to them using the Bind*() method retain their values.

ClearBindings()
Set all the parameters in the compiled SQL statement back to NULL.

TransferBinding(dest As SQLite3VM)
Move all bindings from the first prepared statement over to the second. This routine
is useful, for example, if the first prepared statement fails with an SQLITE3.kSCHEMA
error. The same SQL can be prepared into the second prepared statement then all of
the bindings transfered over to the second statement before the first statement is fina-
lized.

DataCount() As Integer
Return the number of values in the current row of the result set.

After a call to VMStep() that returns SQLITE3.kROW, this routine will return the same
value as the ColumnCount() function. After VMStep() has returned an SQLITE3.kDONE,
SQLITE3.kBUSY or error code, or before VMStep() has been called on a prepared SQL
statement, this routine returns zero.

BindBlob (index As Integer, value As String) As Integer
BindDouble (index As Integer, value As Double) As Integer
BindInt (index As Integer, value As Integer) As Integer
BindNull (index As Integer) As Integer
BindText (index As Integer, value As String) As Integer
In the SQL strings input to Prepare, one or more literals can be replace by a parameter
“?” or “:AAA” or “$VVV” where AAA is an alphanumeric identifier and VVV is a variable
name according to the syntax rules of the TCL programming language. The values of
these parameters (also called “host parameter names”) can be set using the Bind*()
routines.

The first argument to the Bind* routines always is the index of the parameter to be set.
The first parameter has an index of 1. When the same named parameter is used more
than once, second and subsequent occurrences have the same index as the first oc-
currence. The index for named parameters can be looked up using the BindParame-
terName API if desired.

The second argument is the value to bind to the parameter.

The Bind*() routines must be called after Prepare() or Reset() and before VMStep().
Bindings are not cleared by the Reset() routine. Unbound parameters are interpreted
as NULL.
These routines return SQLITE3.kOK on success or an error code if anything goes
wrong. SQLITE3.kRANGE is returned if the parameter index is out of range. SQLITE3.
kNOMEM is returned if some memory allocation fails. SQLITE3.kMISUSE is returned

Page 22

INTRODUCTIONSQLite3VM Class

if these routines are called on a virtual machine that is the wrong state or which has
already been finalized.

BindParameterCount() As Integer
Return the number of parameters in the precompiled statement given as the argu-
ment.

BindParameterIndex (pname As String) As Integer
Return the index of the parameter with the given name. The name must match exactly.
If there is no parameter with the given name, return 0.

BindParameterName (index As Integer) As String)
Return the name of the n-th parameter in the precompiled statement. Parameters of
the form “:AAA” or “$VVV” have a name which is the string “:AAA” or “$VVV”. In other
words, the initial “:” or “$” is included as part of the name. Parameters of the form “?”
have no name.
If the value n is out of range or if the n-th parameter is nameless, then an empty string
is returned.

ColumnBlob (columnIndex As Integer) As String
ColumnBytes (columnIndex As Integer) As Integer
ColumnDouble (columnIndex As Integer) As Double
ColumnInt (columnIndex As Integer) As Integer
ColumnText (columnIndex As Integer) As String
ColumnType (columnIndex As Integer) As Integer
These routines return information about the information in a single column of the cur-
rent result row of a query. In every case the first argument is the index of the column for
which information should be returned. iCol is zero-indexed. The left-most column has
an index of 0.

If the SQL statement is not currently point to a valid row, or if the the column index is
out of range, the result is undefined.

If the result is a BLOB then the ColumnBytes() method returns the number of bytes
in that BLOB. No type conversions occur. If the result is a string (or a number since a
number can be converted into a string) then ColumnBytes() converts the value into a
UTF-8 string and returns the number of bytes in the resulting string.

These routines attempt to convert the value where appropriate. For example, if the
internal representation is FLOAT and a text result is requested, then an internal conver-
sion is done automatically.

ColumnCount() As Integer
Return the number of columns in the result set returned by the prepared SQL state-
ment. This routine returns 0 if virtual machine is an SQL statement that does not return
data (for example an UPDATE).

Page 23

INTRODUCTIONSQLite3VM Class

ColumnDeclType (columnIndex As Integer) As String
If the compiled statement is a SELECT statement, the Nth column of the returned result
set of the SELECT is a table column then the declared type of the table column is re-
turned. If the Nth column of the result set is not at table column, then a an empty string
is returned. For example, in the database schema:

CREATE TABLE t1(c1 INTEGER);

And the following statement compiled:

SELECT c1 + 1, 0 FROM t1;

Then this routine would return the string “INTEGER” for the second result column (i==1),
and aan empty string for the first result column (i==0).

ColumnName (columnIndex As Integer) As String
This method returns the column heading for the Nth column of the compiled statement,
where N is the method parameter.

Page 24

INTRODUCTIONAppendix A

How to create new SQL functions

With SQLite3ProfessionalPlugin you can extend the sqlite3 engine with your own SQL
functions written in REALbasic. Actually you can write three kind of functions.

Collation Sequence:
A collation sequence is a set of rules governing the characters that are used within a
database and the means by which characters are sorted and compared. Once a new
collation sequence has been defined, it can be used in any SQL statement, like CREA-
TE, SELECT and so on. For example, if you define a NOCASE sequence, then you can
use it as

CREATE TABLE t1(field1 TEXT COLLATE NOCASE, field2 TEXT)

In order to define a new collation sequence you have to use the method:
CreateCollation (name As String, myRoutine As SQLite3CollationInterface)

We strongly encourage you to check the example “SQLite3TestFunctions.rbp” in order
to better understand this topic.

A very usefull link is:
http://www.sqlite.org/datatype3.html#collation

Scalar and Aggregate Functions:
A scalar function is an SQL function that is called only with columns of ONE row, while
an aggregate function can be called by columns of an unlimited number fo rows.

In order to define new functions you have to use the methods:
CreateScalarFunction (name As String, nArg As Integer, myRoutine As SQLite
3ScalarFunctionInterface)

CreateAggregateFunction (name As String, nArg As Integer, myRoutine As SQ
Lite3AggregateFunctionInterface)

We strongly encourage you to check the example “SQLite3TestFunctions.rbp” and
“SQLite3TestAggregate.rbp“ in order to better understand this topic.

Some very usefull links are:
http://databases.about.com/od/sql/l/aaaggregate1.htm
http://linuxgazette.net/109/chirico1.html

Page 25

http://www.sqlite.org/datatype3.html#collation
http://databases.about.com/od/sql/l/aaaggregate1.htm
http://linuxgazette.net/109/chirico1.html

Appendix B

Contact Information

Marco Bambini
marco@sqlabs.net

Web: http://www.sqlabs.net
Email: info@sqlabs.net

Copyright
All materials are copyright 2003-2006 by SQLabs.
All Rights Reserved. SQLite3ProfessionalPlugin may be freely distributed, so long as it
is not sold for profit, and registration serial numbers are not distributed. Express per-
mission is granted to online services and other shareware/public domain distribution
avenues to carry SQLite3ProfessionalPlugin.

Express permission is further granted to include SQLite3ProfessionalPlugin on CD-
ROMs or floppy disks accompanying books, or on shareware collections, provided
that no more than a nominal compilation and/or media fee is charged for these collec-
tions.

Legal Stuff
Unregistered copies may be used and evaluated in the REALbasic IDE and in debug
compilations, but may not be used in final, standalone applications. Copies are registe-
red per individual developer and may be used by that developer, royalty-free, in an
unlimited number of applications, commercial or otherwise. Once obtained, licenses
may not be transferred to other individuals or organizations.

SQLabs reserves the right to revoke the license of anyone who ignores or violates the-
se restrictions. See our web site at http://www.sqlabs.net/ for registration information.
Company licenses are available.

SQLite3ProfessionalPlugin is distributed AS IS. There is no warranty of any kind as to
its fitness for any purpose. The risks associated with the use of this product are borne
by the user in their entirety. In other words, the SQLite3ProfessionalPlugin, although it is
in no way designed to do so, could be capable of ruining your software, crashing your
computer and erasing your hard drive. Marco Bambini and SQLabs take no responsi-
bility for these or other consequences.

REALbasic® it is a registered trademark of REAL Software, Inc. See their web site at
http://www.realsoftware.com for more details. SQLabs is not way affiliated with REAL
Software. All questions regarding REALbasic should be directed to REAL Software,
Inc.

Page 26

Appendix B

mailto://marco@sqlabs.net
http://www.sqlabs.net
http://www.sqlabs.net
mailto://info@sqlabs.net
mailto://info@sqlabs.net

