
Akash Kava
HTTP://WEBATOMSJS.COM

Web Atoms
CREATING RICH INTERNET WEB APPLICATIONS WITH WEB
ATOMS

1 CONTENTS

1 Contents .. 1

2 Web Atoms License ... 7

3 What is Single Page Application? .. 15

3.1 History of HTML and Web Apps .. 15

3.2 Speed of Internet .. 15

3.3 UI Processing on Server .. 15

3.4 Client Server Architecture ... 15

3.5 Frameworks .. 15

3.6 MVC vs. Component Oriented Development ... 16

4 Core Architecture .. 17

4.1 Object Oriented Design ... 17

4.1.1 Static Linking ... 17

4.1.2 Debug Script .. 17

4.2 Property Inference .. 18

4.2.1 Trouble with Single Method Property Pattern ... 19

4.3 Distributed Binding ... 19

4.4 Enumerator Pattern .. 19

4.5 Child Enumerator .. 19

4.6 HTML Element Template .. 20

4.7 Control Life Cycle .. 20

5 Script and CSS Installation ... 21

5.1 No Minimizer... 21

5.2 Customize CSS ... 21

5.3 Visual Studio Syntax Colorizer ... 21

5.4 Google Chrome Extension ... 22

6 Atom Control ... 23

6.1 Initialize Atom Control .. 23

6.2 Control Name .. 23

6.3 Inherited Data Property .. 24

6.4 Owner Property .. 24

6.5 Binding Html Attributes .. 24

6.5.1 Text Attribute .. 24

6.5.2 Is Enabled Attribute .. 24

6.5.3 Checked Attribute ... 25

6.5.4 Class Attribute ... 25

6.5.5 Style Attribute ... 26

6.5.6 Html Attribute ... 26

6.5.7 Absolute Position Attribute .. 26

6.6 Atom Prefix ... 27

7 Scope ... 28

7.1 Initialization ... 28

7.2 Scope (Current Scope) .. 29

7.3 Scope Control Name ... 29

7.4 Scope Template Name .. 29

7.5 Application Scope (Global Scope) ... 30

7.5.1 Navigation History ... 30

7.5.2 URL Hash Change .. 31

7.5.3 Eligible App Scope Value Types for URL Hash ... 31

7.6 Local Scope .. 32

8 Atom Control Properties ... 34

8.1 scope Property ... 34

8.2 appScope Property .. 34

8.3 localScope Property.. 35

8.4 atomParent Property.. 35

8.5 templateParent Property .. 36

9 Asynchronous Programming with Web Atoms ... 37

9.1 Pain of writing asynchronous tasks... 37

9.2 AtomPromise .. 38

9.3 AtomForm ... 38

9.4 AtomPostButton ... 40

9.5 Benefits of Web Atoms ... 40

10 Data Binding .. 41

10.1 One Time Binding .. 42

10.1.1 JavaScript Native Type Values ... 42

10.2 One way Binding ... 42

10.3 Two Way Binding .. 43

10.3.1 Two Way Binding Update Event ... 44

10.4 Style Binding .. 45

10.5 Event Binding .. 45

11 ActionSet ... 46

11.1 Events Processing .. 46

11.2 Simple Actions ... 46

11.3 String URL Action .. 46

11.4 Function Reference ... 46

11.5 Object Literal ... 47

11.5.1 Object Literal Scope .. 48

11.5.2 Object Literal AppScope .. 48

11.5.3 Object Literal Data .. 48

11.5.4 Object Literal Alert .. 49

11.5.5 Object Literal Confirm ... 49

11.5.6 Object Literal Timeout .. 49

12 Creating an Application ... 50

12.1 AtomApplication ... 50

12.1.1 Title ... 50

12.1.2 Busy Template ... 51

12.2 Dock Panel ... 51

12.3 Run as Page ... 51

13 Data Binding to Array .. 52

13.1 Label Value Pair ... 52

13.2 Cascaded Selections .. 53

14 Item Collections .. 54

14.1 Items Control .. 54

14.1.1 Scope ... 54

14.1.2 Item Template ... 54

14.1.3 Server Side Filtering .. 55

14.1.4 Table Template ... 55

14.2 List Box .. 57

14.2.1 Custom Selector .. 58

14.2.2 DataGrid .. 60

14.3 Data Pager ... 61

14.4 Combo Box .. 64

14.5 Toggle Button Bar ... 64

15 Building HTML User Interface ... 65

15.1 Dock Panel ... 65

15.2 View Stack ... 67

15.3 Link Bar (Menu Bar) .. 68

15.4 Form Layout .. 69

15.5 Form Grid Layout .. 71

15.6 Form Grid Layout with Tabs .. 73

15.7 Form Items .. 75

15.7.1 HTML Elements ... 75

15.7.2 CheckBoxList ... 75

15.7.3 Date Control .. 76

15.7.4 Date Field .. 77

15.8 Navigator List .. 78

15.9 Window ... 81

15.9.1 Hosted IFrame ... 82

15.10 Wizard ... 83

16 Difference between Scope and Data .. 85

17 Library Reference .. 86

17.1 Atom Module .. 86

17.1.1 Atom.get(target,property) Method ... 86

17.1.2 Atom.set(target,property,value) Method .. 86

17.1.3 Atom.add(targetArray,item) Method .. 86

17.1.4 Atom.insert(targetArray,index,item) Method ... 86

17.1.5 Atom.remove(targetArray,item) Method ... 86

17.1.6 Atom.clone Method ... 86

17.1.7 Atom.refresh(target,property) Method ... 86

17.1.8 Atom.refreshArray(targetArray) Method ... 86

17.1.9 Atom.clearArray(targetArray) Method .. 86

17.1.10 Atom.url(url,query,hash) Method ... 87

17.1.11 Atom.time Method ... 87

17.1.12 Atom.refreshWindowCommand Method ... 87

17.1.13 Atom.merge(dest, src, update) Method ... 87

17.1.14 Atom.csv(array,path,separator) Method ... 87

17.1.15 Atom.query Method ... 87

17.2 AtomPromise Module ... 88

17.2.1 JSON Post Encoding ... 88

17.2.2 JSON Serialized as Form Value as formModel field (Default) .. 88

17.2.3 JSON Serialization.. 88

17.2.4 AtomPromise.json(url,query,options) Method ... 88

17.2.5 AtomPromise.get(url,query,options) Method ... 89

17.2.6 AtomPromise.cachedJson(url,query,options) Method 89

17.2.7 AtomPromise.configLabel(url,value,options) Method 89

17.3 AtomQuery Module ... 90

17.3.1 JSON Data Store .. 90

17.3.2 Simple Comparison Query .. 91

17.3.3 Nested Property Comparison.. 91

17.3.4 Composite Query .. 91

17.3.5 In Query ... 91

17.3.6 Any Query ... 92

17.3.7 Useful Operators ... 92

17.4 AtomQuery Extension Methods ... 93

17.4.1 sum Method ... 93

17.4.2 count Method ... 93

17.4.3 any Method ... 93

17.5 AtomBinder Module ... 94

17.5.1 AtomBinder.setValue(target,property,value) Method 94

17.5.2 AtomBinder.getValue(target,property) Method... 94

17.5.3 AtomBinder.refreshValue(target,property) Method 94

17.5.4 AtomBinder.add_WatchHandler(target,property,handler) Method .. 94

17.5.5 AtomBinder.remove_WatchHandler(target,property,handler) Method

 94

17.6 AtomDate Class .. 95

17.6.1 AtomDate.toMMDDYY Method .. 95

17.6.2 AtomDate.toShortDateString Method .. 95

17.6.3 AtomDate.toDateTimeString Method ... 95

17.6.4 AtomDate.parse Method ... 95

17.7 AtomFileSize Class ... 95

17.7.1 AtomFileSize.toFileSize Method .. 95

18 Walkthroughs .. 96

18.1 Post changes to server on AtomComboBox ... 96

18.2 Filtering AtomPromise.json from server .. 98

18.3 Filtering AtomItemsControl items locally ... 100

2 WEB ATOMS LICENSE

This section is for reference only, for latest updates on License Agreement and Terms, please visit

https://webatomsjs.neurospeech.com/

NOTICE: READ THIS LICENSE AGREEMENT CAREFULLY BEFORE INSTALLING, ACCESSING, COPYING OR

USING THE SOFTWARE ACCOMPANYING THIS AGREEMENT. CLICKING ON THE "I ACCEPT" BUTTON

BELOW, OR IN ANY OTHER WAY INSTALLING, ACCESSING, COPYING OR USING THE SOFTWARE, CREATES

A LEGALLY ENFORCEABLE CONTRACT AND CONSTITUTES ACCEPTANCE OF ALL TERMS AND CONDITIONS

OF THIS AGREEMENT WITHOUT MODIFICATION.

This License Agreement ("LICENSE") is a legal agreement between you (either an individual or a single

entity, also referred to as ("LICENSEE", "YOU") and NeuroSpeech Inc. ("NeuroSpeech"), for the software

containing this LICENSE which may also include the software’s source code written in a high–level

computer language, associated media, printed materials, and "online" or electronic documentation

(collectively referred to as "SOFTWARE"). The parties agree as follows:

1. LICENSE

Web Atoms License refers to right to use Web Atoms scripts into your application hosted or used in any

other way in the context of a browser that is capable of rendering html and executing javascript.

Web Atoms License on domain name refers to HTTP Host Header, for every domain or subdomain, new

license must be taken. Same license can only be used on other domain or subdomain if it is used for

backup purpose or for mirroring exact same application.

License is applicable on any HTML text rendered by browser, offline, online or loaded through text with

content type as html.

1.1 Licensing (License Type)

(a) Attributed License (Commercial as well as Non Commercial) With Link to Web Atoms

License is granted for one domain or application under following conditions.

Licensee must put a link (anchor tag) at bottom right corner of page by writing “Powered by Web

Atoms” and must link “Web Atoms” to http://webatoms.neurospeech.com as shown in the following

picture. The link must be human visible at the bottom of the application. Any tricks to hide or move it

out of human view is not allowed.

Education or Non Profit Applications must use word “Sponsored by” instead of “Powered by”.

This link must be placed in every page, wherever Web Atoms scripts are used under free license.

Your website or application must be registered with public Web Atoms Directory hosted at

http://webatoms.neurospeech.com/directory, registration is free.

https://webatomsjs.neurospeech.com/

(b) Non Commercial Open Source License

Eligibility

Your project must be licensed under GPL, Apache, MIT or BSD License and must be a noncommercial

license. Requires Pre-Written Approval from us.

(c) Yearly Subscription Licenses

(1) Site Subscription

Single Web Site on Multiple Web Server or CDN

(2) Server Subscription

Unlimited Web Sites on Single Server

(d) Site Perpetual License

(1) Site License

Single Web Site served from Single Server

(2) Load Balancer License

Single Web Site served from 10 Web Servers for Load Balancing

(3)Enterprise Site License

Single Web Site served from any number of servers or CDN

If you want to purchase and use web atoms license for unlimited time, then you need Commercial

license which is available per Application or per Domain. Application area where users login and perform

an activity, the application boundary is defined by following conditions.

In case of website, Application is One Domain Name. Domain Name includes sub domain as well, so

multiple subdomains are referred as multiple applications.

Application can have multiple aliases, for example in.neurospeech.com is a website for Indian Customers

and us.neurospeech.com is a website for US Customers, but both actually perform same operations on

same set of users just distinguished by different region. This refers as aliases.

Application defines set of operations which one user can perform after login in one session.

If Applications use Single Sign On or Federated Login, or any other means of sharing authentication info

across different domain names, each application is a separate application even though users are

automatically authenticated.

In case of Installed/Local/Intranet Application, Application which is served by one

License Grant

License is granted per Application or per Domain.

License is granted only for specific version.

Application License includes one year of free upgrades.

2. SUPPORT SERVICES

2.1 Support

Licensor will use commercially reasonable efforts to provide Licensee with Software maintenance and

support in accordance with its standard practices (as amended from time to time, Support Services).

Licensor shall have no obligation to support any version other than the then current and immediate

prior version. Licensee agrees that Licensor may charge in accordance with its then current policies for

any support services resulting from (a) problems, errors or inquiries relating to any hardware, system,

service or other software or (b) use of any unsupported version of the Software. As part of your

Developer License you are entitled to NeuroSpeech’s "Standard" Support Package for a limited period of

time, which guarantees an initial response to (but not necessarily a complete resolution of) your issue

within forty eight (48) hours during business days.

2.2 Updates

Service Packs and Major Version updates are available in accordance with the terms set forth a at

http://neurospeech.com/wsclient/support.html

You may use the resulting upgraded product only in accordance with the terms of this LICENSE.

3. SOURCE CODE

(a) As part of the DEVELOPER LICENSE WITH SUBSCRIPTION AND SOURCE CODE you are granted a non-

exclusive, non-transferable, non-sublicensable, revocable and limited license to access, use, copy and

modify the Source Code, including the right to may make modifications, enhancements, derivative

works and/or extensions (“Modifications”) to the SOFTWARE or Source Code utilizing any such Source

Code, subject to terms provided in this section,

(b) Under no circumstances may any portion of the SOFTWARE’s source code or any modified version of

the source code be distributed, disclosed or otherwise made available to any third party,

(c) You may not distribute the Source Code, or any Modifications to the SOFTWARE or Source Code, in

source code form,

(d) NEUROSPEECH DOES NOT provide technical support for modified source code,

(e) The SOFTWARE’s source code is provided "AS IS". Refunds are not available for licenses that include

source code,

(f) You acknowledge that the SOFTWARE’s source code contains valuable and proprietary trade secrets

of NEUROSPEECH. You also acknowledge that all individuals employed by or belonging to your entity

agree to expend every effort to insure its confidentiality. You agree to assume full responsibility for such

employees’ or contractors’ use, or misuse, of such disclosed source code as if it was your use. These

obligations shall not apply to any information generally available to the public, independently developed

or obtained without reliance on NEUROSPEECH information, or approved in writing for release by

NEUROSPEECH without restriction.

4. REDISTRIBUTION

You may distribute the SOFTWARE (or, where applicable, the run–time portion of the SOFTWARE)

provided that:

· You distribute the SOFTWARE, in object code form only, as part of solutions for internal company use,

hosted applications, commercial solutions deployed at end–users’ sites or shrink–wrapped software

(PACKAGED PRODUCTS) in which the SOFTWARE is integrated.

· You ensure that the SOFTWARE is not distributed in any form that allows it to be reused by any

application other than your solution. Technical guidelines will be provided upon request, contact

support@neurospeech.com for more details.

· You duly inform your customers that they are not allowed to use the SOFTWARE independently from

your solution. For use of the SOFTWARE in design–time (i.e. within a development environment such as

Microsoft Visual Studio) your customers need to purchase the appropriate number of Developer

Licenses from NeuroSpeech.

· You include a valid copyright message in your solution in a location viewable by the end–users (e.g.

"About" box).

· You assume full responsibility for your customer’s use of the SOFTWARE and must ensure that

NeuroSpeech has no obligation to such customer or liability for such customer’s use of the SOFTWARE.

All product licenses granted by you to your end user customers in accordance with the terms of this

agreement are perpetual and royalty–free.

5. U.S. EXPORT REGULATIONS

This Software product is subject to export restriction under U.S LAWS, as this software may contain

encryption technology. Prior written authorization from the U.S. government is required for direct or

indirect exports and re-exports of NEUROSPEECH Product and Technology to any country embargoed or

restricted by the U.S. Currently, the embargoed countries are Cuba, Iran, Libya, North Korea, Sudan, and

Syria.

And also direct or indirect exports and re-exports are denied to the parties whose name are there in the

U.S. Treasury Department’s list of Specially Designated Nationals or the U.S. Department of Commerce

Denied Person’s List or Entity List.

Licensee bears all responsibility for export law compliance and will indemnify NEUROSPEECH against all

claims based on Licensee’s exporting the Software.

For more information regarding export regulations, please visit the Bureau of Industry and Security web

site at http://www.bis.doc.gov

5. CONFIDENTIALITY

5.1 Scope

The term Confidential Information means all trade secrets, know-how, software and other financial,

business or technical information of Licensor or any of its suppliers that is disclosed by or for Licensor in

relation to this Agreement, but not including any information Licensee can demonstrate is (a) rightfully

furnished to it without restriction by a third party without breach of any obligation to the Licensor, (b)

generally available to the public without breach of this Agreement or (c) independently developed by it

without reliance on such information. All Software and Documentation is Confidential Information.

5.2 Confidentiality

Except for the specific rights granted by this Agreement, Licensee shall not possess, use or disclose any

Confidential Information without Licensor's prior written consent, and shall use reasonable care to

protect the Confidential Information. Licensee shall be responsible for any breach of confidentiality by

its employees.

6. PROPRIETARY RIGHTS

6.1 Restrictions.

Licensee shall not (a) use any Confidential Information to create any software or documentation that is

similar to any Software or Documentation,

(b) disassemble, decompile, reverse engineer or otherwise try to discover any source code or underlying

structures, ideas or algorithms of the Software (except and only to the extent these restrictions are

expressly prohibited by applicable statutory law),

(c) Encumber, lease, rent, loan, sublicense, transfer or distribute any Software,

(d) Copy, adapt, merge, create derivative works of, translate, localize, port or otherwise modify any

Software or Documentation,

(e) use the Software, or allow the transfer, transmission, export or re-export of all or any part of the

Software or any product thereof, in violation of any export control laws or regulations of the United

States or any other relevant jurisdiction or

(f) Permit any third party to engage in any of the foregoing prescribed acts. Licensee shall not use the

Software for the benefit of any third party (e.g., time-share or service bureau arrangement) without

Licensor's prior written consent, at its discretion.

6.2 No Implied License

Except for the limited rights and license expressly granted hereunder, no other license is granted, no

other use is permitted and Licensor (and its suppliers) shall retain all right, title and interest in and to the

Software and Documentation (and all patent rights, copyright rights, trade secret rights and all other

intellectual property and proprietary rights embodied therein).

6.3 Markings

Licensee shall not alter, obscure or remove any trademark, patent notice or other proprietary or legal

notice displayed by or contained in any Software, Documentation or packaging.

6.4 Third Party Software

The Software may operate or interface with software or other technology (In-Licensed Code) that is in-

licensed from, and owned by, third parties (Third Party Licensors). Licensee agrees that

(a) It will use In-Licensed Code in accordance with this Agreement and any other restrictions specified in

the applicable license set forth or referenced in the Documentation,

(b) No Third Party Licensor makes any representation or warranty to Licensee concerning the In-

Licensed Code or Software and

(c) No Third Party Licensor will have any obligation or liability to Licensee as a result of this Agreement

or Licensee's use of the In-Licensed Code.

7. WARRANTY DISCLAIMERS

THE SOFTWARE AND SUPPORT SERVICES ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND.

LICENSOR DOES NOT WARRANT THAT THE SOFTWARE OR SUPPORT SERVICES WILL MEET LICENSEE'S

REQUIREMENTS OR THAT THEY WILL BE UNINTERRUPTED OR ERROR-FREE. TO THE FULLEST EXTENT

PERMITTED BY LAW, LICENSOR HEREBY DISCLAIMS (FOR ITSELF AND ITS SUPPLIERS) ALL OTHER

WARRANTIES, WHETHER EXPRESS OR IMPLIED, ORAL OR WRITTEN, WITH RESPECT TO THE SOFTWARE

AND SUPPORT SERVICES INCLUDING, WITHOUT LIMITATION, ALL IMPLIED WARRANTIES OF TITLE, NON-

INFRINGEMENT, QUIET ENJOYMENT, INTEGRATION, MERCHANTABILITY OR FITNESS FOR ANY

PARTICULAR PURPOSE AND ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING, COURSE OF

PERFORMANCE OR USAGE OF TRADE.

NEUROSPEECH warrants solely that the SOFTWARE will perform substantially in accordance with the

accompanying user documentation for a period of ninety (90) days. NEUROSPEECH does not warrant

that use of the SOFTWARE will be uninterrupted or error free at all times and in all circumstances, nor

that program errors will be corrected. This limited warranty shall not apply to any error or failure

resulting from (i) machine error, (ii) LICENSEE’s failure to follow operating instructions, (iii) negligence or

accident, or (iv) modifications to the SOFTWARE by any person or entity other than NEUROSPEECH. In

the event of a breach of warranty, LICENSEE‘s sole and exclusive remedy, is repair of all or any portion of

the SOFTWARE. If such remedy fails of its essential purpose, LICENSEE‘s sole remedy and

NEUROSPEECH’s maximum liability shall be a refund of the paid purchase price for the defective

SOFTWARE only. This limited warranty is only valid if NEUROSPEECH receives written notice of breach of

warranty no later than thirty (30) days after the warranty period expires. EXCEPT FOR THE EXPRESS

WARRANTIES SET FORTH IN THIS LICENSE, NEUROSPEECH DISCLAIMS ALL OTHER WARRANTIES, EXPRESS

OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF TITLE,

NONINFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

8. LIMITATION OF LIABILITY

IN NO EVENT SHALL LICENSOR BE LIABLE UNDER ANY CONTRACT, NEGLIGENCE, STRICT LIABILITY OR

OTHER LEGAL OR EQUITABLE THEORY FOR ANY SPECIAL, INCIDENTAL, PUNITIVE, INDIRECT OR

CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING DAMAGES RESULTING FROM INTERRUPTION OF

USE, LOSS OR CORRUPTION OF DATA, OR LOST PROFITS, WHETHER OR NOT LICENSOR HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, AND NOTWITHSTANDING ANY FAILURE OF ESSENTIAL

PURPOSE OF ANY REMEDY, ARISING OUT OF OR IN CONNECTION WITH THIS AGREEMENT. IN NO EVENT

SHALL LICENSOR’S TOTAL AND AGGREGATE LIABILITY UNDER THIS AGREEMENT EXCEED THE AMOUNT

OF THE LICENSE FEES PAID BY LICENSEE HEREUNDER.

9. TERM AND TERMINATION

9.1 Term

This Agreement shall commence on the Effective Date and continue in effect until terminated as

provided herein.

9.2 Termination.

This Agreement shall automatically terminate without further action by any party, immediately if

Licensee fails to comply with the terms of this agreement. NEUROSPEECH reserves the right to

discontinue at any time. However, NEUROSPEECH will fulfill any contractual obligations to provide

support for discontinued products that exist as of the date of discontinuation. Upon termination, you

agree to destroy the SOFTWARE, including all accompanying documents and copies.

10. GENERAL PROVISIONS

10.1 Entire Agreement

This Agreement constitutes the entire agreement, and supersedes all prior negotiations, understandings

or agreements (oral or written), between the parties about the subject matter of this Agreement. Terms

set forth in Licensee's Purchase Order (or any similar document) that are in addition to or at variance

with the terms of this Agreement are specifically waived by Licensee. All such terms are considered to

be proposed material alterations of this Agreement and are hereby rejected. No waiver, consent or

modification of this Agreement shall bind either party unless in writing and signed by the party against

which enforcement is sought. The failure of either party to enforce its rights under this Agreement at

any time for any period will not be construed as a waiver of such rights. If any provision of this

Agreement is determined to be illegal or unenforceable, that provision will be limited or eliminated to

the minimum extent necessary so that this Agreement will otherwise remain in full force and effect and

enforceable.

10.2 Governing Law

This Agreement shall be governed by and construed in accordance with the laws of the United States of

America, without regard to its conflicts of law provisions.

The United Nations Convention on Contracts for the International Sale of Goods does not apply.

10.3 Acknowledgment

Licensee acknowledges that:

(a) It has read and understands this Agreement,

(b) It has had an opportunity to have its legal counsel review this Agreement,

(c) This Agreement has the same force and effect as a signed agreement,

(d) Licensor requires identification of the User and Licensee before issuing this license and

(e) Issuance of this license does not constitute general publication of the Software or any other

Confidential Information.

3 WHAT IS SINGLE PAGE APPLICATION?

3.1 History of HTML and Web Apps
Single Page Application refers to typical Client Server communication between browsers (Client) and HTTP

Web Server. Earlier, technologies like ASP, PHP, JSP and recent ASP.NET used to serve HTML and that was

rendered by client without much of processing. The first version of browser itself was very read-only book,

where you could only read and navigate the contents of page. Then came along JavaScript, where little

bit of data validation came in picture to verify the contents of form before posting it to server. Still major

logic processing was performed on server. Nasty if-else based logic on server side scriptlets like ASP or

PHP makes code so complex, it becomes nightmare to manage apps written on them. Not only that, more

processing server requires more server resources for increasing number of users and slowing down the

speed of application.

3.2 Speed of Internet
We started with few kilobytes of speed and we are now at few megabytes per second speed, however

our hunger of speed always exceeds available speed due to availability of multiple tabs on browser,

multiple websites to look at simultaneously with power of multitasking. Buying more servers just isn’t

enough to meet demands of speed for web apps.

3.3 UI Processing on Server
Most programming languages like ASP, PHP, JSP or PERL etc all process major logic regarding HTML

elements on server. So server is busy calculating whether to hide or show an element based on some

business logic for all 1000 users at once, where else CPU on all 1000 users is idle waiting for response from

server. In older Client Server systems, Server only serves data after validating the request, and Client does

UI processing on Client Machine. Unfortunately, HTML didn’t adopt this pattern until arrival of AJAX,

however major platforms are still doing it wrong, even in AJAX, and they are sending partial HTML

elements.

3.4 Client Server Architecture
A true Client Server Architecture is the one, in which UI (HTML) stays at the client. And only data, in the

form of JSON or any other compatible text format like CSV, is loaded from server. This reduces CPU activity

on server, allowing it to serve more clients. And since each client (Browser) is now capable of running

HTML5 and JavaScript, there are new frameworks evolving to support this paradigm.

3.5 Frameworks
So need of Client Server programming (now referred as Single Page Applications) created need of

Frameworks that allows us to process UI at client. We did identify lots of concepts and have already seen

various JavaScript libraries, but none of them fit our requirements. Larger business applications are

programmed by many developers and many teams. Other platforms such as Flex and Silverlight offer a lot

in terms of managing and maintaining code. Writing code and managing code are two different aspects.

Abstractions and rewriting logic in the form of simpler blocks makes everyone’s life very easy. Our goal

was to bring new concepts into HTML so that visualizing and maintaining code becomes easy.

3.6 MVC vs. Component Oriented Development
This section might hurt many programmers, as many programmers believe MVC is great way to create

apps. For smaller apps, it seems easy, and for highly large complex apps it looks perfect solution. But for

Mid-Sized business apps, MVC is little bit complicated when it comes to manage and maintain code. MVC

is good where application has single direction of flow, Input -> Process -> Output. However for interactive

UI it is not very helpful. Though Component Oriented Development does encapsulate MVC, but it turns

out that Component has set of properties that refers model, visual template that represents view and a

self-contained logic that Component performs and updates its own model that represents controller.

The most successful UI development platforms, Visual Basic, Adobe Flex, Windows Forms, Java Beans,

Swings and many similar were focused more on Component Oriented Development (Custom Controls &

User Controls).

Features of Component Oriented Development

1. Ability to Visualize User Interface at time of Development

2. Advanced UI Editors support Drag and Drop of Components

3. You can safely pack a logic in a Custom Components that other developers can use without

affecting their or your code

4. Controls can raise Events for notifying other components

5. Properties of Control lets you choose particular pre coded behavior

6. Visual Appearance of Control can be customized with Templates

4 CORE ARCHITECTURE

4.1 Object Oriented Design
Over number of different Object Oriented Design approach in JavaScript, Web Atoms was designed using

Flat Prototype Inheritance to avoid chain lookups. Most widely used inheritance pattern of prototype

chaining takes longer time to resolve methods in base classes. This adds up to performance and leads to

more CPU consumption. We have carefully chosen flat prototype pattern, in which we explicitly copy

every base class prototype into current prototype if prototype does not contain same named method. As

per your convenience you can modify this behavior as this is the 2nd global method designed inside Web

Atoms JavaScript file. Each prototype carries __typeName and __baseType properties which you can

use to inspect objects.

4.1.1 Static Linking

All classes are organized in inheritance order, so the base class comes first in the script and inherited class

comes after. This design reduces setup time as the hierarchy is built and it is correct. Dynamic linking

requires invoking complex logic in finding references and going through unnecessary huge iterations.

Each class is coded as a separate JavaScript file, and before build, we have a text template processor,

which organizes Base Class references and combines all JavaScript files into One Web Atoms JavaScript

file.

4.1.2 Debug Script

Debug version of Web Atoms JavaScript is nothing but better readable JavaScript version as well as it

contains File Name and Line Number of individual JavaScript File. As managing JavaScript project was

becoming very difficult, we had to divide the framework in number of smaller files and combine them in

proper inheritance hierarchy.

/*Line 230 - 'AtomItemsControl.js' */ set_filter: function (f) {
/*Line 231 - 'AtomItemsControl.js' */ if (f == this._filter)
/*Line 232 - 'AtomItemsControl.js' */ return;
/*Line 233 - 'AtomItemsControl.js' */ this._filter = f;
/*Line 234 - 'AtomItemsControl.js' */ this._filteredItems = null;
/*Line 235 - 'AtomItemsControl.js' */ this.applyFilter();
/*Line 236 - 'AtomItemsControl.js' */ }

First line indicates that it is Line 230 of AtomItemsControl.js file. This helps in debugging huge code base

easily and manage classes in individual smaller files.

4.2 Property Inference
Since JavaScript did not have a default property syntax, we had to come up with a property inference that

should be consistent with member and method. And the most important part, we wanted to use function

as property value as well. This means, in Model View Commands pattern, we can set function delegates

as property which can be used later on to invoke them on any certain event.

Here is how we evaluate property,

 getValue: function (target, key) {
 if (!target)
 return null;
 var f = target["get_" + key];
 if (!f)
 return target[key];
 return f.apply(target);
 }

And here is how we set the property,

 setValue: function (target, key, value) {
 if (!target || value === undefined)
 return;
 var oldValue = AtomBinder.getValue(target, key);
 if (oldValue == value)
 return;
 var f = target["set_" + key];
 if (!f)
 target[key] = value;
 else
 f.apply(target, [value]);
 this.refreshValue(target, key, oldValue, value);
 }

In both examples, we first search if get_/set_ functions exist on the target, then we invoke them,

otherwise we set the value as a direct member assignment. We also check if property value is actually

different then current value or not, this helps in preventing infinite loop of changes.

4.2.1 Trouble with Single Method Property Pattern

Typical single method property pattern such as the one found in jQuery or similar frameworks does not

work well with evaluating mixed property patterns. For example, to evaluate a.b, b could me a single

method property function or it could be a member storing delegate to some other function.

Web Atoms is built on Commands Pattern, where Commands are delegates (function with closures) which

are invoked on certain event. However, Property Evaluator is not supposed to invoke these delegates,

they are simply supposed to store these delegates.

All Atom Controls have properties defined as get_/set_ methods. So Property Evaluator can easily

distinguish between Command Delegates and Properties.

4.3 Distributed Binding
To achieve high performance in Data Binding, we wanted to

reduce overhead in updating HTML elements per change. So we

created event handlers in target object itself under hidden

variable _$_handlers. This member then stores all delegates to

bound objects which should listen to change of particular

property. So if one object’s one property is updated, only event

listener for that particular property are intimated, for same

object, if there are other property change listeners, they will not

be intimated. This increases performance with very little cost of more memory.

This gives us freedom in creating many objects within one object without worrying about performance

overhead. Most platforms tell you not to put more things in scope, Web Atoms does not impose such

restrictions.

4.4 Enumerator Pattern
jQuery or similar enumerator pattern imposes lots of complex closures and makes logic look little different

than that of earlier object oriented approach. So we created class AtomEnumerator, which has next and

current methods as it is available in different programming languages such as Java and C#.

Enumerator pattern has advantages, as it does not need inline functions, and logic appears very clear to

the reader. And we can still use “this” as expected “this” in object oriented programming construct. jQuery

etc. breaks such constructs as it changes the meaning of “this” inside the inline function. However, it

becomes more complicated to debug and perform simpler logic and also increases closures.

Enumerator Pattern is simple, and we can reduce number of iterations when needed.

4.5 Child Enumerator
Using jQuery or querySelector equivalent turns out to be an expensive operation, as it enumerates

everything node, first to query and collect the result and second to actually enumerate the results to

process our operation. Web Atoms heavily depends upon child enumeration for creating and organizing

the UI hierarchy. To improve speed, we navigate the DOM as graph and we walk and perform operations

simultaneously to reduce number of iterations.

4.6 HTML Element Template
In Web Atoms, all controls depend heavily on templates to customize user interface. Most of the times,

we think that changing CSS is sufficient for changing the display, but some complex logic such as putting

checkbox for selection or image for preview and little complex table structure to display data, all these

are only possible with HTML Element Template. Instead of creating and parsing templates, Web Atoms

use cloneNode method of HTML Element to create new elements quickly.

4.7 Control Life Cycle
Every control is derived from AtomControl and it has three pass creation life cycle, Create, Initialize and

Update UI. Three pass means, your entire DOM is navigated thrice, however this may seem little

performance overhead, but this is necessary to ensure smooth creation as well as cascaded bindings.

1. First Constructor is Called for the Control

2. createChildren method is called on Control

a. createChildren of base class is called.

b. Create Children enumerates each child and removes templates and saves presenters

c. Removing templates from node hierarchy ensures templates will not be initialized unless

needed and will not affect execution. Template will be stored in current object with name.

d. Constructor of each child control will be invoked and Create Children will be called on

each child.

3. Initialize Method is called on Control.

a. In which, base class’s initialize method is called.

b. Scope is initialized as per hierarchy and local-scope attribute.

c. Name is applied.

d. Initialize Properties method is queued.

i. Initialize Properties enumerate every child and queues Initialize Method for each

child.

e. initializaionComplete is queued, in which.

i. onCreationComplete is called for current Control

ii. updateUI is called on current control

5 SCRIPT AND CSS INSTALLATION

Before adding Web Atoms related resources in HTML HEAD Section, you must download jQuery version

1.8.2 onwards and include them in your HTML HEAD Section before adding any of Web Atoms resources.

Web Atoms need only two resources,

 web-atoms.js or web-atoms-debug.js JavaScript file in HTML HEAD Section

 web-atoms.css Style Sheet in HTML HEAD Section

Please make sure you comply with the licensing of Web Atoms for every page that adds these two

resources. Any custom controls or your application related scripts must appear after these two resources.

5.1 No Minimizer
Please note, web-atoms.js is already minimized to maximum extent possible, since Web Atoms uses

reflection (to inference properties based on get_/set_ methods), running minimizer can destroy all the

logic and Web Atoms will not function.

5.2 Customize CSS
Web Atoms CSS file defines default look and feel of Web Atoms controls, you can definitely override them

in your custom CSS or replace this CSS completely. However, before replacing, you must take care that all

required Web Atoms Style Selectors are coded properly to make them work right.

 <!-- Download and Comply with jQuery Terms independently -->
 <script src="/Scripts/jquery-1.8.2.js"></script>
 <!-- Web Atoms JavaScript -->
 <script src="/Scripts/web-atoms-debug.js"></script>
 <!-- Web Atoms Style Sheet -->
 <link href="/Style/web-atoms.css" rel="stylesheet" />

You are allowed to rename the files and organize them as per your needs and coding conventions. But

each page importing Web Atoms JavaScript and Style Sheet must comply with Web Atoms Licensing

policies.

5.3 Visual Studio Syntax Colorizer
Editing Web Atoms files are little difficult without proper syntax color that represents different form of

binding expressions. You can download and use free “Web Atoms Syntax Highlighter” from this URL.

http://visualstudiogallery.msdn.microsoft.com/ecd49e57-2348-4e4c-90c8-9d21d1d50a1e

http://visualstudiogallery.msdn.microsoft.com/ecd49e57-2348-4e4c-90c8-9d21d1d50a1e

5.4 Google Chrome Extension

We have created Web Atoms Properties Pane to inspect AtomControl associated with the element and

inspect its properties. Since AtomControl can host many elements and can host bindings for many

element, you have to travel up words in hierarchy to inspect associated AtomControl and its properties.

However most of the time, data property is inherited so finding data property can be time consuming for

debugging purposes.

We have created Google Chrome Extension available at Google Chrome Web Store at following URL.

https://chrome.google.com/webstore/detail/web-atoms-properties-

pane/mboefdeomkdlbekljcecbfimmecffgje?hl=en-US

Or you can search for “Web Atoms Properties Pane” in google chrome web store.

Once you install, you will see Web Atoms Properties Pane in Chrome Developer Tools after you right click

on an element and click on “Inspect Element”.

https://chrome.google.com/webstore/detail/web-atoms-properties-pane/mboefdeomkdlbekljcecbfimmecffgje?hl=en-US
https://chrome.google.com/webstore/detail/web-atoms-properties-pane/mboefdeomkdlbekljcecbfimmecffgje?hl=en-US

6 ATOM CONTROL

Control is a class (with respect to OOPs) containing set of methods and event handlers to modify behavior

of attached HTML Element. We have created set of controls that gives you ability to perform certain

standard operations such as list, docking and view stack. View stack can be thought of Tab Control, you

can customize look and feel of controls to make them look like any way you want.

Atom Control also applies set of default styles, and provides ability to customize style for all controls as

well as just one control.

6.1 Initialize Atom Control
First attribute of element must be atom-type if you want to initialize it as a control. Controls define

special properties that are now available with the element. And you can set them as follow.

As shown in the example below, we have associated AtomControl with div and now it can perform data

binding as we need.

<!-- Model (Data) -->
<script type="text/javascript">
({
 model: {
 firstName: 'Peter',
 lastName: 'Parker'
 },
 fullName: function (fName, lName) {
 return fName + ' ' + lName;
 }
})
</script>

<!-- View (User Interface) -->
<div
 atom-dock="Fill"
 atom-type="AtomControl"
 atom-data="{$scope.model}"
 >
 <div atom-text="{$data.firstName}"></div>
 <div atom-text="{$data.firstName + ' ' + $data.lastName}"></div>
 <div atom-text="{$scope.fullName($data.firstName,$data.lastName)}"></div>
</div>

6.2 Control Name
To resolve id issue, and to name controls independently in different scope, Web Atoms stores instances

of controls in current scope with atom-name value specified. Id in HTML has to be unique, but scope

control names have to be unique only in one scope. You can have same name in different scopes. Check

out localScope example for more details.

With $scope.controlName.propertyName, you can access other sibling control properties in same

scope. You can access them from other scope such as parent, localScope or appScope as well.

6.3 Inherited Data Property
AtomControl has a property called data, and it can hold any object/value in it. And it refreshes all other

controls that are bound to this data property. If data property is not set then it is inherited in DOM from

the parent, and so on. You can set data property in code and in markup. By default, AtomItemsControl

will create new AtomControl and set the data property corresponding to the index in items array. Thus

data in child element of an AtomItemsControl will be different from the data of AtomItemsControl itself.

6.4 Owner Property
Child elements of AtomControl can access other properties of control by using $owner.property.

Usually all properties are only accessed through $owner.property syntax, but to make it easy, we have

defined shortcuts for $owner.data as $data, $owner.scope as $scope and $owner.appScope as

$appScope.

6.5 Binding Html Attributes
To bind any attribute on any element, you can simply use binding expression with prefix atom- that will

set corresponding attribute on the element. Different types of binding (One Time, One Way and Two

Ways) will be explained in binding chapter.

<a atom-href="{$data.Url}"
 atom-target="{$data.Target}">

Property Inference first checks if any get_/set_ method exists on AtomControl or not, otherwise it

simply sets the attribute. However, both elements a and img do not have AtomControl associated with

it, so they will simply have attributes set. First preference is given to AtomControl properties.

6.5.1 Text Attribute

To set, internal Text (innerText or textContent or jQuery’s $(e).text(‘text’)) of JavaScript, you

can set atom-text property. This sets text for current element.

<!-- Gets Converted to -->
Text

And by doing this, atom-text is now bindable, so you can combine any expression in curly braces or

square braces and bind the text of current element.

6.5.2 Is Enabled Attribute

To enable or disable any element based on a Boolean condition you can use atom-is-enabled attribute

on any element for binding as shown below.

<input
 type="checkbox"
 atom-checked="$[data.IsDescriptionAvailable]"
<input
 type="text"
 atom-is-enabled="[$data.IsDescriptionAvailable]"
 atom-value="$[data.Description]"/>

6.5.3 Checked Attribute

To use checkboxes to perform binding to Boolean data, you can use atom-checked attribute as shown

below. Checked can only be used with input with type checkbox.

<script type="text/javascript">
 ({
 termsAgreed: false
 })
</script>

<input
 type="checkbox"
 atom-checked="$[scope.termsAgreed]"/>

<span
 atom-text="[$scope.termsAgreed ? 'Terms agreed' : '(Please Accept Terms)']"
 style-color="[$scope.termsAgreed ? 'inherit' : 'red']">

6.5.4 Class Attribute

Class attribute behaves little differently than any other HTML attributes. Class attribute basically toggles

between different values provided.

<div atom-type="AtomListBox">
 <div
 atom-class="[$scope.itemSelected ? 'a-selected-item' : 'a-item']">
 </div>
</div>

 In above example, it item was selected, a-selected-item class will be added to element’s class

using jQuery’s addClass method.

 And when binding changes, a-item class will be added to element’s class using addClass and a-

selected-item class will be removed.

 Class attribute is context aware, it will undo its last class before setting new class.

 Also class attribute does not override any existing css classes assigned to the element.

Class attribute also accepts Inline Object Definition as shown below.

<div
 atom-class="[{ 'a-selected-item': $scope.itemSelected, 'a-item': !$scope.itemSelected }]">
</div>

You will find that earlier example was smaller in this case, however you have choice of using class attribute

the way you want to use it.

6.5.5 Style Attribute

Writing long style becomes difficult to analyze and maintain, although styles must be managed mostly by

css, but when style comes from database or any user data, than you cannot create css class.

<div
 style-color="#FF00FF"
 style-background-color="{ $scope.itemSelected ? 'blue' : 'white' }"
 style-width="{ $data.Width + 'px' }">
</div>

You can apply any valid style attribute on any element, and you can also perform binding on style

attributes individually. This makes code more readable and you have various options to customize them.

6.5.6 Html Attribute

Use of atom-html should be avoided as long as possible, it is only available for extensibility. This property

does not use any Web Atoms functionality and you should use Templates to create your designs.

We recommend using template mechanism instead of atom-html property, however in sometimes it may

be helpful to know that you can set innerHTML by using atom-html property. You must know that

atom-html does not initialize any binding within itself, it is a pure HTML replacement. If you want binding

to work correctly, then you must use corresponding templates.

<div atom-html="{ 'Text' }"></div>
<!-- Gets Converted to -->
<div>Text</div>

6.5.7 Absolute Position Attribute

Sometimes creating absolutely positioned element requires a little big code, so we created a short hand,

which is bindable as shown below. It accepts an array of values or string with comma separated values for

Left, Top, Width and Height;

<div atom-abs-pos="25,25,200,100"></div>
<!-- Gets Converted to -->
<div style="position:absolute; left:25px; top:25px; width: 200px; height:100px;">
</div>

You can specify null to skip the parameter.

<div atom-abs-pos="25,25,null,100"></div>
<!-- Gets Converted to -->
<div style="position:absolute; left:25px; top:25px; height:100px;">
</div>

However, this should only be used with caution, and other layout options such as layout controls or css

should be used instead.

6.6 Atom Prefix
HTML5 specifications states that any extra attribute on element should be named with data- prefix.

However, since Web Atoms is UI framework and Web Atoms has specific named property called data

which carries data as per English language. Using data prefix causes confusion, as we are talking about UI

attributes and not specifically data.

Above code looks confusing. Not only this, Web Atoms has many controls and many properties, each

properties are atom- properties. To make it completely HTML5 compliant, we tried following.

Which is also very confusing, and it gets longer and longer. In our future version, we are planning to write

pre-processor for Web Atoms, which will convert your code from Web Atoms to HTML5 compliant

HTML+JS by stripping all atom- attributes and encapsulate them into a separate script initializer which

will also help in obfuscating the code.

Even for that transition, you will not have to change your code.

7 SCOPE

We have introduced concept of scope (UI scope) in web atoms to emulate UI scope as it exists in other UI

frameworks such as flex, Silverlight etc. UI scope basically creates boundary and it allows us to identify

and reference named properties and named controls that is independent of other scopes.

AtomApplication starts with a global scope referred as scope in same scope and as appScope in nested

scope.

Usually when you declare a function or variable, it executes in context of current window, JavaScript

provides scoping within boundaries of function. However, this scoping has nothing to do with element

within which JavaScript is executing. And there is no way to separate variable references in different scope

based on its position in the element.

7.1 Initialization
As we have come up with a pattern of defining model named global variable for the page, we have

included same model in $appScope.

<script type='text/javascript'>
 var model = { name: 'Web Atoms' };
</script>

Now, $scope.model in global scope, or $appScope.model refers to exact same variable defined above.

If you have any other global variables that you would like add in the scope, you have to initialize scope as

following. Let’s say you have a variable named jConfigValues, defined in some JavaScript.

<script type='text/javascript'>
 ({ jConfigValues: jConfigValues })
</script>

To emulate private scope based on position of script within Html Element and to bind script to specific

Element's private scope, Scope scripts were specially designed so that its normal execution does not affect

anything, but they are executed in proper scope.

<script type="text/javascript">
 ({
 start: 0,
 size: 20,
 infoCommand: function () {
 alert('Done');
 }
 })
</script>

Above script tag, causes start, size and infoCommand to be initialized as properties in respective

scope. infoCommand is a function, and it can be referenced in same scope.

Note: Please note the difference here, script shown in previous section is a simple JavaScript defined in

page header. Script shown in this example is a Session Initialization Script which only appears within Web

Atoms enabled HTML Elements.

Scope initialization is defined this way, because this form of script is actually just parsed by JavaScript, but

nothing is executed as it is a valid object literal expression. Since scope is nested, and based on control

life cycle, scope will be initialized at its perfect position in UI Hierarchy, this is just stored as reference

code to be executed later on.

Scope initialization script nodes are removed from Document while parsing further children. For safety,

any JavaScript other than Scope Initialization must only be kept in Document's Head Section.

7.2 Scope (Current Scope)
Term $scope is referred as current scope of the control. Since scope is managed by Web Atoms

Framework, you can always climb up the hierarchy through $scope.parent etc.

7.3 Scope Control Name
By setting id attribute, HTML element is accessible easily. But when we are dealing with multi item

controls such as List, Grid etc., referencing items could be very difficult. Scope helps us in referencing

different items in same scope very easily by setting atom-name attribute of the AtomControl. Once you

apply atom-name attribute, you can easily refer properties of controls by calling

$scope.controlName.propertyName pattern. In binding expression, property names are

automatically resolved so you do not have to use Atom.get or Atom.set methods.

7.4 Scope Template Name
Just like Scope Control Name, you can apply atom-template-name attribute to any HTML element and

that element is removed from DOM and referenced for resolving templates at runtime.

Templates are usually HTML elements with extra attributes, which are used by Web Atoms Template

System. Apart from inline templates, scope templates gives you advantage of changing templates at

runtime.

Once atom-template-name attribute is applied to any element, element is then removed from the DOM

and stored as template in scope. You can bind any template of any control to $scope.templateName

as shown below. In the following example, $scope[$scope.view] determines the template to be used

at runtime. Toggle button bar changes the selected template name, that causes atom-item-template

to be set to new value and all items are now rendered with new template. Scope Template can contain

any atom controls as well, just like inline templates.

<div
 atom-template-name="small"
 style-background-color="{$data.value}">

</div>

<div
 atom-template-name="medium"
 style-background-color="{$data.value}">

</div>

<div
 atom-type="AtomItemsControl"
 atom-items="{ $scope.list }"
 atom-item-template="[$scope[$scope.view]]">
</div>

In above example, small and medium elements are stored in Scope as templates. You can assign template

to any template property of any control and you can bind a dynamic expression which when changes, UI

is recreated with new template.

7.5 Application Scope (Global Scope)
Unless, scope initialization appears inside any Items control, scope is considered as a global Scope and is

referred as $appScope. $appScope is same as $scope for all controls in the same scope. However

nested scope controls can access global scope by using $appScope.

7.5.1 Navigation History

In AJAX applications, saving state of page is very important. As in browser, we need back button

functionality to function exactly like the way we get with simple web pages. Web Atoms makes it easy to

maintain navigation state by serializing global scope (appScope) values into URL separated by # token.

Scope initialization is ignored if values exists in URL hash and it works without writing any extra scripts.

<script type="text/javascript">
 ({
 view: 'red',
 list: [
 { label: 'Oranges', value: 'orange' },
 { label: 'Apples', value: 'red' },
 { label: 'Grapes', value: 'green' }
],
 display: function (item) {
 if (!item) return '';
 return item.label + ' are ' + item.value;
 }
 })
</script>
<div
 atom-name="buttonBar"
 atom-type="AtomToggleButtonBar"
 atom-items="{ $scope.list }"
 atom-value="$[scope.view]">
 <span
 atom-template="itemTemplate"
 atom-text="[$data.label]">
</div>

Let’s review above example.

 view property in scope is initialized to 'red'. So when you first load the page, view is set to 'red'.

 We have set two way binding between $scope.view and value property of

AtomToggleButtonBar. This causes AtomToggleButtonBar to set Apple as default selected

item when the page is loaded first.

 URL does not contain any hashtag to begin with.

 Now when we change AtomToggleButtonBar by clicking on it, note that URL now contains

hashtag for 'view' property. This means scope has saved 'view' on URL.

 Now if you will refresh the page, view will be set to the value that was saved in URL. And

AtomToggleButtonBar will be defaulted to last selected value.

7.5.2 URL Hash Change

URL hash changes whenever any scope property is modified by Web Atoms as a result of any User Action

or any AJAX result. All the properties of appScope are saved onto URL. Size of URL depends upon browser,

web atoms has no limit, but we recommend using only smaller values like integer indexes or short

keywords to be saved.

7.5.3 Eligible App Scope Value Types for URL Hash

You may notice that in above example, we also have a function called 'display' and a list called 'list', but

both were not serialized on URL. Here is why, scope values are only saved on URL under following

conditions.

 Only Global (Root Level) or appScope values are saved on URL.

 Value must be of type "String", "Number" or "Boolean" only. Anything out of this, object, function

or array are ignored.

 Corresponding property name of value must not start with underscore. Anything that starts with

_ is not saved onto URL. Sometimes puting everything on URL causes lots of navigation history

cycles that user may get confused. So only few scope properties must be chosen that should be

saved on URL. Rest must be named with _ underscore prefix to avoid confusion.

7.6 Local Scope
In languages like Flex and Silverlight, ability to create User Controls provided isolation for component

authors to avoid naming conflict. However, HTML does not have any naming scope related to HTML

Element. Function level private scope is only applicable in scripting context which is independent of visual

hierarchy of HTML Elements.

In order to reduce naming conflict, and to provide private data store, Web Atoms provides Local Scope

for Atom Controls. By marking AtomControl with atom-local-scope=true attribute, every child

element and child AtomControl becomes part of private local scope created at this element. Control and

its descendants can communicate with each other via localScope. Following example illustrates how

two different control on same page, with same named scope items are isolated for their execution.

<div
 atom-type="AtomControl"
 atom-local-scope="true"
 atom-abs-pos="100,100,500,200">
 <script type="text/javascript">
 ({
 name: "Scope 1",
 run: function (scope, sender) {
 alert("Called in Control with " + scope.name);
 }
 })
 </script>
 <button
 atom-event-click="{$localScope.run}"
 >Execute </button>
</div>

<div
 atom-type="AtomControl"
 atom-local-scope="true"
 atom-abs-pos="600,100,500,200">
 <script type="text/javascript">
 ({
 name: "Scope 2",
 run: function (scope, sender) {
 alert("Called in Control with " + scope.name);
 }
 })
 </script>
 <button
 atom-event-click="{$localScope.run}"
 >Execute </button>
</div>

8 ATOM CONTROL PROPERTIES

Following properties are accessible from current control. And their usage and understanding is explained

below.

8.1 scope Property
Scope refers to current scope in which current control was created. Based on position of the

control/element, the scope will change. However scope refers to same scope as current control’s scope.

8.2 appScope Property
Following example will demonstrate perfect difference between scope and appScope.

<div atom-type="AtomApplication">
 <script type="text/javascript">
 ({
 searchText: ''
 })
 </script>

 <div atom-dock="Top" style="height:30px">
 <input type="search" atom-value="$[scope.searchText]" placeholder="Search" />
 </div>
 <div
 atom-dock="Fill"
 atom-type="AtomItemsControl"
 atom-items="{ AtomPromise.json('/db/movieList') }">
 <div
 atom-template="itemTemplate"
 style-display="[$data.Name.indexOf($appScope.searchText)>0 ? '' : 'none']">

 </div>
 </div>

</div>

8.3 localScope Property
Following code illustrates how localScope is accessed.

<div atom-type="AtomApplication">
 <script type="text/javascript">
 ({
 searchText: ''
 })
 </script>

 <div atom-dock="Top" style="height:30px">
 <input type="search" atom-value="$[scope.searchText]" placeholder="Search" />
 </div>
 <div atom-type="AtomViewStack">
 <div
 atom-type="AtomDockPanel"
 atom-local-scope="true">
 <script type="text/javascript">
 ({
 movieType: 'Action'
 })
 </script>
 <span
 atom-type="AtomToggleButtonBar"
 atom-items="{ AtomPromise.json('/db/movieTypes') }"
 atom-value="$[scope.movieType]">

 <div
 atom-dock="Fill"
 atom-type="AtomItemsControl"
 atom-items="{ AtomPromise.json('/db/movieList') }">
 <div
 atom-template="itemTemplate"
 style-display="[$data.Name.indexOf($appScope.searchText)>0 ? 'block' : 'none']"
 style-background-color="[$data.Type == $localScope.movieType ? 'yellow' : 'inherit']">

 </div>
 </div>
 </div>
 </div>
</div>

8.4 atomParent Property
When we design complex user interface and we have to reference n-level of parent for some sort of

binding. We can reach n-level parent by accessing atomParent property. This is only useful when atom-

name is not available. However, in any case, atom-name should be preferred over atomParent unless

you do not have any choice.

<div
 atom-type="AtomViewStack">
 <div
 atom-type="AtomDockPanel">
 <div
 atom-text="{$owner.atomParent.selectedIndex}"></div>
 </div>
</div>

8.5 templateParent Property
Template Parent holds reference of a control which contained the template in the first place. Also note,

atomParent is not a good idea to reach parent inside a template because template may not be an

immediate child of the templateParent which defined the template. At runtime, templates are added

inside specific template presenters, for example, in an AtomItemsControl itemTemplate is added inside

itemsPresenter element. For the record, itemsPresenter itself may be any type of AtomControl.

<div
 atom-type="AtomNavigatorList"
 atom-new-item="{ { MovieName: '', MovieCategory: '' } }"
 atom-items="{ AtomPromise.json('/docs/controls/samples/movie-list.json') }"
 atom-name="movieList"
 style="width:400px; height:400px; margin:50px;"
 >
 <table atom-template="gridTemplate">
 <thead>
 <tr>
 <th>Name</th>
 </tr>
 </thead>
 <tbody atom-presenter="itemsPresenter">
 <tr atom-template="itemTemplate">
 <td atom-text="{$data.MovieName}"></td>
 </tr>
 </tbody>
 </table>
 <span
 atom-template="detailHeaderTemplate"
 atom-text="['Movie: ' + $data.MovieName]">

 <div
 atom-template="detailTemplate"
 atom-type="AtomFormLayout">
 <input
 atom-label="Movie Name:"
 atom-value="$[data.MovieName]"/>
 <input
 atom-label="Movie Category:"
 atom-value="$[data.MovieCategory]"/>
 <button
 atom-event-click="{$owner.templateParent.backCommand}"
 >Save</button>
 </div>
</div>

In above example, button is inside AtomFormLayout, and AtomFormLayout automatically encapsulates

item inside AtomFormField control, since this is done at runtime, and if you are not aware of it the

atomParent sequence will fail.

9 ASYNCHRONOUS PROGRAMMING WITH WEB ATOMS

9.1 Pain of writing asynchronous tasks
Writing Asynchronous tasks can become very tedious as it involves complex closures or inline anonymous

functions or function references. Let us look at typical asynchronous code for loading JSON content from

any URL.

<script type="text/javascript">

 function failed(){
 alert('Something went wrong');
 }

 function loadData(id, product, orders) {
 $.ajax('/create/entity/product', {
 data: {
 entity: product
 },
 success: function (r) {
 $.ajax('/save/entity/orders?productID=' + r.ProductID, {
 data: {
 entityList: orders
 },
 success: allSaved,
 error: failed
 });
 },
 error: failed
 });
 }

 function allSaved(){
 alert('Saved successfully')
 }
</script>

If we were supposed to write this once and forget it, it was easy to do, but that’s not the case, we always

have to maintain this code. More complex nested function calls, worse the code becomes.

We purposely demonstrated the code that is not organized in neither alphabetical nor in order of

execution. And this is what the real life scenario, no matter how much people try to adhere to great design,

not everybody follow same path and it leads to unsolvable maze.

So JavaScript does have promises, but same way, writing endless nested anonymous methods or complex

naming pattern dose not ease pain of asynchronous programming. Whichever JavaScript framework you

adopt, you will always end up with complex unsolvable maze.

So after point of time, above complex arrows become your reality and you struggle yourself to move

around them in JavaScript in debugger, if you are dealing older version of browsers or limited versions

such as mobile, you will have nightmare debugging those.

9.2 AtomPromise
Since Web Atoms is based on components, you can assign AtomPromise to any property. However the

assignment looks as synchronous, but it works asynchronously. As when value is set on any property,

property system tests the type of value, if it is AtomPromise then property system hooks itself for the

finish event of promise and assigns value to corresponding property automatically.

<select
 atom-type="AtomComboBox"
 atom-items="{ AtomPromise.json('/config/country-list.json')}"
 atom-value="$[scope.selectedCountry]">
</select>

In above example, we want to load list of countries in this combo box, however in 3rd line it appears as if

we are loading the countries synchronously and setting value to items property of combo box. But in

reality, we are just setting up a promise here, JavaScript call does not block here, in fact when property

system evaluates this expression, it recognizes it as a valid promise and hooks up an event for completion

in background.

AtomPromise.json loads data from given URL in JSON format as the name suggests, it internally calls

AtomPromise.ajax which wraps jQuery’s $.ajax method. There are various other AtomPromise

methods available and you can completely change or customize promises to your needs.

9.3 AtomForm
AtomForm control posts data in JSON format to given URL and it merges back the post results in same

data. This was designed to merge return values in same object by considering a fact that we may alter

values on server side to meet certain standards such as capitalization and we need key for newly added

objects.

AtomForm is a versatile control, it performs validations on data and with use of AtomFormLayout, it is

easy to design complex forms in minutes. AtomFormLayout takes care of visual appearance of form

items, validation and display of error message. And it is completely customizable.

In the following code sample, you can see a fully functional signup form without writing a simple line of

JavaScript.

AtomFormLayout recognizes certain extra attributes such as required, is-valid, error, data-type or regex,

and it performs validation on those fields automatically.

<div
 atom-type="AtomForm"
 atom-post-url="/Url/Insert"
 atom-data="{ { FirstName: '', LastName: '', Password: '', Password2:'' } }"
 atom-success-message="Information Saved Correctly">
 <div
 atom-type="AtomFormLayout">

 <input
 type="text"
 atom-label="Username:"
 atom-required="true"
 atom-value="$[data.Username]"/>

 <input
 type="password"
 atom-label="Password:"
 atom-value="$[data.Password]"
 atom-required="true"/>

 <input
 type="password"
 atom-label="(Again) Password:"
 atom-value="$[data.Password2]"
 atom-is-valid="[$data.Password == $data.Password2]"
 atom-error="[$owner.isValid ? '' : 'Passwords do not match']" />

 <span
 atom-label="Name:"
 atom-required="true"
 atom-is-valid="[$data.FirstName && $data.LastName]">
 <input
 placeholder="First Name:"
 type="text"
 atom-value="$[data.FirstName]" />

 <input
 placeholder="Last Name:"
 type="text"
 atom-value="$[data.LastName]" />

 <input
 atom-label="Email Address:"
 type="text"
 atom-data-type="email"
 atom-value="$[data.EmailAddress]" />

 <input
 atom-label="Zip: (Numbers only)"
 type="text"
 atom-regex="/[0-9]+/"
 atom-value="$[data.ZipCode]" />

 <input type="submit" value="Save" />

 </div>
</div>

9.4 AtomPostButton
AtomPostButton on the other hand behaves exactly as the Form, but it does not validate anything and

it just performs HTTP POST when button was clicked. It does not merge results back into data as AtomForm

does it. This is useful for changing some status of items such as changing its rating, or deleting and

undeleting items in a Grid.

 <td atom-type="AtomPostButton"
 atom-post-url="/app/entity/book/delete"
 atom-post-data="{ { BookID: $data.BookID } }"
 atom-confirm="true"
 atom-confirm-message="Are you sure you want to delete this book?"
 atom-next="{$owner.templateParent.removeItemCommand}"
 class="atom-delete-button">Delete</td>

In above example, AtomPostButton will first ask for confirmation, with confirm method of JavaScript.

Only if user confirms, then it will perform HTTP POST to given URL. Since while deleting, we should only

post BookID to server. If atom-post-data is not specified, contents of data property will be posted as JSON

to server.

9.5 Benefits of Web Atoms
As you can see, with help of AtomPromise and controls like AtomPostButton, AtomForm, Web Atoms

offers complete script less programming. You no longer have complex method calls calling each other. In

fact, atom-next applied to each control will perform next logic as per Action Sets.

10 DATA BINDING

Various frameworks like Flex, Silverlight, and WPF etc. introduced data binding mechanisms that helped

us in creating templates of User Interface elements and differentiate between data and view. Declarative

data binding helps in understanding relation between user interface and data (usually called as model).

However, HTML and JavaScript currently do not support any forms of data binding. But HTML does allow

you to define extra attributes, and JavaScript can process them.

Web Atoms will process xml attribute values between curly braces {} and square brackets. And convert

them into suitable binding expressions.

In the following sample, you can see how firstName and lastName properties of model are bound to

UI element. One time and one way binding expressions can contain any form of JavaScript expression.

(JavaScript expression is entire expression after equal to (=) sign in assignment statement till semi colon.)

<!-- Model (Data) -->
<script type="text/javascript">
({
 model: {
 firstName: 'Peter',
 lastName: 'Parker'
 },
 fullName: function (fName, lName) {
 return fName + ' ' + lName;
 }
})
</script>

<!-- View (User Interface) -->
<div
 atom-dock="Fill"
 atom-type="AtomControl"
 atom-data="{$scope.model}">
 <div atom-text="{$data.firstName}"></div>
 <div atom-text="{$data.firstName + ' ' + $data.lastName}"></div>
 <div atom-text="{$scope.fullName($data.firstName,$data.lastName)}"></div>
</div>

Binding Expressions can only reference global JavaScript variables and properties of control ($owner) that

holds the element. Others are just shortcuts. In short, $data is equivalent to $owner.data, $scope is

equivalent to $owner.scope.

Note: Binding will only work for these keywords. $data (data property of current control), $scope, $owner

(self, since this is not accessible here), $appScope (application level scope). Any property after these

keywords will be bound automatically.

10.1 One Time Binding
Binding expression within curly braces are evaluated at time of initialization of control. You can consider

them as simple eval expression which will be instantly evaluated at time of building of page. Eval

expressions are executed in private scope in function constructor.

All expressions in following sample are one time binding expressions.

<div
 atom-type="AtomControl"
 atom-data="{ {firstName: 'Akash', lastName:'Kava', favColor: 'orange'} }">

 <span
 atom-text="{$data.firstName + ' ' + $data.lastName}"
 style-color="{$data.favColor}">
</div>

Here is how it works,

 atom-type set to AtomControl will make element an AtomControl that supports binding

 atom-data will be initialized to anonymous object, please note outer curly braces are used to

identify it as one time binding expression, and actual expression is inside curly braces.

 atom-text will be evaluated as concatenation of firstName and lastName.

 style-color will be evaluated as styleColor set as favColor property of object. Style

binding has special syntax prefixed with style- and it will be explained later in this help.

Note: You must always use One Time Binding that uses least memory. One Time binding will never refresh

its data.

10.1.1 JavaScript Native Type Values

One Time Binding is also used to set native values in properties. For example, setting false to a Boolean

property can be tricky as "false" string literal is considered as true. Curley braces expressions are simply

evaluated by function constructor and the result is stored in the property. So "{ false }" evaluates to

a proper Boolean False value.

10.2 One way Binding
Building data aware application requires updating UI automatically when data changes. One way binding

refreshes element automatically when data is modified by any one. To make it simpler, you have to write

your binding expressions in square brackets [].

In the following example, by convention, variable named model is automatically assigned in scope at

application level. AtomBinder manages bindings between elements, if you are modifying property of an

object, we recommend using Atom.set. However in Two Way Binding (explained in next section), binding

is automatically updated by Web Atoms.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Atom-Control Sample</title>
 <script src="/Scripts/jquery-1.8.2.js"></script>
 <link href="/Style/WebAtoms.css" rel="stylesheet" />
 <script src="/Scripts/WebAtoms.js"></script>

 <script type="text/javascript">
 // model named variable is same as $scope.model
 var model = {
 time: ""
 };

 // updating time property of model
 function updateTime() {
 Atom.set(model, "time", (new Date()).toLocaleString());
 }

 setInterval(updateTime, 1000);
 </script>
</head>
<body>
<div atom-type="AtomApplication">

</div>
</body>
</html>

10.3 Two Way Binding
Two Way binding is most important part of Web Atoms Framework, which makes it very easy to update

the data dynamically without writing any JavaScript. Binding framework automatically updates any

relative one way binding and updates the changes throughout the page.

In following example, there is a toggle button bar, which displays list of items and one can be selected.

Binding expression atom-selected-item is written with $ prefix, which makes this expression as two

way binding, which means any time either side expression is modified, other will be updated at the same

time. Here, whenever selected item will be changed by user (by clicking and changing the default selected

item of Toggle Button Bar), this binding expression will save selected item as selection named property in

scope.

So, whenever $[scope.selection] will be updated by atom-selected-item by user interaction, other

elements bound to $scope.selection will be updated automatically.

<script type="text/javascript">
 ({
 list: [
 { label: "Orange", value: 5.00, color: "orange" },
 { label: "Apple", value: 6.00, color: "red" },
 { label: "Grapes", value: 2.00, color: "green" }]
 })
</script>
<div
 atom-type="AtomToggleButtonBar"
 atom-items="[$scope.list]"
 atom-selected-item="$[scope.selection]">
 <span
 atom-template="itemTemplate"
 atom-text="{$data.label}">
</div>

<div atom-type="AtomControl">
 <span
 atom-text="[$scope.selection.label]"
 style-background-color="[$scope.selection.color]">
</div>

10.3.1 Two Way Binding Update Event

By default, two way binding is updated on "change" event of HTML Element. However, sometimes you

may want to update binding on any other event for example "keyup" event. It can be done by typing

comma separated events in brackets after declaration of two way binding.

<script type="text/javascript">
 ({
 user: {
 firstName: '',
 lastName: ''
 }
 })
</script>
<div
 atom-type="AtomControl"
 atom-data="{$scope.user}">
 <input type="text"
 atom-value="$[data.firstName](keyup)"
 placeholder="First Name" />

 <input type="text"
 atom-value="$[data.lastName](keyup)"
 placeholder="Last Name" />

 <input type="button" value="Save" />
 <span
 atom-text="['Name is ' + $data.firstName + ' ' + $data.lastName]">

</div>

10.4 Style Binding
Along with text and values, Web Atoms provides easy way to perform (one way and one time) binding on

element style as well. This form of binding allows us to easily split style into different attributes and bind

them independently as shown in example below.

<script type="text/javascript">
 ({
 list: [
 { label: 'Orange', itemColor: 'orange', itemWidth: 100 },
 { label: 'Apple', itemColor: 'red', itemWidth: 200 }
]
 })
</script>

<div
 atom-type="AtomItemsControl"
 atom-items="{ $scope.list }">
 <div
 atom-template="itemTemplate"
 atom-text="{$data.label}"
 style-color="#000000"
 style-background-color="{$data.itemColor}"
 style-width="{ $data.itemWidth + 'px' }">
 </div>
</div>

We have displayed 2 forms of binding.

style-color is set to #000000 (black) color at time of initialization. This is same as writing inline style,

but this helps us in dividing individual style properties.

style-background-color will be set to corresponding item's itemColor property.

style-width will be set to an expression that will add 'px' at the end as required by element style.

10.5 Event Binding
Event handling in Web Atoms is done little differently, as you may have learned about Action Set, Web

Atoms is more focused towards invoking Action Sets instead of executing a callback. However in an

ActionSet you can certainly specify a callback as well.

<script type="text/javascript">
 ({
 done: function () {
 alert("Done");
 }
 })
</script>
<button
 atom-event-click="{ $scope.done }">Click Me</button>

The only reason to use Action Set is, you can achieve isolation in different scope and not interfere with

other components with similar names.

11 ACTIONSET

As discussed in asynchronous programming chapter, we realized that we wanted to remove dependency

upon JavaScript functions and wanted to make it more configurable with attribute specifications.

11.1 Events Processing
Typically, JavaScript requires function references to be attached to events, whether you use native

JavaScript methods or you use framework like jQuery. Same as asynchronous programming, event

processing also becomes big pain. As you end up with lots and lots of functions, and a complex chain of

events that you struggle to name everything to understand and analyze your code.

11.2 Simple Actions
To simplify events processing, we classified following simple actions that can be declared on attributes for

events processing. You can specify four types of data on ActionSet. String, object literal, function reference

and array of string, object literal or function reference, array can also contain array.

11.3 String URL Action
Let’s say we want to create a button, which should navigate to http://webatomsjs.com. Of course we can

write same with simple anchor tag. But benefit of String URL Action is, it is bindable, you can customize

behavior by changing content of next attribute itself.

 <button atom-event-click="http://webatomsjs.com">Go</button>
 <script type="text/javascript">
 var url = "http://webatomsjs.com";
 </script>
 <button atom-event-click="{ home ? Atom.refreshWindowCommand : url }">Go</button>

As you can notice, first button works just like an anchor tag, but second button has a conditional action

set, which depends upon value of home variable. Atom.refreshWindowCommand is a function reference

where else URL is a variable.

When we will click the button, if home is true, the same page will be refreshed. Otherwise, browser will

navigate to URL if contents of URL is a string.

11.4 Function Reference
As we have seen in previous example, click event is bindable and we can bind it to a function reference.

Which will be invoked when we will click the button.

<script type="text/javascript">
 ({
 alertMe: function () {
 alert('Hellow World');
 }
 })
</script>
<button atom-event-click="{ $scope.alertMe }">Go</button>

http://webatomsjs.com/

As you can see, alertMe is a function reference in current $scope. You can also reference any function

defined anywhere in JavaScript Context, however in that case, that function reference is a global reference

and which can lead to same name conflicts. We recommend using everything in the form of scope

member, so that when you combine or reuse code, your code will have least naming conflicts.

11.5 Object Literal
Object Literal action set can contain set of properties that will represent certain action to be performed

against current element or AtomControl associated with it. This is little complicated to understand, as

this is a very special way of executing instructions in Web Atoms. Mostly, this is used as way of toggling

some values of properties.

First let us consider, function reference sample of increasing a counter stored in scope.

<script type="text/javascript">
 ({
 counter: 1,
 incrementCounter: function (scope, sender) {
 var v = Atom.get(scope, "counter");
 Atom.set(scope, "counter", v + 1);
 }
 })
</script>
<span
 atom-text="[$scope.counter]">
<button
 atom-event-click="{$scope.incrementCounter}" ></button>

As you can see, we have to write lots of code for just toggling some value, which requires calling Atom.set

and Atom.get methods which refreshes corresponding bindings. But to make things easier, we can use

object literal syntax to specify what values we want to merge and where.

<script type="text/javascript">
 ({
 counter: 1
 })
</script>
<span
 atom-text="[$scope.counter]">
<button
 atom-event-click="[{ scope: { counter: $scope.counter + 1 } }]" ></button>

In this example, outer curly braces specifies that it is a one way binding, and inner curly braces specifies it

is an object literal syntax. We have object literal with property scope, which designates that we have to

merge values inside scope in the scope of current atom control.

1. $scope.counter is 1 when page starts.

2. Span displays 1 as the text.

3. Contents of atom-event-click is { scope: { counter: 2 } }

4. When we click the button, ActionSet { scope: { counter: 2 } } gets evaluated, and

value of counter in scope changes to 2.

5. Now $scope.counter is 2

6. So the span displays 2 as the text.

7. And contents of atom-event-click gets updated to { scope: { counter: 3 } }

8. If you click button again, counter increases to next value.

Object Literal syntax can be used to change properties in scope, appScope and data of any control. Also

note that, we can change multiple values in single object literal syntax.

Here is another example,

<script type="text/javascript">
 ({
 showDetails: false
 })
</script>
<button
 atom-event-click="[{ scope: { showDetails: !$scope.showDetails } }]"
 atom-text="[$scope.showDetails ? 'Hide' : 'Show']"></button>
<div style-display="[$scope.showDetails ? 'block' : 'none']">
</div>

We are simply changing showDetails value in scope, at the same time, button’s text also toggles

between Hide and Show and corresponding div also hides or shows as its display css changes.

11.5.1 Object Literal Scope

As you have seen in previous example, you can update values of scope of current AtomControl

associated with current HTML Element.

11.5.2 Object Literal AppScope

Same as above, but here the values will be merged into global application level scope.

11.5.3 Object Literal Data

Data literal action will merge specified property in data associated with current element. Let’s review

following sample.

 <input
 type="number"
 atom-value="$[data.Quantity]" />

 <button
 atom-event-click="[{ data: { Quantity: $data.Quantity + 1 } }]">
 Increase</button>
 <button
 atom-is-enabled="[$data.Quantity > 1]"
 atom-event-click="[{ data: { Quantity: $data.Quantity - 1 } }]">
 Decrease</button>

In this example, we have an input that is bound to Quantity, and we want to provide buttons to increase

or decrease quantities. As you can see, action set is a literal object with property data which contains an

object literal with field Quantity.

11.5.4 Object Literal Alert

Alert literal will display an alert to user. This is useful if you want to put an alert in case when user forgot

to take certain action. Let’s review this example, if there is a list box and user is supposed to select one

item from it, but if user has forgotten, we should not allow form to be submitted.

<button
atom-event-click="[!$scope.list.value ? { alert: 'Please select an item' } :
$scope.form.submitCommand]"></button>

11.5.5 Object Literal Confirm

Confirm literal will display a confirmation box before executing next action. This action requires an array

with first item as string (message) and next item should be subsequent action set. Please note, last item

in array is a new action set.

 <button
 atom-event-click="[{ confirm: ['Are you sure you want to
proceed?',$scope.form.submitCommand] }]"></button>

11.5.6 Object Literal Timeout

Timeout literal expects an array with first parameter as timeout duration and 2nd parameter as new action

set to be performed after timeout duration. In the following example, we will turn showDetails member

to true when mouse enters the div, however, when user leaves the div, we want to introduce little delay

so that user can notice that there are more details when user hovers the div.

<script type="text/javascript/scope">
 ({
 showDetails: false
 })
</script>
<div
 atom-event-mouseenter="{ { scope: { showDetails: true } } }"
 atom-event-mouseout="{ { timeOut: [500, { scope: { showDetails: true } }] } }">
 Title
 <div
 style-display="[$scope.showDetails ? '' : 'none']">

 </div>
</div>

12 CREATING AN APPLICATION

12.1 AtomApplication
AtomApplication is root Control, whose children will be treated as Atom Controls and everything

underneath will be treated as a Web Atoms Application. To create an application, you have to add a div

tag in the body section of your page as shown below.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title></title>
 <link href="/WebAtoms.css" rel="stylesheet" />
 <script src="/Scripts/jquery-1.8.2.js"></script>
 <script src="/Scripts/WebAtoms.js"></script>
</head>
<body>
 <div
 atom-type="AtomApplication"
 atom-title="{ 'Sample Page - ' + (new Date()) }">
 <div
 atom-dock="Top"
 style="height:50px; background-color:greenyellow">
 Header
 </div>
 <div
 atom-dock="Fill"
 style="overflow:auto">
 This is application area docked to middle and stretches
 to full available area as much as it can.
 </div>
 <div
 atom-dock="Bottom"
 style="height:30px; background-color:greenyellow">
 Footer
 <a
 href="http://web-atoms.neurospeech.com"
 target="_blank"
 style="right:5px; position:absolute"
 >Powered by Web Atoms
 </div>
 </div>
</body>
</html>

AtomApplication acts a Dock Panel by default, so it layouts its children based on atom-dock attribute.

12.1.1 Title

AtomApplication has a property named title, which is synchronized with document’s title property, so

if you set application’s title, document’s title is also updated. In above example, just for the demo, we

have displayed current date in the title.

12.1.2 Busy Template

 By default, this animation is displayed whenever any ajax call

is under processing. This is set inside busy template of Atom

Application, which you can easily customize for your needs. You

must make sure that this animation is modal that means while

this is running, user cannot access anything in background. This

is for your own safety, changing any UI while ajax call is pending might result in unexpected results.

However, in busy template you can certainly change this behavior.

<div
 atom-template="busyTemplate"
 style="position:absolute;left:0px;top:0px;z-index:10000; visibility:hidden"
 style-width="[$owner.appWidth + 'px']"
 style-height="[$owner.appHeight + 'px']"
 style-visibility="[$owner.isBusy ? 'inherit' : 'hidden']">
 <div
 class="atom-busy-window"
 style="position:absolute"
 style-left="[(($owner.appWidth/2)-100) + 'px']"
 style-top="[(($owner.appHeight/2)-25) + 'px']">

 <div atom-abs-pos="12,12,36,36"
 class="atom-busy-image"></div>
 <div atom-abs-pos="56,24,145,null"
 atom-text="[$owner.busyMessage || 'Loading...']"></div>

 <div atom-abs-pos="0,48"
 style="height:3px; background-color:green"
 style-display="[$owner.isBusy && $owner.progress ? 'block' : 'none']"
 style-width="[$owner.progress + '%']"></div>

 </div>
</div>

The outermost div occupied entire screen, thus by blocking access to any background element. First child

with class atom-busy-window is actually what is visible with a red border and animation inside. Busy

Template will display progress as well if file upload is in process. You can change this template as per your

design, but please remember to bind isBusy and other important bindings.

12.2 Dock Panel
AtomApplication is derived from AtomDockPanel, so it inherits behavior of docking and works exactly

like a dock .For more details about Dock Panel in section Dock Panel

12.3 Run as Page
In case if you do not want your panels to dock inside AtomApplication, you can set atom-run-as-page

as true as shown below, this will turn off docking and page will simply render as html page. However it

will still perform all the binding and other web atoms tasks.

<div atom-type="AtomApplication" atom-render-as-page="true">

13 DATA BINDING TO ARRAY

In Business applications, we typically need to manage collection of objects (Arrays in JavaScript), they

appear in the form of table, drop down list etc. And we need to filter, sort and page them, either locally

or remotely. To make all operations easier, Web Atoms comes with AtomItemsControl a huge control

with template manager, selection manager and style manager for array of items.

All other controls such as List Box, Combo Box and Toggle Button Bar are derived from

AtomItemsControl and they only appear and function little differently but AtomItemsControl does

most of work.

13.1 Label Value Pair
Most tedious part of any UI framework is to manage with Label/Value pair. Drop Down Menus or Toggle

Button Bars lets you select an item from collection. But mostly in database, we store a value which is

probably numeric and we use a text to display, for example country code and country name. Web Atoms

AtomItemsControl was designed to manage Label/Value pair very nicely that fits in real world

application.

<script type="text/javascript">
 ({
 list: [
 { label: 'Orange', value: 1, itemColor: 'orange', itemWidth: 100 },
 { label: 'Apple', value: 2, itemColor: 'red', itemWidth: 200 }
]
 })
</script>

<div
 atom-type="AtomListBox"
 atom-name="theList"
 atom-items="{ $scope.list }">
 <div
 atom-template="itemTemplate"
 atom-text="{$data.label}"
 style-color="#000000"
 style-background-color="{$data.itemColor}"
 style-width="{ $data.itemWidth + 'px' }">
 </div>
</div>

AtomItemsControl has property called value, which stores selected item’s value field. And value field

is identified with atom-value-path property which is set to value by default.

In above example, value field stores number that identifies the object. Expression

$scope.theList.value will display selected item’s value. You can also look for

$scope.theList.selectedItem.value. Advantage with value property over selectedItem’s value

property is, it can retain values in case items are not loaded yet.

13.2 Cascaded Selections
The most difficult UI elements are ones that are cascaded, for example you have Country Selector and

then you have State Selector. For new screens, everything can be empty, but in case of modifying existing

items, retaining selection values are pain. For example, state will not show up correctly unless country is

selected first. Sometimes in AJAX operations, if both countries and states are loaded from server, we have

no guarantee or order to determine which one will finish first. And this leads to selection nightmares.

Web Atoms was designed to overcome such cascaded situation very carefully by designing selection

procedure to avoid conflicts, giving high priority to user initiated selection, preserving existing values over

default values.

<select
 atom-name="country"
 atom-label="Country:"
 atom-type="AtomComboBox"
 atom-required="true"
 atom-default-value="US"
 atom-items="{AtomPromise.cachedJson('/db/Countries')}"
 atom-value="$[$data.Country]"></select>

<select
 atom-type="AtomComboBox"
 atom-label="State / Province :"
 atom-required="true"
 atom-items="[AtomPromise.cachedJson('/db/Countries/' + $data.Country)]"
 atom-value="$[$data.State]"></select>

This example is perfect case of Label/Value pair along with Cascaded Selections. Countries contain country

code as value and country name as label. And States have label and value for name and state code

respectively. This code works well for adding new items as well as modifying existing items.

In case if list of state is not loaded, value preserves current selection and selects and displays current

selection properly even if list of state is loaded after the selected value was already set from database.

In case of countries, while adding new record, “US” will be chosen as a default country.

14 ITEM COLLECTIONS

14.1 Items Control
AtomItemsControl is base class for all multi item controls such as AtomComboBox, AtomListBox etc.

AtomItemsControl basically provides multi items management and provides templating mechanism for

children. Each child is associated with one item in items array. AtomItemsControl provides selection

mechanism including property value selection.

AtomItemsControl does not provide any styles for children, it only provides logic for items manipulation

such as filter, sort, collection change notification and updates.

14.1.1 Scope

Every item of AtomItemsControl is created with a new Scope, so each item has its own private scope,

and scope is managed by Web Atoms. This ensures scope bindings templates to remain private with each

item and they do not conflict with one another. To refer to global scope, your binding must use

$appScope instead of just $scope.

Scope provides additional properties as follow,

itemIndex Index of current Item
itemIsFirst True if this is the first item in the list
itemIsLast True if this is the last item in the list
itemExpanded This may be useful to perform tree kind of functionality
itemSelected True if the current item is selected, you can also bind this with two way

binding to update selection.

14.1.2 Item Template

<div
 atom-type="AtomItemsControl"
 atom-items="{ AtomPromise.json('/docs/controls/samples/movie-list.json') }"
 atom-name="movieList">
 <div
 atom-template="itemTemplate"
 style-border-style="{ $scope.itemIsFirst ? 'solid' : 'none' }"
 style-border-width="2px"
 style-background-color="{ $scope.itemIsOdd ? 'lightgray' : 'white' }">

 </div>
</div>

In above example, we have following bindings,

 First item of the list has a border style set as 'solid'

 Every odd item is having light gray background color

 First span indicates index of current item (we have added one to make it look like it starts from

1), indexes in JavaScript are zero based.

 Finally name of Movie by binding MovieName property to text.

14.1.3 Server Side Filtering

To perform server side filtering in AJAX, we have to send filtering parameters in query string and it can

be done as shown below.

<script type="text/javascript">
 ({ searchText: '' })
</script>
<div>
 <input type="search" placeholder="Search For" atom-value="$[scope.searchText]"/>
</div>
<div
 atom-type="AtomItemsControl"
 atom-items="[AtomPromise.json('/db/products', { name: $scope.searchText })]">

We have to initialize scope member searchText to an empty string. This is important, because if

searchText is undefined all products will not be loaded and promise will not be set.

We are storing search text box’s value in $scope.searchText which is used in AtomPromise.json as

parameter. This is then converted to query string and sent to server. Great part is, any time text is

modified, and items will be reloaded from server automatically.

14.1.4 Table Template

To make AtomItemsControl look like table (With column headers etc.), you have to mark an element as

itemsPresenter which will contain itemTemplate. Here tbody element becomes itemsPresenter

(an element which holds the items) and its immediate child becomes itemTemplate.

In above sample, we want to use table HTML element to display same list in tabular format. Also note that

we are demonstrating nested scope in each row. Each row contains a toggle button bar that is bound to

category of the movie and the last column displays selected category. However, in this example, we are

using $scope.categoryList.value which is equivalent to $data.MovieCategory, but here you can

see that in nested scope, each scope evaluates expressions in isolation without interfering with other

sibling scope.

<script type="text/javascript">
 ({
 categories: [
 { label: 'Action', value: 'Action' },
 { label: 'Animated', value: 'Animated' },
 { label: 'Sci-Fi', value: 'Sci-Fi' }
]
 })
</script>

<div
 atom-type="AtomItemsControl"
 atom-items="{ AtomPromise.json('/docs/controls/samples/movie-list.json') }">
 <table>
 <thead>
 <tr>
 <th></th>
 <th>Movie</th>
 <th>Category</th>
 <th></th>
 </tr>
 </thead>
 <tbody
 atom-presenter="itemsPresenter">
 <tr
 atom-template="itemTemplate">
 <td atom-text="{($scope.itemIndex + 1) + ')'}"></td>
 <td atom-text="{$data.MovieName}"></td>
 <td>
 <span
 atom-type="AtomToggleButtonBar"
 atom-name="categoryList"
 atom-items="{$appScope.categories}"
 atom-value="$[data.MovieCategory]">
 </td>
 <td
 atom-text="['Category is ' + $scope.categoryList.value]">
 </td>
 </tr>
 </tbody>
 </table>
</div>

In this example, you can see that AtomToggleButtonBar is named as "categoryList" and its selected

value is displayed in last column, every item is in its own scope so we can bind properties of control with

name.

14.2 List Box
AtomListBox is derived from AtomItemsControl, it acts as ListBox and DataGrid. Providing simple

itemTemplate makes it work like ListBox and providing Table as template makes it look like

DataGrid. Other classes like AtomToggleButtonBar and AtomLinkBar are derived from

AtomListBox and their styles and templates are different.

<div
 atom-type="AtomListBox"
 atom-items="{ AtomPromise.json('/docs/controls/samples/movie-list.json') }"
 atom-name="movieList">
 <div
 atom-template="itemTemplate">

 </div>
</div>

<div>
 Selected Movie:
 <span
 atom-text="[($scope.movieList.selectedItem.MovieName || '')]" >

 <span
 atom-text="['('+($scope.movieList.selectedItem.MovieCategory||'')+')']" >

</div>

14.2.1 Custom Selector

By default, AutoSelectOnClick is true, it means, when any part of item is clicked, item will be selected.

However if you need only one button or checkbox to work for selection, then it can be customized in

following ways.

Note: To set any atom property as false, it must always be set in curly braces so that we identify it as

JavaScript expression, otherwise in JavaScript string with "false" is considered as true.

14.2.1.1 Button as Selector

<div
 atom-type="AtomListBox"
 atom-items="{ AtomPromise.json('/docs/controls/samples/movie-list.json') }"
 atom-name="movieList"
 atom-auto-select-on-click="{ false }">
 <div
 atom-template="itemTemplate">
 <button atom-event-click="{$owner.templateParent.selectCommand}">Select</button>

 </div>
</div>

AtomListBox contains selectCommand, which can be used for click event, when invoked, it performs

toggle selection.

14.2.1.2 Checkbox as Selector for Multiple Selection

For multiple selection, on tablet or mobile kind of devices, absence of real keyboard limits our ability to

provide ctrl+ click to create multiple selection. However, checkboxes represent perfect candidate for

multiple selection. And in Web Atoms, it is the easiest way to provide selection.

<input
 type="checkbox"
 atom-checked="$[scope.movieList.selectAll]"/> Select All

<div
 atom-type="AtomListBox"
 atom-items="{ AtomPromise.json('/docs/controls/samples/movie-list.json') }"
 atom-name="movieList"
 atom-auto-select-on-click="{ false }"
 atom-allow-multiple-selection="true"
 atom-value-path="MovieName">
 <div
 atom-template="itemTemplate">
 <input type="checkbox" atom-checked="$[scope.itemSelected]"></input>

 </div>
</div>

<div>
 Selected Movies:

</div>

As you can see, we provide selectAll and itemSelected properties to create a perfect multiple

selection pattern.

14.2.2 DataGrid

As we have seen, we can simply change template to turn AtomListBox into a DataGrid.

However to turn AtomListBox into DataGrid, we need to little more work here. We need a sorting

mechanism. To add sorting, we have created a special control AtomSortableColumn which wraps

sorting of DataGrid functionality.

 First you need a sortPath scope variable set to default Sorting Column along with direction.

 For performing client side sorting, you can set atom-sort-path of AtomListBox to sortPath

of scope.

 For server side sorting, you can ignore atom-sort-path and bind $scope.sortPath into

AtomPromise to perform server side sorting.

 Each column’s header, usually a th element, must have control AtomSortableColumn applied

to it.

 AtomSortableColumn should have a label.

 And atom-sort-field which specifies sort path to sort by current column.

 And most important, atom-value should be set to $scope.sortPath, this two way binding

manages the selection automatically and displays visual sorting direction as well as changes as

necessary.

 By default, atom-default-direction is set to asc, however for columns containing Date etc.,

if you want to sort them by descending by default, you can manually set atom-default-

direction to desc;

<script type="text/javascript">
 ({
 sortPath: 'MovieName asc'
 })
</script>

<div
 atom-type="AtomListBox"
 atom-items="{ AtomPromise.json('/docs/controls/samples/movie-list.json') }"
 atom-name="movieList"
 atom-auto-select-on-click="{ false }"
 atom-allow-multiple-selection="true"
 atom-value-path="MovieName"
 atom-sort-path="[$scope.sortPath]">
 <table>
 <thead>
 <tr>
 <th>
 <input
 type="checkbox"
 atom-type="AtomCheckBox"
 atom-is-checked="$[scope.movieList.selectAll]"/>
 </th>
 <th
 atom-type="AtomSortableColumn"
 atom-label="Movie"
 atom-sort-field="MovieName"
 atom-value="$[scope.sortPath]"></th>
 <th
 atom-type="AtomSortableColumn"
 atom-label="Category"
 atom-sort-field="MovieCategory"
 atom-value="$[scope.sortPath]"></th>
 </tr>
 </thead>
 <tbody
 atom-presenter="itemsPresenter">
 <tr atom-template="itemTemplate">
 <td><input type="checkbox" atom-type="AtomItemSelector"/></td>
 <td atom-text="{ $data.MovieName }"></td>
 <td atom-text="{ $data.MovieCategory }"></td>
 </tr>
 </tbody>
 </table>
</div>

14.3 Data Pager
We often require paging of data sets. Paging requirements vary based on type of data and user’s

navigation habits. So we have created fully customizable Data Pager, which lets you display paging UI very

easily and you can customize it to any way you want it.

<script type="text/javascript">
 ({
 start:0,
 list: {
 items: [{ label:'1' }, {label:'2'}],
 total: 10,
 merge: true
 }
 })
</script>

 <div>We are assuming paged JSON Response contains items and total properties.</div>

<div
 atom-type="AtomDataPager"
 atom-items="{$scope.list}"
 atom-items-path="items"
 atom-total-path="total"
 atom-page-size="2"
 atom-current-page="$[scope.start]"
 style="width:500px;"
 ></div>

<div
 atom-text="['Current Page: ' + $scope.start]"></div>

You may have to multiply start with size in case if your data store expects record number to skip instead

of pages.

This is the default layout of Data Pager, we will show you a different layout so that you can easily

customize look and feel.

The following example will customize Data Paget to display individual links to pages, however the page

Array has been sliced to length of only 5 items.

<script type="text/javascript">
 ({
 start: 0,
 list: {
 items: [{ label: '1' }, { label: '2' }],
 total: 100,
 merge: true
 }
 })
</script>

 <div>We are assuming paged JSON Response contains items and total properties.</div>

<div
 atom-type="AtomDataPager"
 atom-items="{$scope.list}"
 atom-items-path="items"
 atom-total-path="total"
 atom-page-size="2"
 atom-current-page="$[scope.start]">
 <span
 atom-template="template"
 atom-type="AtomItemsControl"
 atom-items="[($owner.templateParent.pages).slice(Math.max(0, $owner.templateParent.currentPage-2),
$owner.templateParent.currentPage +10).slice(0,5)]">

 <button
 atom-is-enabled="[$owner.templateParent.pages.length > 1 && $owner.templateParent.currentPage]"
 event-click="{$owner.templateParent.goFirstCommand}"
 style="float:left">
 First
 </button>

 <button
 atom-template="itemTemplate"
 atom-text="{$data.label}"
 atom-event-click="{ { appScope: { start: $data.value }} }"
 style-background-color="[$data.value == $appScope.start ? 'gray' : 'inherit']"></button>

 <button
 event-click="{$owner.templateParent.goLastCommand}"
 atom-is-enabled="[$owner.templateParent.pages.length > 1 && $owner.templateParent.currentPage <
$owner.templateParent.pages.length -1]"
 style="float:right">
 Last
 </button>

</div>

<div
 atom-text="['Current Page: ' + $scope.start]"></div>

This is just a sample, you can customize the template to any way you want it. Another alternative would

be to display all the pages, but simply use relative width to crop it to a viewable viewport, in which you

can customize the look and feel and also animate it little.

14.4 Combo Box
AtomComboBox can only be created with SELECT HTML Element. This control manages selection and

operates as regular combo box. Since it is derived from AtomItemsControl, it manages binding

completely by itself. You can refer Cascaded Selections for a sample.

14.5 Toggle Button Bar
Toggle Button Bar can have only one selected item, and it has first item selected by default if none

selected. This control is derived from AtomListBox, but it applies its own styles.

<script type="text/javascript">
 ({
 accountTypes: [
 { label: 'Free', value: 0 },
 { label: 'Professional', value: 99 },
 { label: 'Enterprise', value: 999 }
]
 })
</script>

<span
 atom-type="AtomToggleButtonBar"
 atom-items="{$scope.accountTypes}"
 atom-value="$[data.AccountType]">

In this example, let us consider that we want user to sign up for

different type of accounts, and we give them choice to select one.

AtomToggleButtonBar choose first item as default if none

selected already.

Instead of drop downs, for smaller items AtomToggleButtonBar is easier for users to choose required

item. You can change its looks simply by applying one property atom-show-tabs as true.

And it appears as tab.

If you combine, Toggle Button Bar and View Stack, you have your own Tab Control.

15 BUILDING HTML USER INTERFACE

15.1 Dock Panel
Dock panel provides basic docking functionalities and it resizes its children automatically. Following

example displays nested Dock Panels, you can resize browser to see how resizing works perfectly on all

browsers. It also resizes correctly while orientation of mobile devices changes.

<div
 atom-type="AtomApplication">
 <div
 atom-dock="Top"
 style="height:50px; background-color:greenyellow">
 Header
 </div>
 <div
 atom-dock="Left"
 style="width:200px; background-color: lightgray">
 Tree View
 </div>
 <div
 atom-dock="Fill"
 atom-type="AtomDockPanel">
 <div
 atom-dock="Top"
 style="height:40px; background-color: lightcyan">
 Nested DockPanel Header
 </div>
 <div
 atom-dock="Fill">
 Nested Fill Element
 </div>
 <div
 atom-dock="Bottom"
 style="height:30px; background-color: lightseagreen">
 Nested DockPanel Footer
 </div>
 </div>
 <div
 atom-dock="Bottom"
 style="height:30px; background-color:greenyellow">
 Footer
 <a
 href="http://webatomsjs.neurospeech.com"
 target="_blank"
 style="right:5px; position:absolute">Powered by Web Atoms
 </div>
</div>

Dock properties are not bindable as of now.

Note: AtomDockPanel should only be used for top level docking, as it consumes lots of resources, using

too many dock panels will slow down the browser.

You must always use AtomDockPanel to create docking layout instead of mixing with any jQuery

plugin, because this control will substitute best available method for docking based on new CSS

availability.

15.2 View Stack
AtomViewStack displays only the selected child as full view and all other children are hidden.

AtomViewStack can host multiple children and only one children can be visible based on some state.

AtomViewStack is derived from AtomItemsControl, so it can also create individual children based on

the items set.

<script type="text/javascript">
 ({
 links: [
 { label: "Home", value: "home" },
 { label: "About", value: "about" },
 { label: "Contact", value: "contact" },
],
 view: "home"
 })
</script>

<span
 atom-dock="Top"
 atom-type="AtomToggleButtonBar"
 atom-name="buttonBar"
 atom-items="{ $scope.links }"
 atom-value="$[scope.view]"
 style="height:30px;text-align:center">

<div
 atom-dock="Fill"
 atom-type="AtomViewStack"
 atom-selected-index="[$scope.buttonBar.selectedIndex]">
 <div style="background-color:lightyellow">
 This is home page....
 </div>
 <div style="background-color:lightblue">
 This is About page....
 </div>
 <div style="background-color:lightgreen">
 This is Contact page....
 </div>
</div>

15.3 Link Bar (Menu Bar)
AtomLinkBar is same as AtomToggleButtonBar, but the default button is selected based on the

current page's URI scheme. This is useful control in creating top navigation links usually found on any

web applications, where the current page or category is highlighted.

AtomLinkBar can display menu for children items as well.

<script type="text/javascript">
 ({
 links: [
 {
 label: "Home",
 value: "http://neurospeech.com/"
 },
 {
 label: "Products", value: "",
 links: [
 {
 label: "Web Atoms",
 value: "http://webatomsjs.neurospeech.com"
 },
 {
 label: "WSClient++",
 value: "http://wsclient.neurospeech.com"
 }
]
 }
]
 })
</script>

<div
 atom-type="AtomLinkBar"
 atom-items-path="links"
 atom-items="{$scope.links}">
</div>

15.4 Form Layout
AtomFormLayout is a special control, which encapsulates general form layout, i.e. display a label and

required “*” and error label for erroneous data. AtomFormLayout encapsulates every control within a

class called AtomFormField, you need not define this type, and it is automatically created by

AtomFormLayout.

<div
 atom-type="AtomForm"
 atom-post-url="/Url/Insert"
 atom-data="{ { FirstName: '', LastName: '', Password: '', Password2:'' } }"
 atom-success-message="Information Saved Correctly">
 <div
 atom-type="AtomFormLayout">

 <input
 type="text"
 atom-label="Username:"
 atom-required="true"
 atom-value="$[data.Username]"/>

 <input
 type="password"
 atom-label="Password:"
 atom-value="$[data.Password]"
 atom-required="true"/>

 <input
 type="password"
 atom-label="(Again) Password:"
 atom-value="$[data.Password2]"
 atom-is-valid="[$data.Password == $data.Password2]"
 atom-error="[$owner.isValid ? '' : 'Passwords do not match']"/>

 <span
 atom-label="Name:"
 atom-required="true"
 atom-is-valid="[$data.FirstName && $data.LastName]">
 <input
 placeholder="First Name:"
 type="text"
 atom-value="$[data.FirstName]" />

 <input
 placeholder="Last Name:"
 type="text"
 atom-value="$[data.LastName]" />

 <input type="submit" value="Save" />

 </div>
</div>

Every children of AtomFormLayout can define, atom-label, atom-required, atom-is-valid,

atom-data-type. atom-regex, atom-field-value and atom-field-class.

atom-label Label will be displayed on left side of form with right aligned by default.
atom-required This will setup default validation for field to be required, if set true,

either value of element or atom-field-value cannot be empty.
atom-is-valid In case when you have multiple required elements in one field, you can

use this to bind to a valid expression, or you can use this to bind to
custom expression that evaluate to true.

atom-data-type If you setup data-type as email, field will be validated for perfect email
address.

atom-regex If you setup regex, it will be tested against atom-field-value or value of
element.

atom-field-value If child control does not have value property, then you can bind this to
any property of data that will be validated.

atom-field-visible You can bind this property to hide/show the field based on some
Boolean condition

atom-field-class CSS class that should be applied to entire Field Row.

15.5 Form Grid Layout
As we have seen the Form Layout manages simple form layout, however when we need multi column

layout, it becomes very difficult to manage it in HTML and it involves complex layout CSS. To make things

easier, we have created Form Grid Layout which lets you add multiple cells in one column and form design

stays consistent as needed.

Standard Form Design

• Multi Column

• Variable
Columns per
Row

• Required Red
Asterisk (*)

• Description at
the Bottom

Label:

Label:

Label:

Label:

Label:

Field Description for above Editor Control ……

Field Description Field Description

*

*

Standard Multi Column Form

So we want to achieve following layout. If you look carefully, 1st row has three columns, 2nd row has two

columns and last two rows have single column elements.

Doing this in HTML will require you to either create lots of nested tables or write complex CSS. However

there is now way you can write a dynamic CSS which will change its width as per screen changes.

AtomFormGridLayout does this by automatically creating tables as needed. However, there is no

possible CSS solution for such layout which resizes automatically.

 <div
 atom-type="AtomFormGridLayout"
 atom-min-label-width="120">

 <input
 atom-label="First Name:"
 atom-required="true"
 type="text"
 atom-value="$[data.FirstName]" />
 <input
 atom-label="Middle Name:"
 atom-value="$[data.MiddleName]"/>
 <input
 atom-label="Last Name:"
 atom-required="true"
 type="text"
 atom-value="$[data.LastName]" />

 <input
 atom-label="Email Address:"
 type="text"
 atom-data-type="email"
 atom-value="$[data.EmailAddress]"/>

 <input
 atom-label="Zip: (Numbers only)"
 type="text"
 atom-regex="/[0-9]+/"
 atom-value="$[data.ZipCode]"/>

 <textarea
 atom-label="Address:"
 atom-value="$[data.Address]"></textarea>

 <input type="submit" value="Save" />

 </div>

15.6 Form Grid Layout with Tabs
Form Grid Layout is fun, and there is even more fun with Tabs, usually if the form is very big, you can

divide form screens into different tabs.

 <div atom-type="AtomFormTabControl">
 <div atom-type="AtomFormTab" atom-label="Customer Details">

 <input atom-label="First Name:"
 atom-required="true"
 atom-value="$[data.FirstName]" />
 <input atom-label="Middle Name:"
 atom-value="$[data.MiddleName]" />

 <input atom-label="Last Name:"
 atom-required="true"
 atom-value="$[data.LastName]" />

 <input atom-label="Email Address:"
 atom-data-type="email"
 atom-value="$[data.EmailAddress]" />
 <input atom-label="Zip: (Numbers only)"
 atom-regex="/[0-9]+/"
 atom-value="$[data.ZipCode]" />

 <textarea
 atom-label="Address:"
 atom-value="$[data.Address]"></textarea>
 <div atom-type="AtomFormGridLayout">
 <input atom-label="Country:"/>
 <input atom-label="State:"/>
 <input atom-label="City:"/>
 </div>

 </div>
 <div atom-type="AtomFormTab" atom-label="Profession Details">

 <input atom-label="Company:"
 atom-value="$[data.Company]" />
 <input atom-label="Since (Years):"
 atom-regex="/[0-9]+/"
 atom-value="$[data.SinceYears]" />

 <input atom-label="Education:"
 atom-value="$[data.Education]" />
 <input atom-label="Year Graduated:"
 atom-regex="/[0-9]+/"
 atom-value="$[data.GraduationYear]"/>

 <textarea atom-label="Experience:"
 atom-value="$[data.Address]"></textarea>
 </div>
 </div>

As you can see, the form layout remains consistent throughout the form including Tabs and that

probably covers all aspects of form design.

You should add AtomFormTabControl inside AtomFormGridLayout and also you can add

AtomFormTab and set its label.

Label property is not bindable at this time, however in future it will be bindable.

15.7 Form Items

15.7.1 HTML Elements

As you have seen in previous example, you can use any default HTML form input elements that is

supported by the browser and binding should be applied on value attribute except for checkboxes.

15.7.2 CheckBoxList

AtomCheckBoxList is inherited from AtomListBox, but by default it allows multiple selection and

automatically provides comma separated values as value property. You can control layout property by

giving it a table layout, which accepts number of columns, cell width and cell height parameters. In

addition, you can also control your layout by overriding atom-check-box-list css styles.

<script type="text/javascript">
 ({
 items: [
 { label: 'Apple', value: 'apple' },
 { label: 'Orange', value: 'orange' },
 { label: 'Grapes', value: 'grapes' },
 { label: 'Mango', value: 'mango' }
],
 fruits: ''
 })
</script>

<div
 atom-type="AtomCheckBoxList"
 atom-items="{$scope.items}"
 atom-value="$[scope.fruits]"
 atom-layout="{Atom.tableLayout(2,100,20)}"
 ></div>

<span
 atom-text="[$scope.fruits ? ('Selected Items: ' + $scope.fruits) : '(Please Select
Items)']"
 style-color="[$scope.fruits ? 'inherit' : 'red']">

Selected items are separated by “, “ and are available as value property. In above example, value

property is stored in scope.

15.7.3 Date Control

This control is simple, old style, three drop down for Year, Month and Day for selecting Date. Calendar

style date controls are little complicated to choose for longer year range. But this is still the most simple

way to choose date yet.

Value property of AtomDateControl accepts date as JavaScript Date object, or Microsoft Rest Date

Format in /Date(334343433)/ form or simple parsable Date format.

<script type="text/javascript">
 ({
 date: new Date()
 })
</script>

<div
 atom-type="AtomDateControl"
 atom-start-year="{ -5 }"
 atom-end-year="{ +20 }"
 atom-value="$[scope.date]"></div>

<div
 atom-text="[$scope.date]"></div>

In this control, date is finally stored as JavaScript Date Object and it is sent to JSON as /Date(3434333)/

format.

15.7.4 Date Field

This control hosts a Date Selector field in Calendar format.

Value property of AtomDateField accepts date as JavaScript Date object, or Microsoft Rest Date Format

in /Date(334343433)/ form or simple parsable Date format.

<script type="text/javascript">
 ({
 date: new Date()
 })
</script>

 <div
 atom-type="AtomDateField"
 atom-start-year="{ -5 }"
 atom-end-year="{ +20 }"
 atom-value="$[scope.date]">
 </div>
 <div
 atom-text="[$scope.date]">
 </div>

Year drop down is loaded with range specified by startYear and endYear properties. Both these

properties are relative to current Year and they are added to current Year and the range is loaded

automatically. In above example, you can see that year starts 5 years back in the past till 20 years in the

future. Also note, in order to make things simpler, we have set values in curly braces, so values are

recognized as proper JavaScript numbers.

15.8 Navigator List
Navigator list is derived from AtomListBox and it adds UI Navigation similar to what is found in iPhone

mobile application. This control simplifies Master Detail View. When we select an item or add new item,

detail view is slided in. And by clicking on back button, list will appear again.

Navigator list contains Data Pager as well.

List view is outlined as shown in following image. This is default view, navigator list starts with following

view. You can customize template as per your requirements.

When we click on an item, detail view opens and it is outlined as follow.

 Detail Header Template is required.

 Either Detail Template or Detail Url must be defined. Detail URL should be bound to selected

item's property which will be loaded when selected item will be selected.

<div
 atom-type="AtomNavigatorList"
 atom-new-item="{ { MovieName: '', MovieCategory: '' } }"
 atom-items="{ AtomPromise.json('/docs/controls/samples/movie-list.json') }"
 atom-name="movieList"
 style="width:400px; height:400px; margin:50px;">

 <input placeholder="Search Movies" atom-value="$[scope.searchText]" />

 <table atom-template="gridTemplate">
 <thead>
 <tr>
 <th>Name</th>
 </tr>
 </thead>
 <tbody atom-presenter="itemsPresenter">
 <tr atom-template="itemTemplate">
 <td atom-text="{$data.MovieName}"></td>
 </tr>
 </tbody>
 </table>
 <span
 atom-template="detailHeaderTemplate"
 atom-text="['Movie: ' + $data.MovieName]">

 <div
 atom-template="detailTemplate"
 atom-type="AtomFormLayout">
 <input
 atom-label="Movie Name:"
 atom-value="$[data.MovieName]"/>
 <input
 atom-label="Movie Category:"
 atom-value="$[data.MovieCategory]"/>
 <button
 atom-event-click="{$owner.templateParent.backCommand}"
 >Save</button>
 </div>
</div>

In above sample, detailTemplate is used to display the details. You can hide Search and Add New

buttons by customizing templates. New Item property is used to create a new object with default values,

For New Item property, every property in object must be initialized to some default empty values since

undefined is not a bindable value.

As this is derived from AtomListBox, you can change item template and table headers for sorting.

Following code snippet illustrates how to use Data Pager in footer.

<div
 atom-type="AtomNavigatorList"
 atom-new-item="{ { MovieName: '', MovieCategory: '' } }"
 atom-items="{ AtomPromise.json('/docs/controls/samples/movie-list.json') }"
 atom-name="movieList"
 style="width:400px; height:400px; margin:50px;">

 <input placeholder="Search Movies" atom-value="$[scope.searchText]" />

 <div
 atom-template="footerTemplate"
 atom-type="AtomDataPager"
 atom-items="[$owner.templateParent.items]"
 atom-current-page="$[$owner.templateParent.currentPage]"
 atom-page-size="$[$owner.templateParent.pageSize]"></div>

 <table atom-template="gridTemplate">
 <thead>
 <tr>
 <th>Name</th>
 </tr>
 </thead>
 <tbody atom-presenter="itemsPresenter">
 <tr atom-template="itemTemplate">
 <td atom-text="{$data.MovieName}"></td>
 </tr>
 </tbody>
 </table>

 <span
 atom-template="detailHeaderTemplate"
 atom-text="['Movie: ' + $data.MovieName]">

 <div
 atom-template="detailTemplate"
 atom-type="AtomFormLayout">
 <input
 atom-label="Movie Name:"
 atom-value="$[data.MovieName]"/>
 <input
 atom-label="Movie Category:"
 atom-value="$[data.MovieCategory]"/>
 <button
 atom-event-click="{$owner.templateParent.backCommand}"
 >Save</button>
 </div>
</div>

15.9 Window
AtomWindow can host one div or it can host an IFrame and contains a close button along with a window

frame. Elements behind AtomWindow are not accessible as Window is modal by default.

<!-- setting control properties requires square brackets
 because window appears after the button, so window was not
 created and will be updated by framework later on. Using
 one-time binding will not work for controls defined later
 in the visual hierarchy -->
<button
 atom-type="AtomButton"
 atom-next="[$scope.theWindow.openCommand]"
 atom-data="{ { label:'Open Window Button' } }"
 >Open Window</button>

<div
 atom-type="AtomWindow"
 atom-name="theWindow"
 atom-title="This is a window">
 <!-- To host elements, div must be a window template -->
 <!-- As opener Data will change after the window was
 created, using curley braces will not work for openerData-->
 <div
 atom-template="windowTemplate"
 >
 This is inside the window.
 <div atom-text="['Opener Data: ' + $owner.openerData.label]"></div>
 <button
 atom-type="AtomButton"
 atom-next="{$scope.theWindow.closeCommand}"
 >Close</button>
 </div>
</div>

Important properties to note.

 closeCommand - you can bind window's close command to close button.

 opener - control that opened this window

 openerData - data property of window opener

15.9.1 Hosted IFrame

<!-- setting control properties requires square brackets
 because window appears after the button, so window was not
 created and will be updated by framework later on. Using
 one-time binding will not work for controls defined later
 in the visual hierarchy -->

<button
 atom-type="AtomButton"
 atom-next="[$scope.theWindow.openCommand]"
 atom-data="{ { label:'NeuroSpeech Frame', value: 'http://neurospeech.com' } }"
 >Open NeuroSpeech.com</button>

<button
 atom-type="AtomButton"
 atom-next="[$scope.theWindow.openCommand]"
 atom-data="{ { label:'WebAtoms Frame', value: '/webatoms/docs' } }"
 >Open WebAtoms</button>

<!--
 openerData will be set after creation of window, so one way binding
 must be used
 -->
<div
 atom-type="AtomWindow"
 atom-name="theWindow"
 atom-title="[$owner.openerData.label]"
 atom-url="[$owner.openerData.value]"
 >
</div>

In this example, we are sending value through openerData property, we are setting Title and Url of

iFrame window to its own openerData property, which will be set when any of the button will be

clicked.

15.10 Wizard
Wizard is a set of views that allows you to go back and forth by clicking buttons “Next” and “Back”. Wizards

are multi step UI actions, where you expect users to finish their data entry one step at a time. Although

you can use a tabbed form, but still order of completion and database transactions per step gives you

more control over tabs.

<div
 atom-type="AtomWizard"
 atom-name="theWizard"
 atom-local-scope="true">
 <!-- View Template Does Nothing, it just holds references of child steps -->
 <div atom-template="viewTemplate">
 <!-- Step 1 View-->
 <div atom-next="[$scope.step1Form.submitCommand]">
 <div
 atom-type="AtomForm"
 atom-name="step1Form"
 atom-next="{$localScope.owner.goNextCommand}">
 <div>This is step 1 of wizard</div>
 <div atom-type="AtomFormLayout">
 <input
 type="text"
 atom-label="Name:"
 atom-required="true"/>
 </div>
 </div>
 </div>
 <!-- Step 2 View-->
 <div atom-next="[$scope.step2Form.submitCommand]">
 <div
 atom-type="AtomForm"
 atom-name="step2Form"
 atom-next="{$localScope.owner.goNextCommand}">
 <div>This is step 2 of wizard</div>
 <div atom-type="AtomFormLayout">
 <input
 type="text"
 atom-label="Email:"
 atom-required="true"/>
 </div>
 </div>
 </div>
 <!-- Step 3 View-->
 <div>
 This is step 3 of wizard
 </div>
 <!-- Final View-->
 <div>
 This is the final step
 </div>
 </div>
</div>

Submit Form 1

After Form saves, Display Next View

The way Wizard works is, Wizard has a viewTemplate which contains multiple views for each step.

1. Each View has atom-next action set, which is invoked when user presses “Next” button on the

wizard.

2. If action-next is not set, by default wizard will move to next step.

3. In case when we want to save the form data, we have to intercept atom-next of the view.

4. We will set atom-next of step view to step1Form.submitCommand

5. And we have set form’s atom-next to wizard’s goNextCommand.

6. In above sample, we have set atom-next to step1Form.submitCommand, which means when

we click next button, form will be submitted.

7. After success of form post result, form’s atom-next will move wizard to next step.

AtomWizard has atom-next action set which will be invoked after the last step was finished.

The best use of wizard will be to put it inside an AtomWindow that will delete current state of AtomWizard

and reset it back when user opens a window. If you host AtomWizard inside AtomWindow, you can set

closeWindow command of AtomWindow as atom-next of AtomWizard.

16 DIFFERENCE BETWEEN SCOPE AND DATA

While creating an application or component, choosing between scope or data can be little confusing. But

once you know following differences, you will be able to choose storage correctly.

Scope

 Scope stores UI reference with given name, so you can access other UI controls through scope.

 Top level Scope serializes primitive data types such as string, number and Boolean onto URL with

hashtags, that helps in navigating back and forward in browser. Whatever that represents state

of the user interface, but not the data, should be stored on scope. For example, which column to

sort, Search query, and any layout related information like selected tab etc.

 Since scope is visually nested as well, you can access parent scope in children and you can access

appScope from anywhere.

 Scope should be used to store information temporarily till lifespan of the page only.

 You can only add items to scope, but you cannot change scope itself, scope is initialized only by

the framework.

Data

 Data can only be accessed through data property of current control. If not set, data will be

inherited from visual parent.

 Data can be set by control, once set, all its descendants will access same data.

 Data does not have references to any visual parent what so ever.

 For forms processing, controls such as Form and Post Button only post contents of data property.

 Only the items you want to persist to database and that are not representing temporary UI state,

should be stored in data.

17 LIBRARY REFERENCE

Web Atoms has many useful library functions, and as they are standardized, we will be including them in

our library. You can certainly use undocumented methods, but they may be removed or replaced in

future.

17.1 Atom Module

17.1.1 Atom.get(target,property) Method

Atom.get method is useful to inference property as property can be get_ function or it is a member.

17.1.2 Atom.set(target,property,value) Method

Atom.set method sets property of specified target, however this also invokes binding and forces each

referenced binding to refresh the UI Element. That is the reason, we recommend using Atom.set over

directly setting properties on any object.

17.1.3 Atom.add(targetArray,item) Method

Atom.add method adds given item in the targetArray at the end. This method also causes all controls

to refresh which are bound to targetArray.

17.1.4 Atom.insert(targetArray,index,item) Method

Atom.insert method inserts item in the targetArray at the given index. This method also causes all

controls to refresh which are bound to targetArray.

17.1.5 Atom.remove(targetArray,item) Method

Atom.remove method removes item from the targetArray, only if the item was found in the

targetArray. If it was removed, it will then refresh all its corresponding bindings. This method will not

throw or report any error if item was not found.

17.1.6 Atom.clone Method

Since Web Atoms uses distributed binding, each instance of object has certain hidden properties with

prefix _$_ and all these properties must not be serialized anywhere. To make cloning easier, we have

provided convenient Atom.clone method which clones given object without any hidden properties. This

method also converts JavaScript Date into /DateISO(AtomJson)/ string.

17.1.7 Atom.refresh(target,property) Method

In case if the value of property is modified by some different routine and you want to force UI to update,

then you can use Atom.refresh method.

17.1.8 Atom.refreshArray(targetArray) Method

Same as Atom.refresh, but this method is for refreshing Array.

17.1.9 Atom.clearArray(targetArray) Method

This method clears the array and refreshes all the bindings.

17.1.10 Atom.url(url,query,hash) Method

Contacting different parameters for URL requires proper encoding. Atom.url provides url encoding as

well as it converts objects and arrays into JSON equivalent as well.

<a
 atom-href="{ Atom.url('/productList.php', { category: 'Arts and Crafts' }) }">

<!-- Becomes -->
<a
 atom-href="/productList.php?category=Arts+and+Crafts">

The reason, url method expects an anonymous object as second parameter is, it escapes each member

and adds them up as proper query string.

17.1.10.1 query Parameter

query is of type anonymous object, each member will be escaped and added into final URL. This helps in

binding individual query string parameter to some other scope variable.

17.1.10.2 hash Parameter

hash is same as query, but hash anonymous objects are appended as URL hash instead of query string.

This url hash is important to initialize default scope values on destination page.

17.1.11 Atom.time Method

This method returns current time’s milliseconds as integer, this is useful method to use inside any binding

expression.

17.1.12 Atom.refreshWindowCommand Method

This method refreshes current method, however this is not a simple location.reload(), instead it

forces server side refresh by appending current time as _v in query string to enforce refresh. This is useful

command for binding that requires refreshing of entire page.

17.1.13 Atom.merge(dest, src, update) Method

Sometimes it is useful to merge some default values in data of any control while binding or initializing.

This method merges all values from src into dest and returns the same dest. If update was true, merge

will use Atom.set instead of simply setting value, which will cause refreshing of bindings.

17.1.14 Atom.csv(array,path,separator) Method

As we retrieve objects with some sort of label-value pattern, most of the times we need some comma

separated values of internal properties. For example, if we retrieve list of countries, we need comma

separated values of all country codes. In following example, countries array item has a property called

CountryCode.

Atom.csv(countries,"CountryCode",", ");

17.1.15 Atom.query Method

Creates instance of AtomQuery, which can be used to query object with JSON Query Language Explained

in AtomQuery section.

17.2 AtomPromise Module
AtomPromise methods are mostly wrapper around AtomPromise object which has set of standard

JavaScript Promise methods and a little more common functionality.

17.2.1 JSON Post Encoding

By default, HTTP POST are encoded as formModel=JSON in HTML form encoded way to support previous

ASP.NET Web Server. And on server side, you could use Request.Form["formModel"] to retrieve JSON

equivalent, and you can then deserialize JSON into Dictionary in .NET.

This is done to preserve the null and empty values of string. Sending Form Key=Value pairs does not send

hierarchical data and it does not send empty string values correctly.

To have your own serialization method, in case of PHP or any other framework, you have to use following

different code snippets.

17.2.2 JSON Serialized as Form Value as formModel field (Default)

<script type="text/javascript">
 AtomConfig.ajax.jsonPostEncode = function (data, options) {
 options.contentType = 'application/x-www-form-urlencoded';
 return { formModel: JSON.stringify(data) };
 };
</script>

17.2.3 JSON Serialization

To change the default behavior, you can change jsonPostEncode as shown below, however this scheme

does not work well with file upload.

<script type="text/javascript">
 AtomConfig.ajax.jsonPostEncode = function (data, options) {
 options.contentType = 'application/json';
 return JSON.stringify(data);
 };
</script>

17.2.4 AtomPromise.json(url,query,options) Method

This method combines url with query string (query parameter) by using Atom.url method and invokes

jQuery’s $.ajax method which is wrapped inside AtomPromise.ajax method. To post any data, data

must be passed inside options parameter. However, please remember that data is first encoded with

JSON.stringify as formModel and it is sent to jQuery’s $.ajax.

17.2.4.1 options Parameter
cache True/false, by default it is false. This causes a current time in milliseconds parameter

added after url.
ifModified True/false, by default it is undefined, passed to jQuery AJAX method as it is.
versionUrl True/False, by default it is false. To cache JSON objects by versioning URL. Appends

a version query parameter if set to true.

In following example, you can see how we can bind name query string parameter and that gets sent to

server in query string.

<script type="text/javascript">
 ({ searchText: '' })
</script>
<div>
 <input type="search" placeholder="Search For" atom-value="$[scope.searchText]"/>
</div>
<div
 atom-type="AtomItemsControl"
 atom-items="[AtomPromise.json('/db/products', { name: $scope.searchText })]">

17.2.5 AtomPromise.get(url,query,options) Method

Same as json method but this performs GET method and returns a string value in promise completion.

17.2.6 AtomPromise.cachedJson(url,query,options) Method

Same as AtomPromise.json, but result is cached for given url. Also note that this method caches results

only on the basis of url, not query. If you want your query string to be cached, then you should call

Atom.url before passing url to this method. Results of this promise are cached in sessionStorage of

the browser as well as on current page. This reduces parsing time on each fetch as if you load list of

config values for multiple controls from same source, only one result is bound to both controls.

17.2.7 AtomPromise.configLabel(url,value,options) Method

As we play more with label-value pair data pattern. We mostly store value in resultant database field,

however to display the selection in User Interface, we need actual label. This is a handy method which

loads array of label-pair and caches them and it retrieves label for corresponding value that we need.

In the following example, we are loading countries JSON Array from given url, and value is retrieved, this

method will return label ‘United States’ for corresponding value of ‘US’ when promise completes.

AtomPromise.configLabel('/db/countries','US',{ valuePath: 'CountryCode'});

17.3 AtomQuery Module
AtomQuery Module provides JSON Query capabilities for given array. First we will learn JSON Query

Language which is designed specifically to write queries in Object Literal form along with binding.

All string operations are Case Insensitive except they are marked with “CS”.

Following Grammar represents JSON Query;

query : '{' queryExp (',' queryExp)* '}' ;
queryExp : "'" propertyName ((':'|':!') operator)? "'" ':' value
 | '$or' ':' query
 | '$and' ':' query
 | '$not' ':' query ;
operator : '=='
 | '>='
 | '<='
 | 'any'
 | 'in'
 | 'startsWith' | 'startsWithCS'
 | 'endsWith' | 'endsWithCS'
 | 'contains' | 'containsCS' ;

17.3.1 JSON Data Store

Let’s consider, we have following data available, also note this data is hierarchical and we want to query

nested array as well.

var items = [
 {
 OrderID: 1,
 Customer: {
 CustomerID: 1, Name: 'Akash Kava',
 },
 Items: [
 { ProductID: 3, ProductName: 'Star Wars DVD' },
 { ProductID: 4, ProductName: 'iPhone'}
]
 },
 {
 OrderID: 2,
 Customer: {
 CustomerID: 2, Name: 'John Carter'
 },
 Items: [
 { ProductID: 7, ProductName: 'Universe DVD' },
 { ProductID: 4, ProductName: 'iPhone'}
]
 },
 {
 OrderID: 3,
 Customer: {
 CustomerID: 3, Name: 'Jessica Carter'
 },
 Items: [
 { ProductID: 7, ProductName: 'Universe DVD' },
 { ProductID: 9, ProductName: 'Samsung Phone' }
]
 }
];

17.3.2 Simple Comparison Query

To retrieve object or array of object, you can simply pass object literal with value and property.

// retreives order with OrderID 2
var order = Atom.query(items).firstOrDefault({ OrderID: 2 });

// retrieves an Enumerator (which you can enumerate or convert to array)
// for all orders with OrderID > 2
var orders = Atom.query(items).where({ 'OrderID:>=': 2 }).toArray();

To compare with any other JavaScript compare operator, the key of Object must contain a ‘:’ (colon)

and the operator as shown in above example. Also in above example, where method returns

AtomEnumerator, which you can convert to Array.

17.3.3 Nested Property Comparison

// retreives Order whose's Customer.CustomerID is 3
var order = Atom.query(items).firstOrDefault({ 'Customer.CustomerID': 3 });

// retreives Orders whose's Customer.CustomerID > 2
var orders = Atom.query(items).where({ 'Customer.CustomerID:>=': 2 }).toArray();

17.3.4 Composite Query

By default, multiple property conditions are combined with “AND” Boolean operator.

// retrieves Orders for multiple conditions
// both conditions are combined with AND boolean operator by default
var order = Atom.query(items)
 .firstOrDefault({ 'OrderID:>=': 2, 'Customer.CustomerID:>=': 2 });

// retrieves Orders for multiple conditions
// both conditions are combined with OR operator
// $or contains a nested condition block
var order = Atom.query(items)
 .firstOrDefault({ '$or': { 'OrderID:>=': 2, 'Customer.CustomerID:>=': 2 } });

17.3.5 In Query

In operator is special operator, where you can specify an array of acceptable values. This is same as “IN”

operator found in SQL QUERY.

// retrieves Order with given OrderIDs in array
var orders = Atom.query(items)
 .where({ 'OrderID:in': [2, 3, 5, 6] }).toArray();

// in also works for strings
var orders = Atom.query(items)
 .where({ 'Customer.Name:in': ['Akash Kava','John Carter'] }).toArray();

17.3.6 Any Query

Any query comes from C# LINQ, it basically evaluates given condition on property that is of type Array.

For example, each Order contains multiple Items, and we want to search based on criteria for Items.

// retrieves all orders which contains Items with given ProductID
// any has a nested condition which is queried on Items array
var orders = Atom.query(items)
 .where({ 'Items:any': { ProductID: 2 } }).toArray();

// retrieves all orders which contains Items with given ProductIDs
// any has a nested condition which is queried on Items array
var orders = Atom.query(items)
 .where({ 'Items:any': { 'ProductID:in': [2, 3, 4] } }).toArray();

17.3.7 Useful Operators

After ‘:’ colon, you can apply any JavaScript compare operator. However, there are special operators

we have added for you to easily do string operations which are as follow.

 contains

 startsWith

 endsWith

 containsCS

 startsWithCS

 endsWithCS

All “CS” methods are “Case Sensitive”.

17.4 AtomQuery Extension Methods

17.4.1 sum Method

Sum method will add up all the fields specified in the parameter along with the sum method call.

var total = Atom.query(orders)
 .where({ OrderStatus:'completed' })
 .sum('total');

17.4.2 count Method

Count method will count number of items in given query, if the parameter is passed, parameter will be

used to filter the query further and it will return the count.

// both the queries will return same results
total = Atom.query(orders)
 .where({ OrderStatus:'completed' })
 .count();

total = Atom.query(orders)
 .count({ OrderStatus:'completed' });

17.4.3 any Method

Any method will return true if there are any items in the query. If the parameter is passed, parameter will

be used to filter the query further and it will return true if items exist after filtering.

// both the queries will return same results
any = Atom.query(orders)
 .where({ OrderStatus:'completed' })
 .any();

any = Atom.query(orders)
 .any({ OrderStatus:'completed' });

17.5 AtomBinder Module
This class is only provided as reference, you must avoid using this class and must use

Atom.set/get/add/insert/remove methods instead. AtomBinder is core of Web Atoms, these

methods actually evaluate properties based on availability of getter/setter definitions.

17.5.1 AtomBinder.setValue(target,property,value) Method

This method sets given value as property of the target. However, this method first calls

AtomBinder.getValue to check if the value is same or not, in order to avoid recursive setValue calls.

This method first checks if “set_{property}” method is available or not, if available it calls

“set_{property}” method or it just assigns value to the property. This method calls

AtomBinder.refreshValue if the value was modified.

17.5.2 AtomBinder.getValue(target,property) Method

This method retrieves property of the target. This method first checks if “get_{property}” method is

available, if available it calls “get_{property}” method, otherwise it returns the member with property

name.

17.5.3 AtomBinder.refreshValue(target,property) Method

This method refreshes all watchers (UI bindings) associated with given target, but only for specific

property.

17.5.4 AtomBinder.add_WatchHandler(target,property,handler) Method

You can add Watch Handler to watch the given target, however you will only receive notifications for

specified properties only.

17.5.5 AtomBinder.remove_WatchHandler(target,property,handler) Method

You can use this method to remove your Watch Handler for specified property to stop receiving property

change notifications.

17.6 AtomDate Class
To display Dates, (Web Atoms automatically parses MVC Date formats into JavaScript Dates), you need

following helper methods in Binding expressions to display date correctly.

17.6.1 AtomDate.toMMDDYY Method

Formats given JavaScript date object into MM/DD/YYYY format, this is for compatibility with old date

formats.

17.6.2 AtomDate.toShortDateString Method

This method formats given date in “Jan 13 2014” format. If given date is string, it will parse and format

the date.

17.6.3 AtomDate.toDateTimeString Method

This method formats given date object in Date and Time format. Date format is same as the one explained

in previous example.

17.6.4 AtomDate.parse Method

This method tries to parse given date string into JavaScript date format, this parser does consider ASP.NET

MVC Date format.

17.7 AtomFileSize Class

17.7.1 AtomFileSize.toFileSize Method

This formats given file size numeric value into human readable file size value such as kb, mb, gb etc.

18 WALKTHROUGHS

18.1 Post changes to server on AtomComboBox
AtomComboBox can only be used with SELECT element and it has special functionality to post data to

HTTP server when any selection has been changed.

<script type="text/javascript">
 ({
 ratingList: [
 { label: "Save Rating As", value: -1 },
 { label: "3 Star Rating", value: 1 },
 { label: "2 Star Rating", value: 2 },
 { label: "1 Star Rating", value: 3 },
 { label: "No Rating", value: 0 },
],
 ratingSaved: function (scope, sender) {
 // combo box has selected item and
 // selected item has value property
 // that is available as value of combo box
 var value = Atom.get(sender, "value");
 // special case when selectedIndex is zero,
 if (value == -1)
 return;
 var items = Atom.get(scope, "itemList.selectedItems");
 var ae = new AtomEnumerator(items);
 while (ae.next()) {
 var item = ae.current();
 // this will force current Ratings
 // of all items to update its UI
 Atom.set(item, "Ratings", value);
 }
 }
 })
</script>
<select atom-name="Choice"
 atom-type="AtomComboBox"
 atom-post-url="/App/Entity/Products?command=ModifyRating"
 atom-post-data="[{ ids: $scope.itemList.value, rating:$owner.value }]"
 atom-next="{$scope.ratingSaved}"
 atom-items="{ratingList}">
</select>

Let’s assume, you have number of items displayed in the list and you want to change rating of selected

items from 1 to 3 or nothing.

1. We create an array in scope, which displays 3 ratings, first prompt and last item to reset the

ratings.

2. First item is called prompt, that is what is displayed to user by default. The reason this is the first

item, instead of attribute prompt, is that we will reset combo box back to first item once the

operation is over. Since serializing scope for prompt attribute can be complicated.

3. We create a method in scope, named ratingSaved, which will be called after the POST

operation was successful.

4. In this method, we get access to selected value, “sender” is AtomComboBox itself, as it was

initiated by user click operation.

5. We check if the value is zero, in this case, it is first item, then we return the method.

6. We then get selected Items property of itemList and set each item’s rating, which will update

its UI, without refreshing and reloading all items from server.

7. Finally we will set post data property of AtomComboBox to set of properties that we want to POST

to server.

8. And we will set a post url, in this case, post url must be set, empty post url will just act as normal

combo box, it will not post any changes to same page.

9. We will set reference to ratingSaved as next action set for AtomComboBox, which will be called

after the POST operation was successful.

18.2 Filtering AtomPromise.json from server
While we design screen to load collection of items from server, we often require sending filtering criteria

to server. To make things easier and to make AJAX calls filterable with bindable parameters, we have

designed AtomPromise.json in such a way that it accepts object literal and formats query string based on

properties of object literal.

<script type="text/javascript">
 ({
 searchText: '',
 orderBy: 'CustomerName'
 })
</script>
<div atom-dock="Top" style="height:30px">
 <input type="search" atom-value="$[scope.searchText]"/>
 <!-- A Dummy Button for User, Since binding will only update
 if User moves focus out from text box or press enter,
 so we create a dummy button, which user will click,
 that will result in losing focus from text box and thus
 updating binding and that will reload the list-->
 <button>Search</button>
</div>
<div
 atom-type="AtomListBox"
 atom-items="[AtomPromise.json('/db/customers/query' , { name: $scope.searchText,
orderBy: $scope.orderBy })]">
 <table>
 <thead>
 <tr>
 <th
 atom-type="AtomSortableColumn"
 atom-label="ID"
 atom-sort-field="CustomerID"
 atom-value="$[scope.orderBy]"></th>
 <th
 atom-type="AtomSortableColumn"
 atom-label="Name"
 atom-sort-field="CustomerName"
 atom-value="$[scope.orderBy]"></th>
 <th
 atom-type="AtomSortableColumn"
 atom-label="Email"
 atom-sort-field="CustomerEmail"
 atom-value="$[scope.orderBy]"></th>
 </tr>
 </thead>
 <tbody atom-presenter="itemsPresenter">
 <tr atom-template="itemTemplate">
 <td atom-text="{$data.CustomerID}"></td>
 <td atom-text="{$data.CustomerName}"></td>
 <td atom-text="{$data.CustomerEmail}"></td>
 </tr>
 </tbody>
 </table>
</div>

1. First Initialize variables in a Scope Script

2. searchText to empty text

3. orderBy to ‘CustomerName’

4. Since binding ignores ‘undefined’ values, not initializing scope variables will result in no binding.

5. Now let’s create a text box and bind it to $scope.searchText.

6. Since binding only refreshes input controls on change event or when you press enter, we will need

some button for user to click. So we will add a button. This button does not do anything, but user

just feels that user should click somewhere in order to search, user will click on button, that will

result in change event fired and that will actually trigger search.

7. To create search while you are typing, you can bind events in two way binding for keyup event.

8. Now inside AtomListBox we will set AtomPromise for items property.

9. In this Promise, we have set two query string parameters and both are updated automatically and

that causes refreshing of list as entire binding is one way binding for items property.

10. For each Table Column Header, we are attaching AtomSortableColumn which does two things.

o It applies sorting indicators if its own value is same as that of its own atom-sort-

field. As you can see, value is bound to a $scope.orderBy variable. It will change its

css class based on value of current $scope.orderBy.

o When you click the header, it changes $scope.orderBy to its own atom-soft-field, thus

by making all sortable columns to refresh its css and reload items.

18.3 Filtering AtomItemsControl items locally
AtomItemsControl and all its derived controls supports local filtering. When designing an application,

filtering is an important design constraint and we will explain how to filter data locally to reduce server

round trips. This must be done carefully as it will impact performance, but we have successfully played

with 100 to 1000 items for local filtering and it works well. However based on size of data and UI elements,

you must test your performance on both mobile and desktop and choose which filtering method you want

to apply.

<script type="text/javascript">
 ({
 searchText: '',
 orderBy: 'CustomerName',
 filterDelegate: function (q) {
 if (!(q && q.name))
 return null;
 return function (data) {
 return data.CustomerName.indexOf(q.name) == 0;
 }
 }
 })
</script>
<div atom-dock="Top" style="height:30px">
 <input type="search" atom-value="$[scope.searchText]"/> <button>Search</button>
</div>
<div atom-type="AtomListBox"
 atom-items="[AtomPromise.json('/db/customers/query')]"
 atom-sort-path="[$scope.orderBy]"
 atom-filter="[$scope.filterDelegate({ name: $scope.searchText})]">
 <table>
 <thead>
 <tr>
 <th atom-type="AtomSortableColumn"
 atom-label="ID"
 atom-sort-field="CustomerID"
 atom-value="$[scope.orderBy]"></th>
 <th atom-type="AtomSortableColumn"
 atom-label="Name"
 atom-sort-field="CustomerName"
 atom-value="$[scope.orderBy]"></th>
 <th atom-type="AtomSortableColumn"
 atom-label="Email"
 atom-sort-field="CustomerEmail"
 atom-value="$[scope.orderBy]"></th>
 </tr>
 </thead>
 <tbody atom-presenter="itemsPresenter">
 <tr atom-template="itemTemplate">
 <td atom-text="{$data.CustomerID}"></td>
 <td atom-text="{$data.CustomerName}"></td>
 <td atom-text="{$data.CustomerEmail}"></td>
 </tr>
 </tbody>
 </table>
</div>

This example is same as the previous, but this loads all the items and provides filtering and sorting locally.

1. Note that we have not send any parameters in AtomPromise.

2. To sort items, it is simple, you can set atom-sort-path property to $scope.orderBy. If you

want to perform your own custom sorting, than can create a function in scope and bind to it as

well.

3. To set filter, we will create a function named filterDelegate in the scope and we will call that

function in binding expression.

4. filterDelegate function does not filter anything, but it returns a function that will be used for

filtering the data items. filterDelegate stores filtering parameter as closure variable q.

Same example can be rewritten as following to use built-in Atom.query.

<script type="text/javascript">
 ({
 searchText: '',
 orderBy: 'CustomerName'
 })
</script>
<div atom-dock="Top" style="height:30px">
 <input type="search" atom-value="$[scope.searchText]"/> <button>Search</button>
</div>
<div atom-type="AtomListBox"
 atom-items="[AtomPromise.json('/db/customers/query')]"
 atom-sort-path="[$scope.orderBy]"
 atom-filter="[{ 'CustomerName:contains': ($scope.searchText || undefined) }]">
 <table>
 <thead>
 <tr>
 <th atom-type="AtomSortableColumn"
 atom-label="ID"
 atom-sort-field="CustomerID"
 atom-value="$[scope.orderBy]"></th>
 <th atom-type="AtomSortableColumn"
 atom-label="Name"
 atom-sort-field="CustomerName"
 atom-value="$[scope.orderBy]"></th>
 <th atom-type="AtomSortableColumn"
 atom-label="Email"
 atom-sort-field="CustomerEmail"
 atom-value="$[scope.orderBy]"></th>
 </tr>
 </thead>
 <tbody atom-presenter="itemsPresenter">
 <tr atom-template="itemTemplate">
 <td atom-text="{$data.CustomerID}"></td>
 <td atom-text="{$data.CustomerName}"></td>
 <td atom-text="{$data.CustomerEmail}"></td>
 </tr>
 </tbody>
 </table>
</div>

In this example, when we set criteria as undefined, the filter object is ignored. Otherwise, it uses filter

object with Atom.query to filter items. Please see AtomQuery section for more details.

	1 Contents
	2 Web Atoms License
	3 What is Single Page Application?
	3.1 History of HTML and Web Apps
	3.2 Speed of Internet
	3.3 UI Processing on Server
	3.4 Client Server Architecture
	3.5 Frameworks
	3.6 MVC vs. Component Oriented Development

	4 Core Architecture
	4.1 Object Oriented Design
	4.1.1 Static Linking
	4.1.2 Debug Script

	4.2 Property Inference
	4.2.1 Trouble with Single Method Property Pattern

	4.3 Distributed Binding
	4.4 Enumerator Pattern
	4.5 Child Enumerator
	4.6 HTML Element Template
	4.7 Control Life Cycle

	5 Script and CSS Installation
	5.1 No Minimizer
	5.2 Customize CSS
	5.3 Visual Studio Syntax Colorizer
	5.4 Google Chrome Extension

	6 Atom Control
	6.1 Initialize Atom Control
	6.2 Control Name
	6.3 Inherited Data Property
	6.4 Owner Property
	6.5 Binding Html Attributes
	6.5.1 Text Attribute
	6.5.2 Is Enabled Attribute
	6.5.3 Checked Attribute
	6.5.4 Class Attribute
	6.5.5 Style Attribute
	6.5.6 Html Attribute
	6.5.7 Absolute Position Attribute

	6.6 Atom Prefix

	7 Scope
	7.1 Initialization
	7.2 Scope (Current Scope)
	7.3 Scope Control Name
	7.4 Scope Template Name
	7.5 Application Scope (Global Scope)
	7.5.1 Navigation History
	7.5.2 URL Hash Change
	7.5.3 Eligible App Scope Value Types for URL Hash

	7.6 Local Scope

	8 Atom Control Properties
	8.1 scope Property
	8.2 appScope Property
	8.3 localScope Property
	8.4 atomParent Property
	8.5 templateParent Property

	9 Asynchronous Programming with Web Atoms
	9.1 Pain of writing asynchronous tasks
	9.2 AtomPromise
	9.3 AtomForm
	9.4 AtomPostButton
	9.5 Benefits of Web Atoms

	10 Data Binding
	10.1 One Time Binding
	10.1.1 JavaScript Native Type Values

	10.2 One way Binding
	10.3 Two Way Binding
	10.3.1 Two Way Binding Update Event

	10.4 Style Binding
	10.5 Event Binding

	11 ActionSet
	11.1 Events Processing
	11.2 Simple Actions
	11.3 String URL Action
	11.4 Function Reference
	11.5 Object Literal
	11.5.1 Object Literal Scope
	11.5.2 Object Literal AppScope
	11.5.3 Object Literal Data
	11.5.4 Object Literal Alert
	11.5.5 Object Literal Confirm
	11.5.6 Object Literal Timeout

	12 Creating an Application
	12.1 AtomApplication
	12.1.1 Title
	12.1.2 Busy Template

	12.2 Dock Panel
	12.3 Run as Page

	13 Data Binding to Array
	13.1 Label Value Pair
	13.2 Cascaded Selections

	14 Item Collections
	14.1 Items Control
	14.1.1 Scope
	14.1.2 Item Template
	14.1.3 Server Side Filtering
	14.1.4 Table Template

	14.2 List Box
	14.2.1 Custom Selector
	14.2.1.1 Button as Selector
	14.2.1.2 Checkbox as Selector for Multiple Selection

	14.2.2 DataGrid

	14.3 Data Pager
	14.4 Combo Box
	14.5 Toggle Button Bar

	15 Building HTML User Interface
	15.1 Dock Panel
	15.2 View Stack
	15.3 Link Bar (Menu Bar)
	15.4 Form Layout
	15.5 Form Grid Layout
	15.6 Form Grid Layout with Tabs
	15.7 Form Items
	15.7.1 HTML Elements
	15.7.2 CheckBoxList
	15.7.3 Date Control
	15.7.4 Date Field

	15.8 Navigator List
	15.9 Window
	15.9.1 Hosted IFrame

	15.10 Wizard

	16 Difference between Scope and Data
	17 Library Reference
	17.1 Atom Module
	17.1.1 Atom.get(target,property) Method
	17.1.2 Atom.set(target,property,value) Method
	17.1.3 Atom.add(targetArray,item) Method
	17.1.4 Atom.insert(targetArray,index,item) Method
	17.1.5 Atom.remove(targetArray,item) Method
	17.1.6 Atom.clone Method
	17.1.7 Atom.refresh(target,property) Method
	17.1.8 Atom.refreshArray(targetArray) Method
	17.1.9 Atom.clearArray(targetArray) Method
	17.1.10 Atom.url(url,query,hash) Method
	17.1.10.1 query Parameter
	17.1.10.2 hash Parameter

	17.1.11 Atom.time Method
	17.1.12 Atom.refreshWindowCommand Method
	17.1.13 Atom.merge(dest, src, update) Method
	17.1.14 Atom.csv(array,path,separator) Method
	17.1.15 Atom.query Method

	17.2 AtomPromise Module
	17.2.1 JSON Post Encoding
	17.2.2 JSON Serialized as Form Value as formModel field (Default)
	17.2.3 JSON Serialization
	17.2.4 AtomPromise.json(url,query,options) Method
	17.2.4.1 options Parameter

	17.2.5 AtomPromise.get(url,query,options) Method
	17.2.6 AtomPromise.cachedJson(url,query,options) Method
	17.2.7 AtomPromise.configLabel(url,value,options) Method

	17.3 AtomQuery Module
	17.3.1 JSON Data Store
	17.3.2 Simple Comparison Query
	17.3.3 Nested Property Comparison
	17.3.4 Composite Query
	17.3.5 In Query
	17.3.6 Any Query
	17.3.7 Useful Operators

	17.4 AtomQuery Extension Methods
	17.4.1 sum Method
	17.4.2 count Method
	17.4.3 any Method

	17.5 AtomBinder Module
	17.5.1 AtomBinder.setValue(target,property,value) Method
	17.5.2 AtomBinder.getValue(target,property) Method
	17.5.3 AtomBinder.refreshValue(target,property) Method
	17.5.4 AtomBinder.add_WatchHandler(target,property,handler) Method
	17.5.5 AtomBinder.remove_WatchHandler(target,property,handler) Method

	17.6 AtomDate Class
	17.6.1 AtomDate.toMMDDYY Method
	17.6.2 AtomDate.toShortDateString Method
	17.6.3 AtomDate.toDateTimeString Method
	17.6.4 AtomDate.parse Method

	17.7 AtomFileSize Class
	17.7.1 AtomFileSize.toFileSize Method

	18 Walkthroughs
	18.1 Post changes to server on AtomComboBox
	18.2 Filtering AtomPromise.json from server
	18.3 Filtering AtomItemsControl items locally

